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Abstract  

                         This article attempts to model spin of fermions and to 

explore possible connection to wave function. Zitterbewegung, 

originally introduced to describe the rapid oscillatory motion of 

relativistic particles, is not commonly used in modern physics. Here, 

zitterbewegung has been employed to develop a model that accounts for 

spin of fermions. It can explain wave particle duality 
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A SOLUTION TO WAVE PARTICLE DUALITY CONUNDRUM? 

                           In this article, an approach using zitterbewegung (ZB) 

as a model for quantum behavior has been explored. Originally 

predicted by Schrödinger for the Dirac electron [1], zitterbewegung 

describes a rapid oscillatory motion of relativistic particles, an idea 

largely neglected in modern quantum mechanics. Here, ZB in the 

context of a free fermion has been examined, modeling its motion using 

geometric considerations. 

Relativistic Energy and Formulation of Equation for 

Zitterbewegung  

The relativistic energy equation is given by:  

E2 = (pc)2 + (m0c
2)2  

p is the relativistic momentum. For a free relativistic particle undergoing 

zitterbewegung, we assume total energy incorporate both translational 

and rotational motion [2]:  

E2= [1/2( p/c)v2 + 1/2 (p/c)r2ω2]2+ (m0c
2 )2 ,where m0c

2  is the constant 

rest energy. Momentum for a relativistic particle may be written as mc 

where m is the relativistic mass. Here the particle’s velocity is taken as 

v≈c ,falls within the relativistic range.  



So total energy may be represented as  

E2= [1/2 (p/c)v2 + 1/2 (p/c)r2ω2]2+ (m0c
2 )2.   

Since for relativistic particle v≈c, the translational and tangential 

velocities are in the relativistic range and v=rω≈c. The rotational energy 

and the translational energy will be equal. Let x be the displacement of 

the particle along the x axis and r be the radius of its rotational motion in 

xy plane over time period  t. Then, the translational velocity can be 

expressed as:  

Therefore ,v=rω= 2πr/t=x/t   

Substituting v=rω into the equation gives:  

E2= [1/2 (p/c)v2 + 1/2 (p/c)vrω]2+ (m0c
2 )2  

where the term ½(p/c)vrω is introduced to simplify the equation for 

modelling of coupled translational and rotational motion. Expanding 

further,  

E2= [½ (p/c)x2/ t2+ ½ (p/c)2πrx/ t2]2+(m0c
2 )2  

Which simplifies to:  

E2= [½(p/c) /t2(x2+ 2πrx]]2+(m0c
2 )2  



Since E=constant. Differentiating with respect to x using the chain rule, 

dE/dt=(dE/dx).(dx/dt)=0. Therefore dE/dx=0 (dx/dt is a non zero term 

for a particle in motion).   

Taking the derivative, 

2E (dE/dx)= 2[½ (p/c)/t2(x2+2πrx)]d/dx[½ (p/c)/t2(x2+2πrx)]+0  

Which simplifies to  

0=(1/2(p/c)) t2 d/dx(x2 +2πrx)  

Since [½ (p/c)/t2(x2+2πrx)] cannot be zero, the derivative simplifies to,  

2x + 2πr + 2πx dr/dx= 0 

xr+dr/dx=-x/π  

Rearranging,  r=-x(1/π+dr/dx)  

Setting boundary conditions x=0,λ;r=0 and forced symmetry allows a 

trivial solution. The trivial solution can give three points on the XY 

plane, with which a curve can be traced. 

                      On X-Y coordinates, x is the transverse displacement in X 

axis. It ranges from 0 to λ. r is the changing radius with respect to the 

displacement in Y axis. A graph can be plotted in Cartesian co-ordinates 

by taking Y=+/- r. The graph has been drawn using boundary condition  



x=0, λ; r=0  and inflection point of graph at x= λ/2  where dr/dx=0. The 

amplitude of oscillation has to increase and decrease symmetrically if 

the particle has to travel as wave. A trivial solution is possible and it 

gives three points to draw the curve.  

At inflection point of the slope, dr/dx=0  

Where r= R= λ /2(1/π+0), R is the radius of zitterbewegung  

Therefore, λ= 2πR and R=λ/2π This is equal to the predicted radius for 

zitterwebegung.[3] .  

The graph has to be drawn with λ =π unit, R=1/2 unit. This is done for 

approximation to half Sine curve for modeling of fermion. 

When x=0, r= 0(1/π+dr/dx)=0  

Therefore when x =λ, r =0 and dr/dx= -2R/λ=-1/π=-0.3, which is the 

minimum slope of the graph.  

The three points are (0,0), (λ/2,R) and (λ,0).The equation can be written 

as, |r|= x(1/π+dr/dx).   

Here |r|= x/π+xdr/dx. The graph can be drawn as the following.  

  



 

  

Fig 1. Outline formed by the particle in one cycle of zitterbewegung 

By integrating the equation, xr+dr/dx=-x/π 

xr=-x2/2π+C 

Setting boundary conditions, x=0,r=0; C=0 is obtained 

Therefore x=-2πr 

The equation has multiple solutions, 

 if x= λ, r=λ/2π 

If x=λ/2, r= λ/4π 

If x= λ/4 r= λ/8π 



Here r is the radius of oscillation. In the next sections, single rotation 

solution is only considered as ½ spin fermion is considered in the 

article.Considering the equation  λ= 2πR, if both translational and 

rotational circumference to be equal, the rotational motion cannot be 

perfectly circular. 

 

  

Fig 2. Translational and rotational motion in one cycle of 

zitterbewegung 

Physical Implications: 

           The graph may be approximated to  a standing wave pattern and 

can be represented as standing Sine waves travelling in opposite 

direction. If one wave length of standing wave is de Broglie wave 

length, then λ1=h/p and the expected angular frequency of 

zitterbewegung,   

ωzb= 2ω= 2 ck =2c(2π/λ1)  



ωzb=2pc/ℏ= 2mc2/ℏ which aligns with existing predictions[4].  

Here m = γm₀, the relativistic mass of the particle.  

The angular momentum of zitterbewegung of relativistic particle,   

L=pr= pR=p λ1/4π=ph/4πp=ℏ/2.This matches spin value for fermions 

and may explain the need for 720 degree rotation for getting back to 

initial configuration.  

  

 

Fig 3. Zitterbewegung of fermion in one de Broglie wave length  

The standing wave wave can be represented as  

y= Reikx- π/2+ Re-ikx-π/2  

y= R[Cos (kx-π/2)+ iSin(kx-π/2)]+ R[Cos (kx-π/2)- iSin(kx-π/2)]  

y=2RCos(kx-π/2). Here, k is the wavenumber, which is equal to   

k=2π/λ1 and phase difference of -π/2 as the original wave is a Sine 

wave. 



Integration with quantum mechanics  

E2= [1/2 (p/c)v2 + 1/2 (p/c)vrω]2+ (m0c
2 )2  

Since  v=rw, the total energy can be rewritten as   

E2= [1/2 (p/c)v2 + 1/2 (p/c)v2]2+ (m0c
2 )2  

Which equals to  

 E2= [(p/c)v2]2+ (m0c
2 )2 which 

can be simplified to   

E2= [pc]2+ (m0c
2)2  as v=c.  

The structure described above is two dimensional representation of a 

three-dimensional helical motion.  

If P is the pitch of  helix, Ptanθ=2πR1, where R1 is radius of helix and θ 

is the helix angle. 

The equation is very similar to  equation, λ= 2πR.  

 If helix angle is 45o, then tanθ=1 and P=λ= 2πR1.  

The helix diameter is the diameter of the cylinder on which the 

helix is wound and in the model, it is 

R1=R/√2R1   



The  length difference will be, 

k= 2π(R-R/√2) =1.84 R 

Therefore, 1.84 R can be extended to the pitch for our modeling. 

The minimum slope in the two dimensional graph derived earlier 

was -1/π at x= λ . If we do horizontal shear transformation of the 

graph in – X direction, slope becomes 

dy1/dx1=dy/d(x-my), where m is the shear factor 

The two dimensional graph is an approximation of half Sine wave 

( λ =π unit, R=1/2 unit). So at x=π, slope is equal to -0.5. 

 So dy/dx=0.5.  

dy/d(x-my) can be written as (dy/dx)/[ d(x-my)/dx] 

Therefore 0.318=0.5/[1-0.5m] 

m=1.14 

Shear angle =Cot-1(1.14)=41.2o 

This is less than the expected value 45o. [ 8.4% error percentage]. 



There is a gap between two limbs of helix in XY plane. The 

corresponding angle in XY plane is responsible for the disparity. 

So a lesser shear angle is required to obtain a helix angle of 

45o.Therefore, 2D graph is proven to be a reasonable 

approximation of 3D helical structure. The picture may be drawn 

as below. 

4. 720o Rotation of Fermion around an imaginary cylinder 

 

             The three dimensional helix can explain spin chirality. In 

quantum mechanics, eigenspinors of x axis and y axis requires 

normalisation with 1/√2. This may be due to the angle created by helical 

motion,equals to 45o , with the  momentum vector of the particle in x 

and y axis (px,py). The translational motion may be in X axis and and 

helical motion will be in YZ plane so that eigenspinors make a 45 

degree angle with py and donot make an angle with pz.  



Since Sin(45o)=1/√2, the normalisation factor is equal for both x and y 

axes. So naturally ‘p’ represent three dimensional momentum. From the 

four momentum of Dirac particle, hamiltonian can be derived.  

H=cα·p+m0c
2β [5]  

Conclusion  

This analysis demonstrates that the zitterbewegung trajectory can be 

approximated by a wave function, offering a more tangible physical 

interpretation of wave-particle duality than the traditional probabilistic 

approach. However, this formulation remains a mathematical 

approximation, requiring further rigorous analysis for a complete 

theoretical framework. This interpretation provides a foundational step 

for deeper investigations into quantum determinism.  
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