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Abstract: Special relativity’s constant speed of light (c) means that proper distance (d) and 

photon travel time (tλ) are collinear. Isotemporal or ‘instant’ radial recession rate v of a star 

connects to a Hubble parameter H. A ‘Lorentz wall’ (c/H) is defined. The product of the wall and 

v/c (β) gives a lesser ‘Lorentz distance’ (𝑑𝐿) which cannot reach or cross the wall. Proper d is an 

instant product of the Lorentz distance and the Lorentz factor (γ). For any ΛCDM-based H, there 

is an instant β whose star’s Lorentz distance is identical to its calculated observed distance at the 

same H. This β is found from the star’s observed cosmic redshift. Distant rest mass’s elapsed 

time upon our reception of its photons is known as ‘lookback’ and herein proposed as another 

instant product, of the Lorentz distance and the Lorentz factor squared (when divided by c). Type 

1a supernovae with Phillips behavior display increased decay times at higher z. The present 

paper proposes nonlinear z dependence on these decay times. This may improve constraint on 

model parameters. 

1 INTRODUCTION 

Determination of a star’s Hubble parameter H involves two measurements: Cosmic redshift z and 

observed distance 𝑑𝑜𝑏𝑠. Much progress has been made since Vesto Slipher’s first observation of 

H (Slipher 1917). The efforts of many astronomers over the last century, now including the vast 

trove of data from DESI (Allali 2025)(Adame 2025), give potential H measurements numbering 

in the millions. Type 1a supernovae have the most consistent behavior, but are less numerous. 

These are aggregated to produce simple models of H as a function of z.  Since 1998 

(Perlmutter)(Riess), the standard model has been ΛCDM, presently under fire from DESI. This 

paper does not delve into the controversy (Ye 2025) surrounding the tension between ΛCDM and 

DESI’s findings. We will use the ΛCDM model only as a proxy for observations to date. We can 

deduce a fundamental principle of stellar observation through ΛCDM without resort to extensive 

comparison with large datasets. This fundamental principle is the Lorentz effect. The present 

author suggests that Lorentz contraction is built into observed H. Its effect on dobs is a core 

property, and will apply to any more accurate distance-ladder model that may arise. 
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We first explore the concept of an ‘instant flat Universe’, Euclidean at scale and frozen in time. 

We then connect its instant behavior to the observed Universe, which looks back in time. The 

Lorentz effect plays a central role in both. 

Most of the present paper’s content is well known and found in introductory texts, e.g. (Ryden 

2017)(Liddle 2015)(Huterer 2023)(Baumann 2022), to which the reader is referred. Herein we 

define ‘proper distance’ as the distance traveled by a photon from source to receptor. This 

definition differs from the texts. 

2 LORENTZ EFFECTS IN THE INSTANT UNIVERSE 

In Einstein’s theory of special relativity, proper distance 𝑑 and photon travel time 𝑡𝜆 are 

connected by the speed of light c. They are collinear: 

𝑐 =
𝑑

𝑡𝜆
       (1) 

Under the Cosmological Principle, at any point in time t, the instant Universe at very large scale 

is generally considered by the texts as having been perfectly ‘flat’ over all t, with Euclidean 

geometry in both Cartesian x,y,z and radial d,ɵ,ϕ coordinates. We use this flat hypothesis. 

A scalar Hubble parameter H is applied to the instant coordinates: 

𝐻 =  
𝑣

𝑑𝐿
      (2) 

Where v is the radial recession rate between two points (us and a star). The Lorentz distance 𝑑𝐿 

depends on v. When v << c, Lorentz effects are negligible; 𝑑𝐿 = 𝑑. As v →c, Lorentz 

contraction ‘shortens’ 𝑑𝐿: 

𝑑𝐿 = 𝑑√1 −
𝑣2

𝑐2 = 𝑑√1 − 𝛽2 =
𝑑

𝛾
     (3) 

Where β = v/c, and γ is the Lorentz factor: 

𝛾 =
1

√1−𝛽2
      (4) 

 When β = 0.001, 𝑑𝐿 = 0.9999995𝑑. Proper d and 𝑑𝐿 are effectively the same.  

We partition the d line into proper 𝑑𝑠𝑒𝑔’s, each with 𝛽𝑠𝑒𝑔 = 0.001, and assign an origin point or 

rest frame. All the 𝑑𝑠𝑒𝑔’s have the same speed 𝑣𝑠𝑒𝑔 = 𝛽𝑠𝑒𝑔𝑐. These add to give a serial 𝑣𝐿: 

𝑣𝐿 = ∑ 𝛽𝑠𝑒𝑔𝑐      (5) 

The 𝑑𝑠𝑒𝑔’s don’t just add. They give a serial 𝑑𝐿 whose sequential 𝑑𝑠𝑒𝑔’s become ‘shorter’ at the 

origin as they grow more distant: 
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𝑑𝐿 = ∑
𝑑𝑠𝑒𝑔

𝛾𝑠𝑒𝑔
      (6) 

 When you move the rest frame along the 𝑑 line, distant and ‘shorter’ 𝑑𝑠𝑒𝑔’s on one side get 

closer, and stretch back out to their proper length. The 𝑑𝑠𝑒𝑔’s on the other side grow more 

distant. They become ‘shorter’. 

Serial 𝑑𝐿 approaches a Lorentz wall 𝑊𝐿 (Figure 1) as the 𝑑𝑠𝑒𝑔’s cumulative 𝑣𝐿 → 𝑐: 

𝑊𝐿 =
𝑐

𝐻
      (7) 

The last 𝑑𝑠𝑒𝑔 cannot give v ≥ c (if Einstein was right). This creates a gap [𝑊𝐿 − 𝑑𝐿] which must 

be filled with proper 𝑑𝑠𝑒𝑔’s → 0. There is no upper boundary on 𝑑 itself: As v → c, d → ∞. 

A more tractable approach to Eq. (6) is linear in β: 

𝑑𝐿 = 𝑊𝐿𝛽      (8) 

From Eqs. (3) and (8), proper distance d is thus: 

𝑑 = 𝑑𝐿𝛾 = 𝑊𝐿𝛽𝛾 =
𝑐𝛽𝛾

𝐻
     (9) 

Table 1 gives some instant 𝑑 values as β → 1 for three different H’s. As v → c, dL → WL for each 

H. Proper d, however, increases dramatically. This is most pronounced at lower H (and z). For 

today’s z = 0, with our chosen 𝐻0 = 73 km s-1 Mpc-1, the last entry in Table 1 (β = 0.9999999999) 

gives d = 947,000 gigalight-years (Glyr). At z = 1089 (Bennett 2003), the time of last scattering, 

WL was much less. The corresponding d is 41 Glyr. Photons from a light source receding that 

fast, that long ago, would take 41 billion years to see. This ‘source’ is the cosmic microwave 

background (CMB); there were no stars. These CMB photons would have a modal ten-kilometer 

wavelength by the time they reach our successors. 

When we use β as the linear domain, the Lorentz wall WL becomes the radius of a Lorentz sphere 

which contains the entire Universe’s kinetic energy and rest mass. Its infinite energy lies almost 

entirely within a thin outermost β shell [𝑊𝐿 − 𝑑𝐿]. Every instant Cartesian point x,y,z is 

surrounded by a Lorentz sphere, which contains every other point. Almost all these points are 

compressed into the shell. The sphere’s coordinates β,ɵ,ϕ constitute dimensionless Lorentz space 

which has physical meaning via H and c. The points β,ɵ,ϕ are only transposable with the sphere’s 

center or rest frame, and not each other. Any β > 1 in Lorentz space is unphysical. 

The Lorentz sphere’s finite radius 𝑊𝐿 means that we can talk about the Universe having a finite 

‘size’. It was much ‘smaller’ long ago than today. However, if perfectly flat, the Universe is 

unbound in d, and has always been infinitely large in Euclidean space. It’s just been getting less 
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dense. In the texts, today’s wall 𝑊𝐿0
=  𝑐 𝐻0⁄  is called the ‘Hubble distance’. The term ‘horizon’ 

is also used. 

3 LORENTZ EFFECTS IN THE OBSERVED UNIVERSE 

We now examine the observed Universe. In section 3.1, we connect d to ΛCDM’s calculated 

distance 𝑑𝛬 (≡ 𝑑𝑜𝑏𝑠). The ‘Λ’ subscript refers to ΛCDM in toto. In section 3.2, we calculate 

lookback (𝑡0 − 𝑡) via 𝑡𝜆. By inclusion of Lorentz effects, we will see how high-redshift luminous 

objects can appear both closer and older than predicted by ΛCDM alone. 

3.1 Proper distance vs. cosmic redshift 

A star’s observed redshift z gives its 𝛽: 

𝛽 =
(𝑧+1)2−1

(𝑧+1)2+1
      (10) 

Combining Eqs. (4) and (10) gives 𝛾(𝑧): 

𝛾 = √
1

2
𝑧2 + 𝑧 + 1     (11) 

The ‘minimum flat-Universe’ ΛCDM model is: 

𝐻 =
𝑣

𝑑𝛬
=

𝛽𝑐

𝑑𝛬
= 𝐻0√𝛺𝜆0

(𝑧 + 1)4 + 𝛺(𝑏+𝑐)0
(𝑧 + 1)3 + 𝛺𝛬0

   (12) 

Most term values in Eq. (12) are given in Table 1. The remaining 𝑑𝛬 term is a z-dependent 

aggregate of individual distances 𝑑𝑜𝑏𝑠 derived from measurement of luminosity and/or angular 

size of the source. Recession rate v is, in general, more precisely found than is 𝑑𝛬 for each 

measurement. Table 1 gives selected results using Eqs. (9) – (12). We can see that the ΛCDM-

calculated 𝑑𝛬 and Lorentz 𝑑𝐿 distances are identical to 20 ppm for any instant z. The miniscule 

error is itself constant out to nine decimal places. Such precise and accurate identification 

suggests that what we see through a telescope is Lorentz-contracted. To get the proper distance, 

we can use 𝑑𝛬 instead of 𝑑𝐿 in Eq. (9). Combining Eqs. (9) - (12) gives: 

𝑑 = 𝑑𝛬𝛾 = 𝑑𝛬√
1

2
𝑧2 + 𝑧 + 1     (13) 

Equation (13) returns a surprising result: Proper distance between source and receptor reached a 

maximum at z = 1.6, when d = 6 Glyr. Luminous bodies at z > 1.6 were actually closer than they 

were at z = 1.6. They got even more close as z rises further. This explains why high-z stars and 

galaxies can appear brighter and larger, e.g. (Naidu 2022), than ΛCDM’s prediction. See (Gupta 

2023) for a longer list. Received photon flux and observed angular distance are reduced (or 

enhanced) by an increase (or decrease) in proper distance upon emission. Stars and galaxies get 
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larger and brighter, or smaller and fainter, depending on whether 𝜕𝑑 𝜕𝑧⁄  is negative or positive. 

Intervening dust and/or general relativistic lensing can affect observed size. 

Equation (13)’s nonmonotonic variance of d with z was inconsistent with the present author’s 

then-belief that stars at higher redshift should have been further away. This confounding state of 

affairs clarified, after author acquired a better understanding of lookback. 

3.2 Lookback vs. cosmic redshift 

Lookback (𝑡0 − 𝑡) is elapsed cosmic time between source (−𝑡) and receptor (𝑡0). In this 

subsection, the author endeavors to show that lookback has monotonic variance with redshift. 

Stars at z > 1.6 may have grown ever closer to us, but they were also ever older. 

Lookback approaches 𝑡𝜆 only if the source is receding at β << 1. When recession is fast enough, 

elapsed time at the receptor (us) drops in our rest frame, by 𝛾−1. Elapsed time at the source is 

given by Eq. (14): 

(𝑡0 − 𝑡) = 𝑡𝜆𝛾      (14) 

 For example, a rest source can have light pulses at a rate one per second. If the source is 

receding at β = 0.998611, when those pulses reach us, the rate we see drops sixtyfold, to one per 

minute. It doesn’t matter how far away the source was, is, or will be. As long as it’s moving 

away from us at that same radial velocity, the light pulses will be slowed down to one per 

minute. In the source’s rest frame, it’s us, the receptor, that has slowed down.  We know that our 

light pulses are one second apart, so we have to speed things up on the other end to get an 

accurate calculation of elapsed source time since emission. Equation (14) does this. Cosmic time 

comoves at about the same rate in either frame. If the source is another Earth mass, then elapsed 

cosmic times become more nearly identical in both frames. 

For a source with constant β, Eq. (14) applies to any proper d. The author believes that Eq. (14) 

remains an accurate description of elapsed time at the source with variant β as well. Once that 

photon is emitted, any later change in the source’s β doesn’t change the photon’s 𝑡𝜆. Change in β 

would affect the source’s age after emission, but for our purposes, we are only interested in its 

instant age. The present author asks the reader to consider the possibility that elapsed time at the 

source can be expressed as an instant product, and Eq. (14) applies to any instant z. In the texts, 

line integration is used to adjust for the ‘expansion of space’ and its purported effect on lookback 

and proper distance. This concept of the ‘expansion of space’ is widespread in the literature. 

Such ‘expansion’ corresponds to off-center point transposition in Lorentz space. Herein, 𝑡𝜆 is 

preferred for lookback calculation. When Lorentz effects are factored into 𝑡𝜆 and 𝑑𝛬, numeric 

integration along 𝜕𝑧 simply returns the same results as the instant Eqs. (14) and (13) respectively 

(see supporting information). Line integration remains useful for e.g. estimating dust interference 

in the photons’ travel path, and for the general relativistic effect on comoving cosmic time in the 
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very early Universe. This latter effect underpins inflation (Guth 1981), a subject of less interest 

to the practicing astronomer. 

Combining Eqs. (1), (13), and (14) gives: 

(𝑡0 − 𝑡) =
𝑑𝛬

𝑐
(

1

2
𝑧2 + 𝑧 + 1)     (15) 

Figure 2 shows the range of Eqs. (7), (8), (9), and (15) for z = 0 → 20. Table 2 gives Figure 2’s 

numbers at selected z’s. At z = 5, Eq. (15) gives a ΛCDM ‘universe’ 14.6 Gyr older than today. 

At z = 20, it’s 27.5 Gyr. At z = 1089, those photons from the CMB reached us after only 0.317 

Gyr, but their ‘source’ was ≈173 Gyr older than that. The 173 Gyr value uses H0 = 73 (km s-1 

Mpc -1) (Riess 2024a). Using H0 = 68 instead (Planck 2020), Eq. (15) gives (𝑡0 − 𝑡)1089 = 186 

Gyr.  Back then, baryons can be consistently described as having been an isotropic, un-ionized, 

and monatomic gas. Equation (15) allows plenty of time afterward for galaxy evolution. 

When Eq. (15) is multiplied by c, we get the static distance, which would be the proper distance 

in a noncomoving or static ‘universe’. The Universe comoves, so static distance is unphysical. 

Equations (11) and (14) do usefully connect certain supernova decay times with z. 

3.3 Decay times of type 1a supernovae 

Type 1a supernovae (SN’s) (Howell 2011) are brilliant and ephemeral, having consistent rise-

and-fall profiles which follow a (luminosity) – (decay time) relation (Phillips et al. 1993)(Hamuy 

et al. 1995). These SN’s are presently divided into 1a subtypes, of which ≈70% (Liu et al. 2023) 

still follow the Phillips-Hamuy relation. Recent observation (Riess et al. 2024b) of these 

transient events using the JWST telescope have strengthened the distance ladder, and reaffirmed 

the Hubble tension. Much effort has been expended by these and other authors toward systematic 

exclusion of nearby light source interference after SN candidate capture and assignment. This 

exclusion process was helped considerably by JWST’s deployment in 2021, with its extended 

infrared detection range and large mirror. The Riess group’s JWST observations added another 

sixteen SN’s to the original 42 SN dataset of the Perlmutter group (Perlmutter et al. 1999). 

Distance (found from brilliance) and recession (found from redshift) of these SN’s have time- 

and wavelength- dependent variances which require correction to a baseline rise-and-fall profile. 

These corrections allow for the interwoven effects of the Phillips-Hamuy relation, Galactic 

extinction, cosmic redshift, wavelength-dependent U-B-V-R-I brilliance, low-z peculiar motion, 

hypothetical red and grey dust interference, time dilation, and any other factors this author may 

have overlooked. Peak brilliance, or magnitude 𝑚, is held as dominated by the 56Ni → 56Co → 
56Fe beta cascade inside the SN. The cascade gives two decay half-lives t1 → 56Co (6.1 days) and 

t2 → 56Fe (77 days) respectively. The former (t1) is brighter and principal. Observation of the 

latter (t2) is convoluted by longer-lived and less-energetic decay events within the SN. These 
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half-lives combine with the Phillips-Hamuy relation to give a baseline. Their t1 and t2’s are 

affected by time dilation, which we now examine. 

Cosmic redshift affects the UBVRI profile: U→B→V, etc. Recession rate is calculated from a 

best fit of these ‘stretched’ spectra to Eq. (10). Distance is found from bolometric 𝑚 via inter 

alia addition of a ‘stretch factor’ 𝑠 = (𝑧 + 1) to e.g. the B band 𝑚𝐵 (Perlmutter 1999): 

𝑚𝐵
𝑐𝑜𝑟𝑟 = 𝑚𝐵 + 𝛥𝑐𝑜𝑟𝑟(𝑠)     (16) 

 Where 𝑚𝐵
𝑐𝑜𝑟𝑟 is the corrected (increased) peak magnitude, and 𝛥𝑐𝑜𝑟𝑟(𝑠) is given by: 

𝛥𝑐𝑜𝑟𝑟(𝑠) = α(𝑠 − 1) =  α𝑧     (17) 

The α term is a monotonic function. Equation (16) treats time dilation as additive with 𝑧. This 

results in t1 and t2 increases which do not remain proportional. The present author takes issue, as 

it is inconsistent with Eq. (14).  In lieu of Eqs. (16) and (17), author suggests: 

𝑚𝐵
𝑐𝑜𝑟𝑟 = 𝑚𝐵α𝛾𝛾 = 𝑚𝐵α𝛾√

1

2
𝑧2 + 𝑧 + 1   (18) 

 Equation (18) lengthens the decay times proportionally. The 𝛼 → α𝛾 function is now a 

dimensionless bolometric ratio: 

α𝛾 =
∫ 𝐸𝜆𝛾

∞
𝜆=0 𝜕𝜆

∫ 𝐸𝜆0
∞

𝜆=0 𝜕𝜆
     (19) 

The 𝐸𝜆 terms give total photon energy at any one wavelength. Equation (19) expresses the 

relative decrease in integral photon energy from λ stretch at any one γ vs. the SN’s baseline at γ = 

0. The λ profile is presently observed with filters; author is unaware of any single-photon-

counting λ-scanning instruments in use. This author is reluctant to use the Boltzmann curve for 

Eq. (19), as the SN’s emission profile may not follow it. Times t1 and t2 are governed by 𝛾 alone. 

Table 3 gives increases in t1 and t2 vs. z. These are the proposed numbers which should correlate 

with calculated z from a best-fit to the UBVRI profile. At z = 0.2, the Phillips-adjusted observed 

t1 and t2 should be 6.7 and 85 days. At z = 0.5, they should be 7.8 and 98 days. If a high-z 

Phillips-Hamuy subtype with these t1 and t2’s could be found by JWST at e.g. z = 4, then they 

would be 22 and 278 days respectively. These numbers may help provide more accurate 

parameter constraint at higher z. This won’t, however, solve the Hubble tension. The present 

author believes its origin lies with Planck’s methodology (Johnson 2025). 

3.4 General effects  

The present paper does not include general relativistic effects. One publication (Lorenz 2018) 

suggests that general effects at cosmic scale are negligible, with only local impact on observation 

of overdense regions in the Universe. Underdense regions are unaffected. This author concurs. 
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4 CONCLUSION 

The present paper gives proper distance d as an instant product. Lookback (𝑡0 − 𝑡) is herein 

proposed as another instant product. Both are calculable without line integration. This paper’s 

findings do not obviate a model’s dependence of H on aggregate 𝑑𝑜𝑏𝑠. They do, however, 

provide needed corrections for estimates of 𝑑 and (𝑡0 − 𝑡). The key concept that the author 

emphasizes is faithful adherence to special relativity’s constant speed of light in a perfectly flat 

Universe. Recession speeds are properly found in Lorentz space from its rest frame at the 

Lorentz sphere’s center, rather than arbitrary two-point transposition in flat Euclidean space 

away from our rest frame. Both Lorentz and Euclidean instant coordinate recessions can never 

exceed c. 
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TABLE 1: Instant Lorentz and proper distances vs. β, for selected z and ΛCDM H values* 

Cosmic redshift: z = 0 z = 10 z = 1089 

ΛCDM H,  Gyr-1: 0.07465 1.518 1,716.0 

WL, Glyr: 13.395814 0.658797 0.000583 

    

β dL, Glyr d, Glyr dL, Glyr d, Glyr dL, Glyr d, Glyr 

0.01 0.134 0.134 0.00659 0.007 0.000006 0.000006 

0.1 1.340 1.346 0.0659 0.066 0.000058 0.000059 

0.5 6.698 7.734 0.329 0.380 0.000291 0.000336 

0.9 12.06 27.7 0.593 1.36 0.000524 0.00120 

0.99 13.26 94.0 0.652 4.62 0.000577 0.00409 

0.999 13.38 299 0.658 14.7 0.000582 0.0130 

0.9999 13.394 947 0.6587 46.6 0.000582 0.0412 

0.99999 13.3957 2,995 0.658790 147 0.000583 0.130 

0.999999 13.3958 9,472 0.658796 466 0.000583 0.412 

0.9999999 13.395812 29,954 0.658797 1,473 0.000583 1.3022 

0.99999999 13.395813 94,722 0.658797 4,658 0.000583 4.119 

0.999999999 13.395814 299,539 0.658797 14,731 0.000583 13.02 

0.9999999999 13.395814 947,227 0.658797 46,584 0.000583 41.19 

* ΛCDM parameters: H0 = 73.00 Km s-1Mpc-1 (Riess 2024a).  

Others from (Planck): 𝛺(𝑏+𝑐)0
 = 0.3091; 𝛺𝜆0

 = 0.000091 ± 0.000005; 𝛺𝛬 = 0.6908. 
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TABLE 2.  ΛCDM distance, Lorentz distance, tension, tension error, and proper distance. 

𝑧 𝑑𝛬 𝑑𝐿 𝑑𝛬 𝑑𝐿⁄  (𝑑𝛬 − 𝑑𝐿) 𝑑𝐿⁄  𝑑(= 𝑑𝛬𝛾) 

 Glyr Glyr   Glyr 

0.01 0.132671 0.132668 1.000021 2.053388090E-05 0.1327 

0.1 1.212392 1.212367 1.000021 2.053388090E-05 1.2179 

0.2 2.182471 2.182426 1.000021 2.053388090E-05 2.2188 

0.5 3.912135 3.912054 1.000021 2.053388090E-05 4.2381 

0.6 4.195630 4.195544 1.000021 2.053388090E-05 4.6675 

0.7 4.377932 4.377842 1.000021 2.053388090E-05 5.0088 

0.8 4.480904 4.480812 1.000021 2.053388090E-05 5.2774 

0.9 4.522642 4.522550 1.000021 2.053388090E-05 5.4866 

1 4.517814 4.517721 1.000021 2.053388090E-05 5.6472 

1.1 4.478121 4.478029 1.000021 2.053388090E-05 5.7681 

1.2 4.412790 4.412699 1.000021 2.053388090E-05 5.8569 

1.3 4.329025 4.328936 1.000021 2.053388090E-05 5.9193 

1.4 4.232408 4.232321 1.000021 2.053388090E-05 5.9605 

1.5 4.127233 4.127148 1.000021 2.053388090E-05 5.9844 

1.6 4.016779 4.016697 1.000021 2.053388090E-05 5.9941 

1.7 3.903536 3.903456 1.000021 2.053388090E-05 5.9925 

1.8 3.789375 3.789298 1.000021 2.053388090E-05 5.9817 

1.9 3.675692 3.675617 1.000021 2.053388090E-05 5.9634 

2 3.563511 3.563438 1.000021 2.053388090E-05 5.9391 

3 2.610761 2.610707 1.000021 2.053388090E-05 5.5478 

4 1.970316 1.970275 1.000021 2.053388090E-05 5.1227 

5 1.541486 1.541454 1.000021 2.053388090E-05 4.7528 

6 1.243610 1.243585 1.000021 2.053388090E-05 4.4414 

7 1.028614 1.028593 1.000021 2.053388090E-05 4.1787 

8 0.868139 0.868121 1.000021 2.053388090E-05 3.9548 

9 0.744915 0.744900 1.000021 2.053388090E-05 3.7617 

10 0.648010 0.647997 1.000021 2.053388090E-05 3.5934 
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TABLE 3. SN1a t1 and t2 increase with redshift, from Eq. (18) 

z t1, days t2, days  z t1, days t2, days 

0 6.1 77  1.3 10.82 136.55 

0.1 6.41 80.94  1.4 11.21 141.56 

0.2 6.74 85.05  1.5 11.61 146.60 

0.3 7.07 89.30  1.6 12.02 151.67 

0.4 7.42 93.67  1.7 12.42 156.77 

0.5 7.78 98.16  1.8 12.82 161.88 

0.6 8.14 102.73  1.9 13.23 167.02 

0.7 8.51 107.39  2 13.64 172.18 

0.8 8.88 112.11  2.5 15.70 198.19 

0.9 9.26 116.90  3 17.78 224.49 

1 9.64 121.75  3.5 19.88 250.99 

1.1 10.03 126.64  4 21.99 277.63 

1.2 10.42 131.58  5 26.24 331.19 
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