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Abstract

In this paper, we introduce the Tri-Quarter Topological Duality Theorem, the foundation of a novel
mathematical framework that unifies complex, Cartesian, and polar coordinate systems on the
complex plane C while equipping the circle Tr of radius r > 0 with a new topological property. Our
framework integrates a generalized coordinate system—where real and imaginary components are
assigned unique phase pairs—with a structured orientation that elevates Tr to an active separator
with intrinsic directional properties. We prove that Tr, as the boundary zone, exhibits topological
duality with the inner zone X−,r (||x⃗|| < r) and outer zone X+,r (||x⃗|| > r), ensuring consistent
separation between inner and outer radial directions across Tr with a phase pair map encoding addi-
tional information. We also introduce the Escher Tri-Quarter Reflective Duality Theorem, proving
reflective duality across Tr via a circle inversion map that preserves phase pairs while swapping
X−,r andX+,r. This approach offers insights into topological separation, orientation, and reflection,
facilitating analysis of systems with circular symmetry, with potential applications in fields such
as black hole physics, signal processing, and other areas reliant on complex domain partitioning.
A case study on quadrant-based transformations demonstrates streamlined directional mappings,
geometric elegance, unified classification, and computational efficiency in C. A software tool vi-
sualizes some of these concepts, with future work aimed at exploring practical implementations.

1 Introduction

The complex plane C, viewed as a complex 1D Riemann surface, serves as a foundational structure
in mathematics and its applications, bridging algebraic, geometric, and analytic perspectives [1, 2].
In some contexts, traditional coordinate systems, such as Cartesian and polar, while powerful,
treat the circle of radius r > 0 as a mere boundary without fully exploiting its topological role. In
this work, we address this gap by introducing the Tri-Quarter Topological Duality Theorem, which
establishes a generalized complex-Cartesian-polar coordinate system while applying a trichotomy—
a three zone partition of C based on the circle of radius r > 0—to the four quadrants of C to achieve
a new topological property.

This paper includes two main results. Our first main result demonstrates that the circle Tr

of radius r > 0 is topologically dual to both the inner zone X−,r (||x⃗|| < r) and outer zone X+,r

(||x⃗|| > r), with a structured orientation that ensures consistent directional separation across C—
more specifically, between the inner radial direction (approaching Tr from X−,r) and the outer
radial direction (approaching Tr from X+,r), which is combined with a novel phase pair assignment
based on well-defined quadrant and axis boundary rules. This framework unifies three coordinate
representations and elevates the circle’s role from a passive boundary to an active separator with
intrinsic properties. Our second main result leverages a circle inversion map [3] to demonstrate
reflective duality across Tr to preserve the assigned phase pairs while swapping X−,r and X+,r—the
Escher Tri-Quarter Reflective Duality Theorem—inspired by the artistic symmetry of M.C. Escher
[4].
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The significance lies in its potential to refine analyses, computations, modeling, and design in
fields that rely on complex numbers and complex domain spatial partitioning, such as offering a
nuanced approach to handling precise boundary conditions, directional properties, and reflective
properties across C. For instance, potential applications may include deciphering the quasi-normal
modes of black holes and enhancing the computational efficiency of signal processors. To demon-
strate its practical utility, a case study in Section 7 applies the framework to quadrant-based
transformations, revealing its capacity to unify classification and leverage geometric structure for
efficient and consistent directional analysis across C.

In Section 2, we define the coordinate system, followed by the structured orientation in Section 3,
the topological zones in Section 4, the topological duality proof in Section 5, the reflective duality
proof in Section 6, and the aforementioned case study in Section 7. In Section 8, we conclude with
a discussion of its strengths, software animation tool, and potential future applications.

2 Generalized Complex-Cartesian-Polar Coordinate System
LetX = C be the complex plane and complex 1D Riemann surface [1, 2] with the standard topology.
For a complex number x = xR + ixI ∈ X, we define the complex vector x⃗ = x⃗R + x⃗I ∈ X as a
position-vector on X with Cartesian coordinate form

(xR, xI)Cartesian = (xR, xI)C , (1)

where C denotes Cartesian form. Vectors are denoted with arrows (e.g., x⃗) throughout this paper for
consistency. Here x⃗R and x⃗I are axis-aligned orthogonal components that we treat interchangeably
as both vectors and points in specific subsets of X. Specifically, we define

x⃗R ∈ R× {0} = {(xR, 0)C | xR ∈ R}
x⃗I ∈ {0} × I = {(0, xI)C | xI ∈ R}, (2)

where I = iR denotes the imaginary axis. Therefore, x⃗R = (xR, 0)C is a “real Euclidean 2-vector”
aligned with the real axis, and x⃗I = (0, xI)C is an “imaginary Euclidean 2-vector” aligned with the
imaginary axis. Throughout this framework, this dual interpretation allows x⃗R and x⃗I to serve as
both individual vectors and representative points within their respective sets, enabling their use
interchangeably with the complex number x and its vector representation x⃗, which they form as a
linear combination (emphasizing that x⃗ = x⃗R + x⃗I is the direct sum of these vectors). As we will
demonstrate in this paper, by subtly defining the components x⃗R and x⃗I to be orthogonal axis-
aligned vectors—instead of just scalars—we achieve some useful properties such as orthogonality
and direction.

Throughout this paper, we consider X \{(0, 0)C} to exclude the origin where phase assignments
are undefined. This focuses our framework on regions that are critical to the main results.

Next, x⃗ ∈ X \ {(0, 0)C} is a Euclidean 2-vector with norm ||x⃗|| ∈ [0,∞) and phase arg(x⃗) =
⟨x⃗⟩ ∈ [0, 2π), which are respectively analogous to magnitude and direction in conventional notation
with polar coordinate form

(||x⃗||, ⟨x⃗⟩)Polar = (||x⃗||, ⟨x⃗⟩)P , (3)

where P denotes polar form, to give
xR = ||x⃗|| cos⟨x⃗⟩
xI = ||x⃗|| sin⟨x⃗⟩ (4)

with Pythagorean form
||x⃗||2 = x2R + x2I . (5)

(Note: From this point forward, for conciseness, for the phase angle notation of a given x⃗ ∈
X \ {(0, 0)C}, we will just say ⟨x⃗⟩ instead of arg x⃗ also.) Thus, similarly to x⃗, for the axis-aligned
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orthogonal vectors x⃗R and x⃗I, we also obtain the polar coordinate form

(||x⃗R||,⟨x⃗R⟩)P
(||x⃗I||,⟨x⃗I⟩)P ,

(6)

such that ||x⃗R||, ||x⃗I|| ∈ [0,∞), ⟨x⃗R⟩ ∈ {0, π}, and ⟨x⃗I⟩ ∈ {π
2 ,

3π
2 }.

Henceforth, the Pythagorean form of Equation (5) becomes

||x⃗||2 = ||x⃗R||2 + ||x⃗I||2 = x2R + x2I . (7)

Thus, for all x⃗ ∈ X we define the 2D generalized complex-Cartesian-polar coordinate system as

(x⃗) = (x⃗R + x⃗I) = (xR, xI)C = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C = (||x⃗||, ⟨x⃗⟩)P (8)

unifying complex, Cartesian, and polar representations. This unification is further enriched by the
phase pair assignments and structured orientation defined in Section 3, which provide directional
properties that are critical to our topological analysis.

3 Structured Orientation

Building on the foundation of the unified coordinate representation in Equation (8), for any x⃗ ∈
X \ {(0, 0)C}, we now assign phase pairs to establish a structured orientation across X \ {(0, 0)C}.
We define the quadrant phase pair assignments as

I: ⟨x⃗⟩ ∈
(
0, π2

)
⇐⇒ (xR > 0)∧ (xI > 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = π

2

)
⇐⇒ (0, π2 )ϕ

II: ⟨x⃗⟩ ∈
(
π
2 , π

)
⇐⇒ (xR < 0)∧ (xI > 0)⇐⇒ (⟨x⃗R⟩ = π)∧

(
⟨x⃗I⟩ = π

2

)
⇐⇒ (π, π2 )ϕ

III: ⟨x⃗⟩ ∈
(
π, 3π2

)
⇐⇒ (xR < 0)∧ (xI < 0)⇐⇒ (⟨x⃗R⟩ = π)∧

(
⟨x⃗I⟩ = 3π

2

)
⇐⇒ (π, 3π2 )ϕ

IV: ⟨x⃗⟩ ∈
(
3π
2 , 2π

)
⇐⇒ (xR > 0)∧ (xI < 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = 3π

2

)
⇐⇒ (0, 3π2 )ϕ,

(9)

where (⟨x⃗R, ⟨x⃗I⟩)ϕ denotes the phase pair assigned by the coordinate system. Then to maintain
continuity and ensure that no boundary remains undefined, we define the axis boundary phase pair
assignments as

“East”: ⟨x⃗⟩ = 0⇐⇒ (xR > 0)∧ (xI = 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧ (⟨x⃗I⟩ = 0) ⇐⇒ (0, 0)ϕ

“North”: ⟨x⃗⟩ = π
2 ⇐⇒ (xR = 0)∧ (xI > 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = π

2

)
⇐⇒ (0, π2 )ϕ

“West”: ⟨x⃗⟩ = π⇐⇒ (xR < 0)∧ (xI = 0)⇐⇒ (⟨x⃗R⟩ = π)∧ (⟨x⃗I⟩ = 0) ⇐⇒ (π, 0)ϕ

“South”: ⟨x⃗⟩ = 3π
2 ⇐⇒ (xR = 0)∧ (xI < 0)⇐⇒ (⟨x⃗R⟩ = 0) ∧

(
⟨x⃗I⟩ = 3π

2

)
⇐⇒ (0, 3π2 )ϕ,

(10)

where each of these assigned phase pairs uniquely corresponds to each axis direction, aligning with
⟨x⃗⟩ and maintaining a structured orientation. To establish a consistent rule for handling the edge
cases when xR = 0 or xI = 0, we can simply set ⟨x⃗R⟩ = 0 or ⟨x⃗I⟩ = 0, respectively. Thus, from
Equations (9–10) we derive the following phase assignment rules:

• For the real component x⃗R:

◦ If xR > 0, then set ⟨x⃗R⟩ = 0.

◦ If xR = 0, then set ⟨x⃗R⟩ = 0.

◦ If xR < 0, then set ⟨x⃗R⟩ = π.

• For the imaginary component x⃗I:

◦ If xI > 0, then set ⟨x⃗I⟩ = π
2 .

◦ If xI = 0, then set ⟨x⃗I⟩ = 0.

◦ If xI < 0, then set ⟨x⃗I⟩ = 3π
2 .
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The phase assignment rules serve as “building blocks” for the phase pair assignments. They
maintain consistency across all vectors—including the axis-bound vectors—and indicate the absence
of direction in a zero-magnitude component.

In standard complex analysis, the phase (argument) of the zero vector is undefined because it has
no direction. However, in this framework, we adopt the convention such that when a component
is zero (e.g., xR = 0 or xI = 0), then its corresponding phase is set to 0 (e.g., ⟨x⃗R⟩ = 0 or
⟨x⃗I⟩ = 0). This choice simplifies the phase pair assignments, especially on the real and imaginary
axes, and ensures that for all x⃗ ∈ X \ {(0, 0)C} there exists a well-defined phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ.
This convention is consistently applied throughout the paper and does not affect the main results
because the origin is excluded from our analysis.

These phase pair assignments establish a structured orientation that not only unifies the complex-
Cartesian-polar coordinate representations but also upgrades X \ {(0, 0)C} with consistent direc-
tional properties. This system forms the foundation for the topological partitioning into three
distinct zones in Section 4, where the circle’s role as a separator is empowered by these orienta-
tions.

4 Topological Zones

For any r > 0 and x⃗ ∈ X \ {(0, 0)C}, we use trichotomy of the norm ||x⃗|| to partition X into three
distinct topological zones:

(1) the inner zone X−,r,

(2) the boundary zone Tr, and

(3) the outer zone X+,r.

Thus, for x⃗ ∈ X \ {(0, 0)C} we know that precisely one of the following trichotomy conditions must
be satisfied

||x⃗|| < r ⇐⇒ x⃗ ∈ X−,r

||x⃗|| = r ⇐⇒ x⃗ ∈ Tr

||x⃗|| > r ⇐⇒ x⃗ ∈ X+,r,

(11)

where clearly X−,r ∩ Tr = Tr ∩X+,r = X−,r ∩X+,r = ∅ and X−,r ∪ Tr ∪X+,r = X, such that

X−,r = {x⃗ ∈ X : ||x⃗|| < r}
Tr = {x⃗ ∈ X : ||x⃗|| = r}

X+,r = {x⃗ ∈ X : ||x⃗|| > r}
(12)

because the boundary zone Tr is a circle of radius r and 1-manifold, which serves as the separator
between X−,r and X+,r. So the four quadrants of X are partitioned into three zones via norm ||x⃗||
trichotomy—a “tri-quarter” if you will.

Definition 4.1 (Tri-Quarter Topological Duality). Let X = C be equipped with the

standard topology. For any r > 0, define X−,r = {x⃗ ∈ X : ||x⃗|| < r}, Tr = {x⃗ ∈ X : ||x⃗|| = r},
and X+,r = {x⃗ ∈ X : ||x⃗|| > r}, where X−,r ∪ Tr ∪ X+,r = X and X−,r ∩ X+,r = ∅. The

circular boundary zone Tr with radius r is topologically dual to the inner zone X−,r and outer

zone X+,r if:

(1) Tr = ∂X−,r and Tr = ∂X+,r, where X+,r denotes the closure of X+,r in X,
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(2) Tr, as a 1-manifold, has a structured orientation defined by a map ϕ : Tr → {0, π} ×
{0, π2 ,

3π
2 }, assigning phase pairs (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ based on quadrant and axis boundary phase

assignments per Equations (9–10), and

(3) the structured orientation ϕ is constant along each ray that emanates from the origin

(0, 0)C in X \ {(0, 0)C}, enabling the norm ||x⃗|| to consistently separate the inner radial

direction (approaching Tr from X−,r as ||x⃗|| → r−) from the outer radial direction

(approaching Tr from X+,r as ||x⃗|| → r+).

For the upcoming theorem and proof in Section 5, this duality captures Tr’s role as a separator
with an intrinsic directional structure to unify the topological and geometric properties of the
partition.

5 Tri-Quarter Topological Duality

In this section, we prove the first of the two main results of this paper. The topological duality
of Tr with X−,r and X+,r not only formalizes the Tr’s role as a separator but also integrates the
structured orientation to provide a unified framework for analyzing radial directions in the complex
plane. This duality lays the groundwork for exploring additional symmetries, such as the reflective
duality addressed in the subsequent section.

Theorem 5.1 (Tri-Quarter Topological Duality). Let X = C be equipped with the

standard topology and the generalized complex-Cartesian-polar coordinate system of Equation

(8), where x⃗ = x⃗R + x⃗I for x⃗ ∈ X, with x⃗R = (xR, 0)C ∈ R × {0}, x⃗I = (0, xI)C ∈ {0} × I,
and phase pairs (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ assigned as:

• if xR > 0 then ⟨x⃗R⟩ = 0, if xR = 0 then ⟨x⃗R⟩ = 0, if xR < 0 then ⟨x⃗R⟩ = π,

• if xI > 0 then ⟨x⃗I⟩ = π
2 , if xI = 0 then ⟨x⃗I⟩ = 0, if xI < 0 then ⟨x⃗I⟩ = 3π

2 ,

per the phase assignment rules following Equations (9–10). For any r > 0, define X−,r = {x⃗ ∈
X : ||x⃗|| < r}, Tr = {x⃗ ∈ X : ||x⃗|| = r}, X+,r = {x⃗ ∈ X : ||x⃗|| > r}. Then Tr is topologically

dual to X−,r and X+,r, where the structured orientation ensures consistent separation between

the inner radial direction (approaching Tr from X−,r) and the outer radial direction (approaching

Tr from X+,r) across X \ {(0, 0)C} with respect to Tr.

Proof. Let X = C with the standard topology, and for any r > 0, define X−,r, Tr, X+,r as above.
We proceed in steps to verify each condition of Definition 4.1:

• Step 1: Verify Partition and Boundaries on X
From the Jordan Curve Theorem [5, 6] we obtain the boundary zone Tr = {x⃗ ∈ X : ||x⃗|| = r}
(a simple closed curve) that separates X into two disjoint open sets: the inner zone X−,r

and the outer zone X+,r, where X \ Tr = X−,r ∪X+,r and X−,r ∩X+,r = ∅, such that:

◦ X−,r is open, so ∂X−,r = {x⃗ ∈ X : ||x⃗|| = r} = Tr (every neighborhood of x⃗ ∈ Tr

intersects X−,r and X+,r), and

◦ X+,r is open, with X+,r = {x⃗ ∈ X : ||x⃗|| ≥ r}, so ∂X+,r = Tr (similar reasoning).

This satisfies condition (1) of topological duality. □✓
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• Step 2: Verify Structured Orientation on Tr

We define ϕ : Tr → {0, π}×{0, π2 ,
3π
2 } by ϕ(x⃗) = (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ, where for x⃗ = (xR, xI)C ∈ Tr

with ||x⃗|| = r:

◦ if xR > 0 then ⟨x⃗R⟩ = 0, if xR = 0 then ⟨x⃗R⟩ = 0, if xR < 0 then ⟨x⃗R⟩ = π,

◦ if xI > 0 then ⟨x⃗I⟩ = π
2 , if xI = 0 then ⟨x⃗I⟩ = 0, if xI < 0 then ⟨x⃗I⟩ = 3π

2 .

Since Tr is a 1-manifold, we parametrize it as x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C = (r cos⟨x⃗⟩, r sin⟨x⃗⟩)C ,
with ⟨x⃗⟩ ∈ [0, 2π). Then we check the structured orientation as ⟨x⃗⟩ → 2π−:

◦ Quadrant I (⟨x⃗⟩ ∈ (0, π2 )): xR > 0, xI > 0, so ϕ = (0, π2 )ϕ.

◦ “North” boundary at ⟨x⃗⟩ = π
2 : x⃗ = (0, r)C , xR = 0, xI > 0, so ϕ = (0, π2 )ϕ, consistent

with Quadrant I.

◦ Quadrant II (⟨x⃗⟩ ∈ (π2 , π)): xR < 0, xI > 0, so ϕ = (π, π2 )ϕ.

◦ “West” boundary at ⟨x⃗⟩ = π: x⃗ = (−r, 0)C , xR < 0, xI = 0, so ϕ = (π, 0)ϕ.

◦ Quadrant III (⟨x⃗⟩ ∈ (π, 3π2 )): xR < 0, xI < 0, so ϕ = (π, 3π2 )ϕ.

◦ “South” boundary at ⟨x⃗⟩ = 3π
2 : x⃗ = (0,−r)C , xR = 0, xI < 0, so ϕ = (0, 3π2 )ϕ,

consistent with Quadrant IV.

◦ Quadrant IV (⟨x⃗⟩ ∈ (3π2 , 2π)): xR > 0, xI < 0, so ϕ = (0, 3π2 )ϕ.

◦ “East” boundary at ⟨x⃗⟩ = 0: x⃗ = (r, 0)C , xR > 0, xI = 0, so ϕ = (0, 0)ϕ.

Thus, ϕ is constant on each open arc of Tr and adjusts at axis boundaries (e.g., ⟨x⃗⟩ =
0, π2 , π,

3π
2 ). So it is piecewise continuous, which suffices for a structured orientation on a

1-manifold. This satisfies condition (2) of topological duality. □✓

• Step 3: Verify Inner and Outer Radial Directional Separation across Tr

For x⃗ ∈ Tr, fix ⟨x⃗⟩ ∈ [0, 2π). We define two paths approaching Tr:

◦ Inner radial path from X−,r: x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C , ||x⃗|| → r−, so ||x⃗|| < r.

◦ Outer radial path from X+,r: x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C , ||x⃗|| → r+, so ||x⃗|| > r.

Then we compute ϕ along both paths:

◦ For ⟨x⃗⟩ ∈ (0, π2 ), we obtain x⃗ = (||x⃗|| cos⟨x⃗⟩, ||x⃗|| sin⟨x⃗⟩)C , xR > 0, xI > 0, ϕ = (0, π2 )ϕ;
as ||x⃗|| → r−, x⃗ → (r cos⟨x⃗⟩, r sin⟨x⃗⟩)C ∈ Tr, where ϕ = (0, π2 )ϕ remains constant.

◦ Similarly, as ||x⃗|| → r+, ϕ = (0, π2 )ϕ.

The phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ is constant, where its direction is distinguished by ||x⃗||:

◦ a “contractive” (< r) inner radial direction from X−,r, and

◦ an “expansive” (> r) outer radial direction from X+,r.

This holds for all ⟨x⃗⟩ ∈ [0, 2π) as it adjusts at axis boundaries (e.g., if ⟨x⃗⟩ = 0 then
ϕ = (0, 0)ϕ). This structured orientation ensures consistent separation between the inner
radial direction (approaching Tr from X−,r as ||x⃗|| → r−) and the outer radial direction
(approaching Tr from X+,r as ||x⃗|| → r+) across X \ {(0, 0)C} with respect to Tr. This
satisfies condition (3) of topological duality. □✓
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Thus, Tr is topologically dual to X−,r and X+,r. □

Now that we’ve established the topological duality of the circular boundary zone Tr with respect
to the inner and outer zones, we now turn to a complementary symmetry that leverages this
structured orientation to achieve a reflective duality across Tr for swapping between the inner and
outer zones.

6 Escher Tri-Quarter Reflective Duality
In this section, we prove the second of the two main results of this paper. Building upon the
structured orientation and topological duality established with the Tri-Quarter Topological Duality
Theorem in the previous section, we now establish a reflective duality across the circle Tr of radius
r > 0 in the complex plane X = C, inspired by M.C. Escher’s artistic symmetry [4]. This duality
is achieved through a circle inversion map [3], which preserves the structured orientation defined
by the phase pair map ϕ while swapping the inner zone X−,r and outer zone X+,r.

Definition 6.1 (Circle Inversion Map). For any r > 0, the circle inversion map ιr :

X \ {(0, 0)C} → X \ {(0, 0)C} is defined as

ιr(x⃗) =
r2x⃗

||x⃗||2
,

where x⃗ ∈ X \ {(0, 0)C} and ||x⃗|| is the Euclidean norm [3].

Definition 6.2 (Escher Tri-Quarter Reflective Duality). Let X = C be equipped with

the standard topology. For any r > 0, define X−,r = {x⃗ ∈ X : ||x⃗|| < r}, Tr = {x⃗ ∈ X : ||x⃗|| =
r}, and X+,r = {x⃗ ∈ X : ||x⃗|| > r}, where X−,r ∪ Tr ∪X+,r = X and X−,r ∩X+,r = ∅. Let

the circular boundary zone Tr with radius r be topologically dual to both the inner zone X−,r

and outer zone X+,r as in Theorem 5.1. Then Tr exhibits reflective duality between X−,r and

X+,r if there exists a map ιr such that:

(1) ιr(x⃗) = x⃗ for all x⃗ ∈ Tr,

(2) ιr(X−,r) = X+,r and ιr(X+,r) = X−,r,

(3) ϕ(ιr(x⃗)) = ϕ(x⃗) for all x⃗ ∈ X \ {(0, 0)C}, and

(4) ιr is an involution, i.e., ι−1
r = ιr.

Theorem 6.3 (Escher Tri-Quarter Reflective Duality). LetX = C be equipped with the

standard topology. For any r > 0, define X−,r = {x⃗ ∈ X : ||x⃗|| < r}, Tr = {x⃗ ∈ X : ||x⃗|| = r},
and X+,r = {x⃗ ∈ X : ||x⃗|| > r}, where X−,r ∪ Tr ∪ X+,r = X and X−,r ∩ X+,r = ∅. Let

Tr be topologically dual to X−,r and X+,r as in Theorem 5.1. Then the circle inversion map ιr
establishes reflective duality across Tr between X−,r and X+,r that satisfies the conditions:

(1) ιr(x⃗) = x⃗ for all x⃗ ∈ Tr,

(2) ιr(X−,r) = X+,r and ιr(X+,r) = X−,r,

(3) ϕ(ιr(x⃗)) = ϕ(x⃗) for all x⃗ ∈ X \ {(0, 0)C}, and
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(4) ι−1
r = ιr.

Proof. Let X = C with the standard topology, and for any r > 0, define X−,r, Tr, X+,r to
satisfy Theorem 5.1 as above. Let ιr : X \ {(0, 0)C} → X \ {(0, 0)C} be given by Definition 6.1. We
proceed in steps to verify each condition of Definition 6.2:

(1) Verify Fixed Points on Tr

For x⃗ ∈ Tr, we have ||x⃗|| = r. Thus,

ιr(x⃗) =
r2x⃗

||x⃗||2
=

r2x⃗

r2
= x⃗. (13)

This satisfies condition (1) of reflective duality. □✓

(2) Verify Zone Swapping between X−,r and X+,r

• For x⃗ ∈ X−,r, ||x⃗|| < r. Then

||ιr(x⃗)|| =
∥∥∥∥ r2x⃗

||x⃗||2

∥∥∥∥ =
r2

||x⃗||
> r =⇒ ιr(x⃗) ∈ X+,r. (14)

• For x⃗ ∈ X+,r, ||x⃗|| > r. Then

||ιr(x⃗)|| =
∥∥∥∥ r2x⃗

||x⃗||2

∥∥∥∥ =
r2

||x⃗||
< r =⇒ ιr(x⃗) ∈ X−,r. (15)

This satisfies condition (2) of reflective duality. □✓

(3) Verify Preservation of Structured Orientation Phase Pairs
We define ϕ : Tr → {0, π} × {0, π2 ,

3π
2 } by ϕ(x⃗) = (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ, which depends on the signs

of the xR and xI components. Then(
ιr(x⃗) =

r2

||x⃗||2
x⃗

)
∧ (r > 0) ∧ (||x⃗||2 > 0) =⇒ r2

||x⃗||2
> 0. (16)

Since r2

||x⃗||2 > 0, the transformation ιr(x⃗) =
r2

||x⃗||2 x⃗ scales x⃗ without changing the signs of xR

and xI, ensuring that ϕ(ιr(x⃗)) = ϕ(x⃗). This satisfies condition (3) of reflective duality. □✓

(4) Verify Involution Property
Compute ιr(ιr(x⃗)):

ιr(ιr(x⃗)) = ιr

(
r2x⃗

||x⃗||2

)
=

r2 · r2x⃗
||x⃗||2∥∥∥ r2x⃗

||x⃗||2

∥∥∥2 =

r4x⃗
||x⃗||2
r4

||x⃗||2
= x⃗.

Thus, ι2r = id, so ι−1
r = ιr. This satisfies condition (4) of reflective duality. □✓

Therefore, ιr establishes reflective duality across Tr. □

This reflective duality not only preserves the phase pair orientation but also swaps the inner
and outer zones, offering a new perspective on symmetry in the complex plane. The circle inversion
map ιr acts as an involution that preserves the structured orientation of ϕ across the circular
boundary zone Tr and provides a mathematical realization of the reflective symmetry found in
Escher’s artwork, where the complex plane is “reflected”.
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7 Case Study: Quadrant-Based Transformations in the Complex
Plane

In this case study, we explore the application of quadrant-based transformations to vectors in
the complex plane X = C, emphasizing the theoretical advantages of the Tri-Quarter framework
over traditional methods. This investigation leverages the generalized complex-Cartesian-polar
coordinate system and structured orientation developed in Sections 2 and 3, showcasing their
utility in handling directional transformations with geometric elegance and consistency. This case
study was developed with assistance from the AI tool Grok.

7.1 Problem Statement

Consider a vector x⃗ = x⃗R + x⃗I ∈ X \ {(0, 0)C}, where x⃗R = (xR, 0)C ∈ R× {0} and x⃗I = (0, xI)C ∈
{0} × I, with xR, xI ∈ R. We define a transformation τ : X \ {(0, 0)C} → X based on the quadrant
or axis position of x⃗:

• Quadrant I (xR > 0, xI > 0): τ(x⃗) = 2x⃗, doubling the vector’s magnitude while preserving
its direction.

• Quadrant III (xR < 0, xI < 0): τ(x⃗) = x⃗, leaving the vector unchanged.

• Quadrants II or IV (xR < 0, xI > 0 or xR > 0, xI < 0): τ(x⃗) = ix⃗, rotating the vector
90◦ counterclockwise.

• Axes: Vectors on the positive real or imaginary axes (xR > 0, xI = 0 or xR = 0, xI > 0)
follow Quadrant I rules, yielding τ(x⃗) = 2x⃗; those on the negative axes (xR < 0, xI = 0 or
xR = 0, xI < 0) follow Quadrant III rules, yielding τ(x⃗) = x⃗.

This transformation exemplifies piecewise-defined mappings common in complex analysis and
geometric transformations, where quadrant-specific rules reflect directional properties. For instance,
x⃗ = (2, 3)C in Quadrant I becomes τ(x⃗) = 2x⃗ = (4, 6)C , while x⃗ = (−1,−2)C in Quadrant III
remains τ(x⃗) = x⃗ = (−1,−2)C . Boundary cases, such as x⃗ = (0, 4)C on the positive imaginary
axis, yield τ(x⃗) = 2x⃗ = (0, 8)C . The challenge lies in applying these rules efficiently and consistently,
particularly at axis boundaries.

7.2 Standard Approach

The conventional method determines τ(x⃗) by explicitly evaluating the signs of xR and xI to classify
x⃗’s quadrant, supplemented by separate checks for axis alignment. A pseudocode representation
illustrates this:

if (x_\mathbb{R} > 0) and (x_\mathbb{I} > 0):

return 2 \vec{x}

elif (x_\mathbb{R} < 0) and (x_\mathbb{I} < 0):

return \vec{x}

elif (x_\mathbb{R} == 0) or (x_\mathbb{I} == 0):

if (x_\mathbb{R} > 0) or (x_\mathbb{I} > 0):

return 2 \vec{x}

elif (x_\mathbb{R} < 0) or (x_\mathbb{I} < 0):

return \vec{x}

else:

return i \vec{x}

This approach, while straightforward, is computationally intensive, requiring up to four con-
ditional checks per vector. For example, x⃗ = (3, 0)C triggers the axis condition, necessitating
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additional logic to confirm xR > 0, yielding τ(x⃗) = 2x⃗ = (6, 0)C . The method’s reliance on dis-
joint rules for quadrants and axes introduces complexity and potential inconsistency, especially in
theoretical extensions or higher-dimensional analogs, where the number of conditions would scale
unfavorably.

7.3 Tri-Quarter Framework Approach

The Tri-Quarter framework, rooted in the structured orientation of Section 3, offers a unified and
efficient alternative:

(1) Orthogonal Decomposition: Express x⃗ = x⃗R+x⃗I, where x⃗R = (xR, 0)C and x⃗I = (0, xI)C ,
aligning with the real and imaginary axes, respectively.

(2) Phase Pair Assignment: Assign (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ per the phase assignment rules:

• If xR > 0, then ⟨x⃗R⟩ = 0; if xR < 0, then ⟨x⃗R⟩ = π; if xR = 0, then ⟨x⃗R⟩ = 0,

• If xI > 0, then ⟨x⃗I⟩ = π
2 ; if xI < 0, then ⟨x⃗I⟩ = 3π

2 ; if xI = 0, then ⟨x⃗I⟩ = 0.

(3) Transformation Application: Define τ based on the phase pair and whether the vector
lies on an axis:

• If (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, π2 )ϕ, then τ(x⃗) = 2x⃗ (includes Quadrant I and positive imaginary
axis),

• If (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, 0)ϕ, then τ(x⃗) = 2x⃗ (positive real axis),

• If (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (π, 3π2 )ϕ, then τ(x⃗) = x⃗ (Quadrant III),

• If (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (π, 0)ϕ, then τ(x⃗) = x⃗ (negative real axis),

• For (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (π, π2 )ϕ, then τ(x⃗) = ix⃗ (Quadrant II),

• For (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ = (0, 3π2 )ϕ:

◦ If xR = 0, then τ(x⃗) = x⃗ (negative imaginary axis),

◦ Else, τ(x⃗) = ix⃗ (Quadrant IV).

For x⃗ = (3, 4)C , the phase pair is (0, π2 )ϕ, so τ(x⃗) = 2x⃗ = (6, 8)C . For x⃗ = (5, 0)C , it’s (0, 0)ϕ,

so τ(x⃗) = 2x⃗ = (10, 0)C . For x⃗ = (0,−4)C , it’s (0, 3π2 )ϕ with xR = 0, so τ(x⃗) = x⃗ = (0,−4)C .
This framework integrates axis cases by leveraging the phase pair and, when necessary, checking if
a component is zero, offering a structured approach to classification.

7.4 Examples

To illustrate the consistency and efficiency of the Tri-Quarter framework, consider the following
examples, comparing both approaches:

• x⃗1 = (3, 4)C (Quadrant I):

◦ Standard : Check xR > 0 and xI > 0, so τ(x⃗1) = 2x⃗1 = (6, 8)C ,

◦ Tri-Quarter : Phase pair (0, π2 )ϕ, so τ(x⃗1) = 2x⃗1 = (6, 8)C .

• x⃗2 = (5, 0)C (Positive real axis):

◦ Standard : Check xR > 0, xI = 0, so τ(x⃗2) = 2x⃗2 = (10, 0)C ,

◦ Tri-Quarter : Phase pair (0, 0)ϕ, so τ(x⃗2) = 2x⃗2 = (10, 0)C .
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• x⃗3 = (−2, 3)C (Quadrant II):

◦ Standard : Check xR < 0, xI > 0, so τ(x⃗3) = ix⃗3 = i(−2 + 3i) = (−3,−2)C ,

◦ Tri-Quarter : Phase pair (π, π2 )ϕ, so τ(x⃗3) = ix⃗3 = (−3,−2)C .

• x⃗4 = (4,−5)C (Quadrant IV):

◦ Standard : Check xR > 0, xI < 0, so τ(x⃗4) = ix⃗4 = i(4− 5i) = (5, 4)C ,

◦ Tri-Quarter : Phase pair (0, 3π2 )ϕ, and since xR ̸= 0, τ(x⃗4) = ix⃗4 = (5, 4)C .

• x⃗5 = (0, 3)C (Positive imaginary axis):

◦ Standard : Check xR = 0, xI > 0, so τ(x⃗5) = 2x⃗5 = (0, 6)C ,

◦ Tri-Quarter : Phase pair (0, π2 )ϕ, so τ(x⃗5) = 2x⃗5 = (0, 6)C .

• x⃗6 = (−4, 0)C (Negative real axis):

◦ Standard : Check xR < 0, xI = 0, so τ(x⃗6) = x⃗6 = (−4, 0)C ,

◦ Tri-Quarter : Phase pair (π, 0)ϕ, so τ(x⃗6) = x⃗6 = (−4, 0)C .

• x⃗7 = (0,−2)C (Negative imaginary axis):

◦ Standard : Check xR = 0, xI < 0, so τ(x⃗7) = x⃗7 = (0,−2)C ,

◦ Tri-Quarter : Phase pair (0, 3π2 )ϕ, and since xR = 0, τ(x⃗7) = x⃗7 = (0,−2)C .

• x⃗8 = (1, 1)C (Quadrant I near boundary):

◦ Standard : Check xR > 0, xI > 0, so τ(x⃗8) = 2x⃗8 = (2, 2)C ,

◦ Tri-Quarter : Phase pair (0, π2 )ϕ, so τ(x⃗8) = 2x⃗8 = (2, 2)C .

• x⃗9 = (−1,−1)C (Quadrant III near boundary):

◦ Standard : Check xR < 0, xI < 0, so τ(x⃗9) = x⃗9 = (−1,−1)C ,

◦ Tri-Quarter : Phase pair (π, 3π2 )ϕ, so τ(x⃗9) = x⃗9 = (−1,−1)C .

These examples span interior points, boundary points, and points near quadrant transitions,
demonstrating that the Tri-Quarter framework maintains consistency across all cases. The phase
pair assignment encapsulates positional information in a single step, whereas the standard approach
requires sequential conditionals that can become cumbersome near boundaries.

7.5 Advantages of the Framework

The Tri-Quarter framework offers several theoretical and practical advantages over the standard
approach, rooted in its structured orientation and phase pair assignments:

• Unified Classification: The phase pair (⟨x⃗R⟩, ⟨x⃗I⟩)ϕ encodes all directional information
based solely on the signs of xR and xI. This eliminates the need for separate quadrant
and axis logic, reducing the standard approach’s up to four conditional checks to a single
classification step in most cases. For instance, x⃗ = (0, 3)C is immediately assigned (0, π2 )ϕ,
yielding τ(x⃗) = 2x⃗, without nested conditionals.
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• Geometric Elegance: By decomposing x⃗ into orthogonal components x⃗R and x⃗I, the
framework leverages the natural symmetry of the complex plane. This decomposition aligns
transformations with the axes’ intrinsic directions, enhancing conceptual clarity. For exam-
ple, the doubling of vectors in Quadrant I and on positive axes reflects a uniform scaling
along rays from the origin, seamlessly integrated via phase pairs.

• Consistency Across Boundaries: The phase pair system naturally incorporates axis
points, with minimal additional checks. While (0, 3π2 )ϕ requires distinguishing Quadrant IV
(xR > 0, τ(x⃗) = ix⃗) from the negative imaginary axis (xR = 0, τ(x⃗) = x⃗), this is a single
condition on xR, far simpler than the standard approach’s multi-step logic.

• Computational Efficiency: Unlike polar coordinates requiring arctan or norm compu-

tations (e.g., ||x⃗|| =
√

x2R + x2I ), the Tri-Quarter framework relies only on sign evaluations

and zero checks—operations that are computationally trivial. For x⃗ = (−2, 3)C , the phase
pair (π, π2 )ϕ is determined instantly, avoiding trigonometric overhead.

• Scalability and Generalization: The phase pair system is inherently extensible. It could
be adapted to finer partitions (e.g., octants with pairs like (0, π4 )ϕ)) or higher dimensions
(e.g., Cn with multi-component phase tuples), whereas the standard approach’s condition-
als grow exponentially with dimensionality. This scalability is a significant advantage for
theoretical explorations in pure mathematics.

• Mathematical Elegance and Symmetry: The use of phase pairs introduces a symmetry
that aligns with the rotational properties of the complex plane. This symmetry can be
formalized through group actions, where phase pairs correspond to discrete subgroups of
the rotation group SO(2). For example, the transformation rules for Quadrants I and
III exhibit a form of invariance under 180◦ rotations, enhancing the framework’s aesthetic
appeal and theoretical depth.

• Topological Insights: The framework induces a discrete topological partitioning of the
complex plane, offering a lens to study the transformation τ ’s properties, such as discontinu-
ities at the axes. This partitioning can be related to continuous phase mappings, providing
a bridge between discrete and continuous structures in complex analysis.

• Integration with Pure Mathematical Concepts: The Tri-Quarter framework con-
nects naturally to concepts like harmonic analysis or dynamical systems. For instance, the
phase pair assignments could classify complex functions’ directional behavior without norm
computations, potentially simplifying the analysis of singularities or periodicities in pure
mathematical contexts.

• Compatibility with Reflective Duality: The phase pair assignments enhance reflective
duality (Theorem 6.3), as the circle inversion map ιr(x⃗) =

r2x⃗
||x⃗||2 preserves ϕ(ιr(x⃗)) = ϕ(x⃗).

This invariance ensures the transformation τ applies consistently across the boundary Tr,
a robustness absent in the standard approach.

To quantify the efficiency, consider applying τ to a large set of vectors. The standard approach
averages multiple checks per vector, especially near axes, while the Tri-Quarter framework typically
requires only the phase pair computation—two sign evaluations—plus an occasional zero check
for specific pairs like (0, 3π2 )ϕ. This streamlined process enhances both theoretical coherence and
practical implementation.
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7.6 Theoretical Implications and Future Directions

The Tri-Quarter framework’s phase pair assignments establish a discrete topological partitioning
that parallels continuous phase mappings, offering a bridge between geometric and analytic per-
spectives in complex analysis. This structure suggests potential connections to:

• Symmetry and Duality: The phase pairs’ preservation under the circle inversion map ιr
(Section 6) hints at deeper symmetries. For instance, applying ιr to x⃗ = (3, 4)C with r = 5

yields ιr(x⃗) = 25x⃗
25 = (3, 4)C (if adjusted for norm), but for points off Tr, the phase pair

persists while zones swap, enriching transformation studies.

• Directional Analysis: In applications like harmonic analysis or signal processing, where
phase determines behavior, the framework’s ability to classify direction without norm com-
putation could optimize algorithms. For x⃗ = (4,−5)C , the immediate assignment of (0, 3π2 )ϕ
and τ(x⃗) = ix⃗ bypasses angular calculations.

• Topological Extensions: Integrating radial zones (X−,r, Tr, X+,r) with quadrant trans-
formations could yield hybrid mappings. Consider a modified τ ′ where τ ′(x⃗) = 2x⃗ if ||x⃗|| < r
in Quadrant I, else τ ′(x⃗) = x⃗. The Tri-Quarter framework naturally accommodates this,
unlike the standard approach’s ad hoc adjustments.

Future research might explore such hybrid transformations, leveraging the full Tri-Quarter struc-
ture to uncover new properties in complex dynamics or geometric function theory.

7.7 Case Study Summary

This case study demonstrates that the Tri-Quarter framework streamlines quadrant-based trans-
formations by unifying classification through phase pair assignments, reducing computational com-
plexity, and enhancing geometric intuition. Its advantages—unified classification, efficiency, and
scalability—position it as a superior alternative to the standard approach, particularly for pure
mathematical investigations where elegance and generality are paramount. The framework’s po-
tential to integrate with topological and reflective properties further underscores its value, inviting
exploration into broader complex plane symmetries and applications.

8 Conclusion
The strength, flexibility, and novelty of the Tri-Quarter Topological Duality Theorem framework
reside in its unification of complex, Cartesian, and polar coordinates with a topological twist—
duality, structured orientation, and consistent separation between inner and outer radial directions
across a circular boundary with any radius. To animate the Tri-Quarter Topological Duality Theo-
rem and give a visual depiction of the additional encoded data layer it serves, we created a software
tool with open-source code, available online at [7]. It is a Python script that should execute on any
machine equipped with Python 3.8+. See Figure 1 for a screenshot of the animation.

By formally establishing the topological duality of a circle of any radius with a structured orien-
tation, this framework offers a novel perspective that could inspire new methodologies. This makes
it versatile for problems involving separation of domains (inner vs. outer), systems with circular
symmetry or boundaries, and analyses requiring consistent directional or phase information in the
complex plane. Moreover, a case study demonstrates that quadrant-based transformations in C
are efficiently handled by this framework, underscoring its potential to simplify complex directional
mappings and inspire novel methodologies across pure and applied mathematics. Additionally, by
proving the Escher Tri-Quarter Reflective Duality Theorem and formally establishing the reflec-
tive duality via the circle inversion map, this additional extension of the framework introduces a
new layer of symmetry that could have implications for problems involving boundary reflections or
inversions, such as in wave propagation or signal processing.
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Thus, can these results of the Tri-Quarter framework—the unification of coordinate systems,
structured orientation, topological duality, and reflective duality—be further developed and applied
to help decipher complex phenomena like quark confinement [8] and black holes [9, 10, 11]? Can
this framework be applied to improve the efficiency, accuracy, and scalability of technologies like
quantum computing hardware, cryptography, machine learning, signal processors, medical appli-
cations, medical imaging devices, or wireless communication networks? For example, in quantum
computing, where complex domain behaviors underpin qubit operations, this framework might en-
hance the modeling of phase relationships across boundaries, potentially improving gate design or
error correction. While the framework shows promise, more work is needed to further develop and
apply this framework via the methods of mathematics and science.

Furthermore, the Tri-Quarter framework’s unification of coordinate systems and its topological
duality properties suggest avenues for broader mathematical exploration. For instance, extending
the structured orientation and phase pair assignments to higher-dimensional complex spaces, such
as Cn, could yield generalizations of the topological and reflective dualities established herein,
potentially intersecting with multivariable complex analysis or algebraic topology. Additionally,
the framework’s emphasis on circular boundaries as active separators with intrinsic directional
properties raises questions about its applicability to other manifolds with symmetry, such as tori or
spheres, where similar trichotomous partitions might reveal new invariants. While the current work
focuses on the complex plane, these extensions remain open challenges, inviting future investigations
that could deepen our understanding of symmetry, separation, and duality in pure mathematics.
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Figure 1. A screenshot from the software animation tool [7], visualizing the three
topological zones (X−,r, Tr, X+,r) and the structured orientation on a circle of radius
r in the complex plane.
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