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Abstract 

It was recently conjectured that the Standard Model of particle physics resides on a 

bifurcation diagram generated by the recursive scaling of the Higgs coupling. This sequel 

explores the relationship between the bifurcation diagram and the Path Integral (PI) 

formalism of Quantum Field Theory (QFT). The long-term goal is to base the Feynman 

diagrams on the properties of the Feigenbaum attractor of either quadratic or cubic maps. 
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1. Introduction 

It is well known that low-dimensional maps (such as quadratic, Hénon or cubic 

maps) serve as prime models of nonlinear science and chaos theory. 

Moreover, when tied in with the logistic equation, quadratic maps illustrate 

key concepts of chaotic behavior, including period-doubling bifurcations, 

universality, Lyapunov stability, strange attractors and sensitive 

dependence on initial conditions. 

Recent research confirms that low-dimensional maps are also highly 

relevant to complex dynamics, in general, and the nonintegrable regime of QFT 

and particle physics, in particular: 

1) Far above the electroweak scale, reaction-diffusion processes involving 

dimensional fluctuations lead to quadratic maps and the complex 

Ginzburg-Landau equation [2 - 3]. 

2) The Standard Model unfolds under recursive bifurcations of the cubic 

map, the latter being derived from the Renormalization Group (RG) flow 
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of the Higgs coupling. Both particle and Dark Matter condensates act as 

fixed points of the bifurcation diagram [1].  

3) Large systems of evolution equations can be shown to reduce to either 

quadratic or cubic forms following the center manifold theory [4].  

This exploration is a sequel to [1], where bifurcations start with the formation 

of a Higgs condensate and end up with the formation of a top-antitop (t t ) 

condensate. The long-term goal of this work is to base the Feynman diagrams 

on the properties of the Feigenbaum attractor of either quadratic or cubic 

maps. 

The report is organized as follows: working assumptions and conventions 

used throughout are covered in the next section. Section 3 outlines the 

remarkable (yet largely underappreciated) analogy between the self-

similarity of fractal structures and Feynman diagrams; Building on section 

3, section 4 elaborates on the topic of random walks on the Feigenbaum 

attractor. The PI formulation of the Feigenbaum attractor in terms of field 
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theory forms the subject of section 5. A summary is included in the last 

section. Designed as an introductory/pedagogical study, the paper is 

presented in an accessible format and is open for independent scrutiny and 

unbiased analysis. 

2. Assumptions and conventions: 

A1) With reference to [1], fields undergoing bifurcations are denoted as x , 

the time-scale for field evolution   is the continuous analog of the iteration 

index n , and the one-parameter of either quadratic or cubic map is denoted 

by r . 

A2) The quadratic and cubic maps studied herein are one-parameter 

unimodal (or “single peak”) maps, written as 

 
11 1( ) (1 )r n n nnx x r x xf+ == −  (1) 

 
2

2
1 2( ) (1 )r n n nnx x r x xf+ == −  (2) 
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A3) There are two representative time scales entering the derivation below, 

namely, 

a) an RG scale for field evolution 0log( )  = , where   is the 

observation scale. 

 b) an RG scale for the flow of couplings denoted by l . 

A4) The “Feigenbaum fixed point” and the “Feigenbaum attractor” are 

respectively defined as follows: 

a) The Feigenbaum fixed point is a mathematical concept of 

Renormalization theory, describing the universal scaling of period-

doubling cascades (Appendix B). 

b) The Feigenbaum attractor is a fractal structure of actual dynamical 

systems at the transition to fully developed chaos. In quadratic or cubic 

maps, the attractor develops in proximity to the accumulation point 



6 | P a g e  

 

1,2r r= , is self-similar and has a fractal dimension greater than 1 

(Appendix A). 

3. Self-similarity of fractal structures and Feynman diagrams 

It is well known that Feynman diagrams are graphical representations of 

interactions in QFT. Particle interactions are pictured using vertices, lines, and 

loops, where each loop corresponds to quantum corrections in perturbation 

theory. The expansion in Feynman diagrams follows a recursive structure—

higher-order terms in the perturbation series contain additional interaction 

vertices and loops. This procedure leads to self-similar patterns of ever-

increasing complexity. 

Although both Feynman diagrams and fractal structures exhibit self-

similarity, they arise in different contexts within physics and mathematics. 

The connection between them can be explored through their shared 

recursive/iteration attributes. The analogy between Feynman diagrams and 
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fractals stems from the way QFT accounts for the contribution of radiative 

corrections. In particular, 

a) the RG flow describes how physical parameters of the theory (such as 

masses and coupling constants) change with the observation scale. This 

scaling behavior often exhibits self-similarity, as physics at one scale 

nearly replicates that at another. 

b) The inclusion of additional loops and sub-diagrams in Feynman 

diagrams resembles the iterative growth of fractals. Typical examples 

include diagrams in quantum electrodynamics (QED) or quantum 

chromodynamics (QCD), which can be broken down into sub-diagrams 

replicating the whole. Emitted gluons in parton showers from high-

energy collisions exhibit a branching geometry akin to fractal-like 

structures. 

A gallery of representative Feynman diagrams is illustrated in Fig. 1 

below. 
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Fig. 1 Feynman diagrams containing vertices, lines and loops. 

4. Random walks (RW) on the Feigenbaum attractor 

By definition, a random walk (RW) consists of a sequence of stochastic steps, 

often used to model Brownian motion and diffusion processes. The probability 

of reaching a certain point is given by summing up all possible paths leading 

to that point. 
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RW’s provide an intuitive foundation for understanding Path Integrals (PI) 

in statistical physics, quantum mechanics, and QFT. The PI approach in 

quantum theory extends the idea of summing over RW’s to the quantum 

domain, where paths interfere according to the phase iSe  rather than being 

weighted by classical probabilities. 

The couple of graphs shown below illustrate the plots of RW’s over the 

quadratic and cubic maps, displayed as “position” versus number of 

“stochastic steps”.  
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Fig. 2 below is the visualization of RW on the bifurcation diagram of the 

quadratic map. Here are the main features of this RW:  

a) The black points represent the bifurcation diagram, showing the steady-

state behavior of x  as r  varies. 

b) The red curve traces the RW path in r - space. 

c) The blue points highlight the specific steps of RW. 
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Fig. 2: Visualization of random walks on the bifurcation diagram 

The walk “wanders” through periodic regions (where the behavior is stable) 

and chaotic regions (where small changes in r  cause large variations in x ). A 

similar mixture of regular and chaotic phase space orbits shows up in the 

approach to Hamiltonian chaos of nonintegrable dynamical systems.  
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Following [1], the border between Cantor Dust/Dark Matter condensate and 

the 3 neutrino condensates of the Standard Model is a marker of fully 

developed chaos, with few or no traces of periodic behavior.  

5. Field-Theoretic Account of the Feigenbaum Attractor 

The PI approach to the Feigenbaum attractor may be built upon the analogy 

between summation over paths in QFT and summation over histories of chaotic 

maps in classical chaos theory. The basis for this analogy is that the PI 

approach to chaos describes classical fluctuations in chaotic dynamics, 

echoing the way quantum fluctuations are accounted for in the PI integrals 

of QFT. Note that the underlying principle at work here is that all nearly 

nonlinear dynamical systems follow a universal route to chaos, regardless of 

their format and initial conditions [5 -26]. 

In line with these observations, the goal of this section is twofold, namely, 

a) to cast the scaling behavior of low-dimensional maps near the 

Feigenbaum attractor in terms of an effective action, 
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 b) to analyze the corresponding renormalization group (RG) equations. 

To this end, we introduce an auxiliary field ( , )x   denoting perturbations 

around a trajectory x  located near a fixed point,   

 ( ) nn x x = −  (3) 

The evolution equation may be then approximated as 

 1 ( )nn g + =    (4) 

where the so-called Feigenbaum-Cvitanovic function ( )g x  satisfies the 

scaling equation (Appendix B) 

 ( ) ( ( ))g x g g x =−  (5) 

Here,   is the second Feigenbaum universal constant ( 2.5029   for the 

quadratic map and ' 2.3378   for the cubic map). Per Appendix B, the main 

point here is that, under repeated renormalization operations consisting of 
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iteration and rescaling, various unimodal maps converge to the same function 

- denoted as ( )g x  - regardless of the form taken by the original function.    

We next introduce a Lagrangian density in the continuous time limit of (4) 

 21
( ) ( )

2 effL V =  −  (6) 

in which the effective potential follows from the Feigenbaum renormalization 

flow and is given by  

 2 3 43 41
( ) ....

2 3! 4!eff

g g
V    = + + +  (quadratic map) (7a) 

 2 3 53 51
( ) ....

2 3! 5!eff

g g
V    = + + + (cubic map) (7b) 

Here, by (11),   is related to the first Feigenbaum constant   ( 4.669   for 

the quadratic map and ' 8.721   for the cubic map), and 3,4,5g  are interaction 

coefficients. The corresponding Euclidean action governing the fluctuations 

about the Feigenbaum fixed point is 
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 21
[ ] [ ( ) ( )]

2 effS d dx V   =  +  (8) 

Again, by analogy with QFT, the probability amplitude of the transition 

between two perturbation states i  and f  over a time interval ifT  = −  is 

given by the PI, 

 exp( [ ])Z d S = −  (9) 

To perform an RG analysis in the Wilsonian sense, we first integrate out the 

fast modes and rescale the remaining degrees of freedom. The resulting RG 

equations define the scaling behavior of fluctuations near the Feigenbaum 

attractor and assume the form, 

Quadratic map: 

 2
3 42 ( )

d
g O g

dl


 = − +  (10a) 

 3
53 4 3(1 ) ( )

dg
g g g O g

dl
 = − − +  (10b) 
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 4
542(1 ) ( )

dg
g O g

dl
= − +  (10c) 

Here, the Feigenbaum constant   is the rate of flow for   at the Feigenbaum 

fixed point 

 
FP

d
dl


 =  (11) 

Cubic map: 

 2
52 '

d
g

dl


 = −  (12a) 

 3
53 3(1 ') '

dg
g g g

dl
 = − −  (12b) 

 5
52(1 ')

dg
g

dl
= −  (12c) 

Fig. 3 shows the RG flow for the Feigenbaum attractor of the quadratic map. 

The quadratic coupling ( )l  grows under the RG flow, indicating that the 

system drifts away from criticality. The cubic and quartic couplings 3( )g l  
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and 4( )g l  follow a decay trend, characteristic of irrelevant couplings in RG 

theory.  

Unlike the quadratic map, analysis shows that there is a nontrivial fixed 

point of the RG flow for the cubic map given by 

 
2

5'

2

g



  ;  53 0g g = =  (13) 

As the RG flow for the cubic map converges to (13), the parameter   tends 

to stabilize, which indicates the transition to self-similarity characteristic for 

critical behavior. As a result, the cubic map follows a different universality 

scaling from the quadratic map. This result is consistent with the observation 

that cubic maps often exhibit richer dynamics, including period-doubling 

cascades, chaotic attractors, and multi-stability (coexistence of multiple 

attractors). These findings point out that the bifurcation diagram of the cubic 

map covered in [1] is likely to unveil many surprising details on the 

underlying physics of Feynman diagrams.  
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Fig. 3 RG plot of coupling parameters for the quadratic map 

6. Summary 

Our exploration provides a baseline for studying the link between the 

Feigenbaum path to chaos and renormalization in nonlinear dynamics, on the 

one hand, and Feynman diagrams, on the other. We believe that, in connecting 

QFT techniques with nonlinear maps, this modest contribution sheds 
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unforeseen light on the common mathematical foundation of statistical 

physics and dynamical systems. 

APPENDIX A: Feigenbaum Attractor of Low-Dimensional Unimodal 

Maps 

The Feigenbaum attractor reflects the onset of chaos after an infinite sequence 

of period-doubling bifurcations. It is a strange attractor with a non-integer 

fractal dimension. It exhibits self-similarity and universal properties across 

different chaotic systems. At the Feigenbaum attractor, the system exhibits 

an aperiodic but nested structure of points, where zooming in shows a self-

repeating pattern. 

APPENDIX B: Feigenbaum Fixed Point and the Renormalization 

Approach to Period Doubling Bifurcations 

Consider a family of one-parameter unimodal maps (1) or (2). As  

parameters 1, 2r  ramp up, the system undergoes bifurcations in which stable 

periodic points double their period ( 2 , 1,2,3...k k = ), eventually leading to 
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fully developed chaos at r . The renormalization approach to period-doubling 

bifurcations considers a transformation R  whose action on the families of 

maps (1) or (2) is described by 

 [ ]( ) ( ( ))R f x f f x =  (B1) 

with   a is the second Feigenbaum constant. The fixed-point function 

represents the limit of (B1) and is defined as   

 ( ) ( ( ))g x g g x   =  (B2) 

The meaning of (B2) is that, under repeated application of the 

renormalization operator R , various unimodal functions converge to the same 

outcome ( )g x , regardless of the original form of the function.  
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