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Abstract.

The specific model-case of the quadratic-iterator is an iltuminating way of understanding the
chaotic-behaviour. It is agreed that for the special-cases of iteration of transformations there
are common characteristics of chaos: Sensitive dependence on initial conditions, mixing and
dense, periodic points. Therefore discussion starts with an important metaphor in chaos-
theory, kneading of dough, by 2 different uniform-processes performed iteratively each of
them in unit-iterval: |1| Stretch the dough, fold it over in the middle and stretch it again (as
often as required), and |2) stretch the dough, cut it in the middle, paste the 2 halfs together
and stretch it again (as often as required). This processes guaraniee that a pocket of spice
inserted into the dough will be mixed thoroughly throughout the mass. Both kneading-
processes were found to be compatible in view of their chaotic-characteristics. In a further
step of discussion, equivalence could be shown between the 2 uniform kneading-processes
and the non-uniform kneading of the quadratic-iterator’y = a-x(1-x), where a = 4 were
chosen, via simple coordinate-transformations of the unit-interval. Chaotic characteristics of
all 3 iteration-transformations could also be proven as being equivalent to each other. Thus,
further investigations were based now on quadratic-iterator. The range from states of order
up to the complete chaotic dynamics of the quadratic-iterator can be divided into 3 distinct
parts: [1] regime 1 < a < (s, = FEIGENBA UM-point) were oscillations of the iterator will
experience period-doublings, [2] an area s,, <a <4 which can be looked as mirror-image of
regime {1}, and [3] the chaos-area for a =4. Boarder between regime [1] and [2] is a
CANTOR-set. The mirror-image-area of the quadratic-iterator’s final-state-diagram is
characterized by a complicated band-structure and therefore different orbit-dynamics can be
expected for (4 <s,) & (5, < a). In other words, transitions from order to chaos and vice-
versa may occur but with respect to orbit-dynamics they happen differently every time.
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Paradigma of Chaos: The kneading of Dough.

Mathematicians agree that for the special case of iteration of transformations 3 common characteristics of
chaos will be fulfilled:

<1> | Sensitive dependence on initial conditions.

<2> | Mixing from sequences of intervals by courses of orbits.

<3> f Dense periodic points.
Kneading of dough provides an intuitive access to all these mathematical problems of chaos. Moreover,
one will see that the kneading-process is closely related to the quadratic-iterator X, = ax,(1—x,) with
0 < x < 1 as iteration-variable and a as real parameter 1 < a < 4.

A, | Kneading is the process of stretching the dough and folding it aver, repeated many times. The
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1
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results have many in common with randomness.

The dough is homogeneously stretched to twice ifs length, then it is bent af the centre
and folded over:
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Uniform kneading by stretch-and-fold.
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In order to make more obvious how this kneading works on different parts of the
dough, part of it is divided into12 blocks which are processed then by 2 stretch-and-

fold-operations:

2 operations of stretch-and-fold-
kneading on 12 blocks of dough.
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The situation shall be idealized a little bit further. It is thought that folding
these layers will not change their thickness and thus one may represent the
dough by a infinitely-thin line-segment.

stage 0
stretch
il  geg—— 2 grains, symolized by a dot and
stage 1 e .
iendch a square, are subjected to 4
T S stages of stretch-and-fold. They
BIEGE2 bl are mixed throughout the dough.
stretch
fold e . S
stage 3 ——
siretch
fold ——.——
stage 4 e T S

The 2 grains are rather close together initially. But after a few kneadings it
becomes obvious that one will find them in very different places. In fact, this will
be a consequenice due to mixing-properties of kneading. Thus, kneading destroys
neighbourhood-relations, grains which are very close initially will likely not be
close neighbours after a while. This is the effect of sensitive-dependence-on-initial-
conditions. Small deviations in intial positions lead to large deviations in course of
the process.

A, | Next another kind of kneading-operation shall be discussed. Here again the dough again is stretched

uniformiy to twice of its length, but then it is cut at ifs centre into 2 parts and pasted afterwards on top
of each other:
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ALY | When comparing the stretch-cut-and-paste-operation with the stretch-and-fold-operation, on
1* glance it seems to be that both kneadings apparently mix particles around, but in very
different manner generating quite distinct iterating-behaviours. However, suprisingly both
kneadungs are essentially the same; following figure can give a 1% idea about this fact:
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by steatch-and-fold stroteh-and-told
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Alss Stretch-cut-and-paste followed by stretch-and-fold applied to12 blocks of dough.
The resulting horizontal order of the blocks is identical to the one obtained from
the application of the 2 succeeding stretch-and-fold-operations in figure of (All).
ALY, Again the dough had been divided into 12 blocks. Then the stretch-cut-and-fold-
operation was applied followed by 1 strech-and-fold-operation. The result is
compared with the one obtained for 2 succeeding stretch-and-fold-operations in
the bottom-part of the figure. One observes that they are identical when ignoring
the vertical order of the pieces.

Ay, | This gain suggests to neglect any thickness of the dough. Thus, from now on the
dough is thought of being represented by a line-segment. This is the 1°* step
towards a mathematical-model of the kneading-operations. By taking the interval
(0,1) as the original line-segment modeling the dough, one can now check how
the 2 different kneading-operation act. The symbol T is used for the stretch-and-
Jold-operation and the symbol S for the stretch-cut-and-paste-operation.

1
e N Tracing a particle in interval (0,1)
e fold o ctandpaste | JOF the T—operation (left) and S—
o | operation (right). The particle starts
——— fold e cutand paste in both experiments from the same
shreren il initial-position x.
foid fold

A', .5, | One observes in both experiments that the particle arrives after
T(T(T(x0))) or T(S(S(xy))) exactly at the same position

though the route in between is different. This means T(T(T(x,)))
= T(S(S(xg))). This experience along with the result of figure
from (Alm) motivates one o conjecture an substitution-property of
the 2 kneading-operations T" = TS" " where T" = T(T(...(N—
2)—times)) and SN = S(S(...(N—3)—times)).

A'; | These mathematical-models Jor kneading of the 1—dimensional ideal of the dough are functions.
A, | The stretch-and-fold-kneading T is represented by following transformation T(x) = {(2x
if x < %) A (—2x+2 if x > %)}, following figure shows a graph of this transformation:
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Graph of the piecewise-linear tent-transformation T according
to the equation above. The graph looks like a simplification of
the parabola.
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A justification of this model is almost self-evident. The dough is modelled by the
unit-interval (0,1). The stretching-operation is taken care-of by the factor 2 in
front of x. The 1** half of interval (0,1) is only stretched and not folded. Thus,

the 1 part from the definition of T is in order of T(x) = 2x if x <. The 2°
half-interval becomes (1,2) after the stretching and must be folded over its left
end-point. This equivalent to folding at x = O (multiplying with (—1) and
shifting to the right by 2 units).

The model for the 2 procedure, the stretch-cut-and-paste kneading-operation is another
elementary mathematical fransformation, the saw-tooth-transformation S, defined for x €
(0,1): S(x) = {(2x if x < %) A (2x—1 if x > V4)}, following figure shows its graph:

¥
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equation above. The graph justifies the name.
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/ Graph of saw-tooth-transformation S according to the
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There is a notation for the saw-tooth-function S, which differs from the above one.
It uses a function which computes the fractional part Frac(x) of a number x:
Frac(x) = x—k if k < x <k, k = integer. With this notation the saw-tooth-
transformation can be written as S(x) = Frac(2x) for 0 < x < 1. Only for
the point x = 1 the formula does not work. But this is not significant, because X
=1 is a fixed-point of the operator S and, moreover, there are no other points in
the unit-interval which are transformed to this fixed-point. Thus it is no loss to
neglect the fixed-point x= 1.

A, .11 | Starting with 0 < x4 < 1 one computes x; = Frac(2x,) — x5 =
Frac(2x,) and generalizes x,., = Frac(2x,), k= 0,1,2,... 4s
one likes to know what x, will be for some very large value of K in
terms of X, one has to write x, = Frac(2*x,).

If % is defined in binary-representation by 0.8.,8.,8... with 2, as binary digits, the
transformation S(x) must be: S(0.a,8,3,...) = Frac(2:0.a,2,a;...) =
0.248;..., because multiplication by 2 yields shifting all binary digits 1 place to
the left followed by erasing the digit that is moved in front of the point. Due to the
type of this almost mechanical procedure the S—transformation is also called the
shift-operator when interpreted in context of binary-representations.

An argument shall be introduced which makes a connection between the feedback-system X —
4x(1—x) and the kneading of dough.

If one graphs the transformation y = 4x(1—x) in (x,y)—coordinate-system one obtains a
generic-parabola:

1
Ay

¥

1

A generic-parabola are characterized by the fact that
their graphs precisely fits into a square which has 1 of
its diagonals on the bisector of the (X,y)—coordinate-
system.

1
A 4.1.1

as 1
Here one is interested only in Xx—values ranging 0 — 1. One will observe that
the corresponding y—values also range from O — 1, and y—values monotoni-
cally increase for x < %2 and monotonically decrease in the range X > /2. One
may notice that the interval (0,'%) on x—axis is stretched-out to interval (0,1)
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on y—axis, and the same is true for the interval (Vz,l). In other words, the
transformation Ax(1—x) stretches both intervals to twice of their lengths. The
stretching, however, is non-uniform. In fact, smail intervals (close to O and 1)
are stretched a great deal, while intervals close to the midpoint /2 are compressed.
Al,, | Here one now has reached a point where a connection can be made to to the former
kneading-operations T'(x) and S(x).

A, | It’s known already that each half of the unit-interval is stretched to twice its
length. Moreover, checking the end-points of the intervals, one finds 0 — 0, /2
— 1,1
—» 0. This means, the result of 1 application of the transformation 4x(1—x) to
the interval (0,1) can be interpreted as a combination of stretching and folding:

,,,,,, AAA AR

Stretch Fold
A'411 | In other words, the iteration x — Ax(1—Xx) is a relative of the
uniform stretch-and-fold-kneading-operation.

Al, . | All complex behaviour which one is able to show first for the shift-operator and then for
the teni-transformation (uniform kneading-operators) can also be found in the non-
uniform kneading due to the quadratic-iterator x — 4x(1—x).

A, . | The equivalence of the iteration of the tent-transformation 'T'(x) and the
quadratic-parabola 4x(1—x) is established by a non-linear change of the
coordinates given by x’ = h(x) = sin®(mx/2).

wansiormed, $* Function h(x) is the coordinate-transformation.
- Each x has its corresponding X’ = h(x) and

vice-versa. Along the coordinate-axes, intervals
do not retain their lengths when subjected to the
. transformation h(x). One may note that the
T Sunction h transforms (0,1) to itself ina 1—
*  to—1 fashion. For any x’ € (0,1) there is
exactly one x € (0,1) with x’ = h(x).
Ay 51, | When looking at an initial-point X, and ifs orbit X, X, X; ... under
the tent-transformation the orbit becomes x, = T(x,) x, = T?(x,)
x; = T3(%,) ... X = T(Xg).... The h—transformed point X, is
now yo= X’y = h(X,) the initial-point in new coordinates, those
belonging to the iteration of the parabola. Computing now the
iteration of £(y) = 4y(1—y) using yo = X’ one will obtain y,; =
(y0) ¥2=F2(¥0) --- ¥ie = F(¥0) -

kel . Viert

i 1A

wlo| o | m

y =sin*(mx/2)

R i

i x : AR 0
0 ;" 0 pF

AYisia Changing coordinates accordingly to the function h(x) transforms
graph of T—transformation to that of £(y) = 4y(1—y). Iteration
Jor T (left) is transformed into iteration for t (right) using h. Orbits
are equivalent. Thus, iterating %, under T produces an orbit which is
(after changing coordinates) the same as that of y, = X', = h(x,)
under the quadratic—=t. In terms of the functions f and 'T this
equivalence can be put in the form of functional-equivalence
f(h(x)) = h(T*(x)),

k=1,2,3,.., forall x € (0,1).
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A, .. | Now the mathematics behind the equivalence of iferations from the tent-
transformation "I and the quadratic-iterator { will be presented. All the fools one
needs are 2 familiar trigonometric-identities cos®(o) = 1—sin’(o) and
sin(2-a) = 2-sin(a)-cos(o).

Al, ., | Iterating an initial-point X o under the tent-function and iterating the
transformed-point X’ = sin®(xq7/2) under the parabola f(x) =
4x(1—x) produces functions that correspond fo each other by
means of the transformation X’ = h(x) = sin’(x1/2). To
establish this algebraically, one starts with X for the parabola.

A aos | Thus, X X,... is the iteration under the tent-function and Yoy --- is
the corresponding iteration under the parabola. One can show by
induction that, in fact, y,, = x’, = h(x) for numbers k = 0,1,...,
proving the equivalence.

A, 5.5 | One starts with the transformation y, = sin”(x,7/2), where 0 <
Xg < 1. One substitutes y , in the formula for the quadratic-iterator
y1 = 4y,(1-y,) = 4sin®(xgw/2)-(1- sin®(x,m/2)). By
using the trigonometric-identify cos’a = 1—sin®o one obtains y,
= 4.sin?(xym/2)-cos®(x,7/2). Simply using the double-angle-
identity sin(2-aL) = 2-sino-cosa, one obtains y, = sin*(x,m).
A, ... | The 1% iterate of x, under the tent-function is x, = T(x,). It can
easily be shown that Y, is in fact identical to X, after change of
coordinates, i.e., x’; = h(x,) =yl

Ay 4041 | Begining with case 0 < xo < %, X3 = T(Xo) = 2%y
and X'y = sin’(x,;7/2) = sin?(xm) = yy.

A, .54 | Alternatively, for 2 < Xo < 1. One starts substituting
X3 = T(xq) = 2—2Xq. Then x’; = sin’(x,/2)
= sin?(w—xqT). By using initially sin®(+a) =
sin?(o) and finally sin’(—a) = sin®(a) one gets
x"; = sin?(—xgn) = sin®(x¢™) = y1-

A}, .05 | The result shows X’y = y, and the conclusion X', = y, for k =
0,1,2,... (followed by induction). Thus, since X", = h(T*(x))
and y,, = £*(h(xg)), one has shown the functional-equation
f“(h(x)) = h(T*(x)), k=1,2....

A? | Paradigma of Chaos: Common Characteristcs of Kneading—Operations.
Central chaos-properties of kneading-operations, Sensitivity, Mixing and Dense-periodic-points, will be
started with considering iterations of saw-tooth-transformation S. The substitution-property allows one to
carry-over these features to the iteration of tent-transformation T. In later steps one will conclude analysis
of chaos by exploiting another equivalence, namely between tent-transformation and the quadratic-iterator.
A2, | One gets started with the saw-tooth-transformation S(x) = Frac(2x) for 0 < x < 1 (see (A'5.)
and following) and reveals a new interpretation by passing to binary representation of the real-
number 0 < x < 1. Any real-number X from the unit-interval can be written as X = 0.a,a533...,
where the a, are binary-digits and X = a12_1+322“2+332_3+...+a.k2_k+.... What does the
iteration of the S—function in terms of binary-expansion mean? Mutltiplication by 2 means passing
from 0.2,8,85... 10 &,.2,3;.... Therefore, 1 application of the transformation is accomplished by
first shifting all binary-digits 1 place to the left and then erasing the digit moved in front of the point,
z = 0.ala2a3... — S(z) = 0,a2a3aA.... Because of the type of this procedure the
transformation is called shift-operator too, when interpreted in the context of binary-expansion.
A2, | | Under these aspects the motion of a spice-particle in dough (when kneading by the stretch-
cut-and-paste-operation) can now be studied. One will turn to the 3 characteristics-of-chaos
in iterated-transformations, Sensitivity, Mixing and Periodic-Points merged in everywhere.
A2, | In order to study sensitivity one may imagine an initial-number X, = 0.2,a,a;... has been picked,
but only specified up to N = 100 digits. Thus, the true number will differ from the specified one by

.

at most at most 219 4 difference so small that it is considered not to matter at all. In any event one
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can consider this difference to be like an error-of-measurement. Since the digits a.,,,8,5,2, 5. - .. are
not known, one may assume that in each step of the calculation somebody flips a coin and thereby
determines those digits a,,80323.-.. Thus, one may say that the initial-number is only known up
to some degree of uncertainty in the data which only affects the digits at position 101 and higher.

Az, If the iteration is executed as mentioned above, then the beginning behaves tamely. But if
one continues iterating the noise creeps closer and closer to the decimal-point, and precisely
after 100 iterations, the result will become perfectly random; this is called the phenomenon
of sensitive-dependence-on-initial-conditions. It is an accurate and solid argument for the
properties of the corresponding kneading-operation. Now an argument has been provided
Jor the uniform distribution of spice in dough after kneading. If the spice originally comes
in a clump and the coordinates of the particle are given as 0.2,8,2...8,8, ..., where the
first k digits are the same for all particles, because they are clustered. The remaining digits
are uniformly distributed modelling the random-mixing of the spice in the cluster. After k
applications of the shift, the common coordinates are gone and only the random-digits are
left, which yields a uniform distribution of spice throughout the entire dough.
1If one takes a closer look on the sensitivity, a more precise definition of sensitivity will emerge: Given
any point Xo € (0,1) there exists a point y ; arbitrarily close to X, such that the outcome of iteration
started at Xo and 'y o eventually will differ by certain threshold. This threshold must be the same for
all points X in the interval and is called sensitivity-constant. It should be noted that it is not required
Sor all orbits started close to X will develop this deviation exceeding this threshold. It should be
argued that this definition of sensitivity holds for the iteration of the shift-operator. One claims that
the threshold in this case can be as large as Y.

A%, | An arbitrary starting point in binary-representation may be picked by rolling a die writing 0
Jfor any even roll and 1 for an odd roll. The result might be x, = 0.0101101011100011
001.... Now its tried to find a starting-point y o close by, which should develop the difference
to the orbit of X reaching the threshold /2 at some point. For Y the same number as for
Xo may be picked except for 1 of the binary-digits, which is now changed. If one requires
that y has a distance to X of at most 27°, then it is sufficient to flip the 6" digit of X and
obtains yo = 0.0101111011100011001.... After 5 iterations one gets: x5 = 0.010
111 00011 001... < %% and as required y5 = 0.11011100011001... = x54%. Thus
lys—xs| = %.
A%, Clearly, one can find points y o arbitrarily close to X with the same property. All one needs
to do is to just flip 1 of the binary-digits which must be of sufficiently high order. At 1 point
in the iteration this digit will be the most significant one and the difference with the orbit of
Xq will be "2 again. One may note that all further iterates in both orbits are identical. A
difference also in those iterations is not required by the definition. Of course one may devise
other strategies for the choice of y that produce an orbit which is different from that of x
in all iterations.
To understand what the next chaos-phenomenon - dense periodic-points - means, an illustrative
example in advance:

|

3
T

0.1110
Q.

}

=
g

3

0101

Cycle of period 4: Point 0.[0111]... is a periodic-
point. The binary-expression allows immediately to
read-off the iterative behaviour (here visualized as
graphical iteration).
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=
=
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0 0.01 04 0.11 1

A%, | What happens if one specifies xo = 0.[a,a,a5...a,]..., if one has an infinite string of
binary-digits which repeats after k digits? Running the iteration means that after k steps
one will see Xq again, and so forth. One will see a cycle of length k. Thereafter x will be
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A2,

called periodic with respect to the binary-shift. Clearly, one can produce cycles of any
length. But more importantly, for any given number X, number wo can be found arbitra-
rily close to X, which is periodic: If Xg = 0.2,8,8,..., Wo = 0.[a,8583...3,]... for
some k can be chosen, then X and W differ by (at most) 27, and w o makes the orbit
to a periodic one. This means that periodic-points are dense.

The next chaos-phenomenon — mixing-gain shall first be demonstrated by an illustrative example:
1A_,7‘A._AH s e e e - -

Mixing requires that any given interval J can be
reached from any other interval. Here 2 examples
are shown how one can reach a small intervai at

0.0110.

F 3 L
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0 001 0010 g4 0.11 1

0.00101101 011001101
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—

A25_1 One may choose any 2 arbitrarily small sub-intervals 1 and J of the unit-interval. For
the mixing one requires that a starting-point X in 1 is found, whose orbit will enter the
other interval J at some iteration. For the 2 sub-intervals 1 and J within unit-interval
one defines n > 0 such that interval 1 has a length > (2)""'. It may be further:
0.3,8,84... the binary-representation of the midpoint from interval 1. Moreover,
0.b,b,b,... is the binary-representation of a point y from interval J.

A%, | Now the initial-point Xg in 1 will be constructed in such a way that it after exactly n
iterations of the shift-operator it will be equal to y. To define X one copies the first n
digits of the centre from 1 and afterwards appends all digits of the target-point y: X, =
0.a,...a,b,b,b,.... Now, X, differs from the centre of | by at most 27" which is at
most half the width of the interval 1. Thus it must be contained in interval 1. Secondly,
after 0 iterations one gets x, = 0.b,b2b,... = y. In the case of shift-operator one
can hit any target-point in the interval J.

Closely related to mixing is ergodic-behaviour. Ergodicity means that if one picks a number X
at random in the unit-interval, then almost surely the results of the shift-operation will produce
numbers which will get arbitrarily close to any number in the unit-interval. Numbers X with a
periodic pattern in their binary-expansion do not show such behaviour and in some way they are
extremely scarcely populated in the unit-interval.

Paradigma of Chaos: Transformation—specific Characteristics.

For the iteration of saw-tooth-transformation S (or shifi-operation) or stretch-cut-and-paste-kneading it
could be observed that it exhibits the 3 properties-of-chaos.

A3

Now the consideration will be continued with unfelding the chaos for the tent-fransformation
T (or the stretch-and-fold-kneading). By means of the substitution-property the iterations of T
can be reduced fo the iterations given by S—transformation. The k'™ iterate x, is obtained by
k—1 binary-shifts followed by a single stretch-and-fold-operation 'I'. Since the first part is just
a shift by k—1 digits, one may easily carry-over all the complicated dynamic-behaviour
(Sensitive-dependence, Denseness-of-periodic-points and Mixing) of the shift-transformation
to the stretch-and-fold-transformation.

A®, . | What are the periodic-points for the iteration of the tent-transformation 'T'? Or more
precisely, how can one find X so that X, = Xg for a given integer i, where X; =
T(x;_,) for j = 1...0. It should be asserted that, all one has to do now is to take a
point Wq which is periodic for the shift-transformation to obtain a periodic-point Xy
= T(wy) of L. Indeed, let wo = S"(wy) be a periodic-point of S. Then one
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checks whether X, = X using the definition of X, and the substitution-property of
the 2 kneading-transformations, x,, = T"(xg) = T*(T(wg)) = T"(wp) =
T(8"(wo)) = T(wo) = Xo.
A3, 1 | Hence it is true that if W, is a periodic-point for the binary-shift. Then
xg = T(wy) is a periodic-point for the stretch-and-fold-transformation
with the same period. Using the result from above it is to reason that the
periodic-points of 'T are dense in the unit-interval.
A3, | The tent-transformation is given by T'(x) = {(2x if x < 12),(—
2x+2 if x > %) }. Let x = 0,a,a,a;... be a binary-expansion of X €
(0,1). If x < Y the tent- transformation is identical with the saw-
tooth-transformation, thus T(x) = 0.a,3,8,... if x <. If x >4,
then S(x) = 2x—1, and T(x) = 2—2x = 1—(2x—1) = 1-S(x)
= 1—-0.a2a3a,.... Infroducing the dual-binary-digit a* = {(1 if a =
0),(0 if a = 1)} one will obtain in case of x > 2, T(x) =
0.a,*a *a,*... because 0.a,a53,... + 0.a,%a;*a,*... = 1. The
binary-representation of the tent-transformation is T(0.a,a,a,...) =
{(0.a,a5a,... if a; = 0),(0.a,*az*a,*... if a; = 1)}. To deal with
the ambiguous-binary representations of rational-numbers one must
require to use 0.1 for %2. The above binary-version of 'T works also for
x = 1 when representing 1 as 0.111....
A3, .5 | It had been shown already that a periodic-point w € (0,1) of the saw-
tooth-function S with S*(w) = w induces a periodic-point x = T(w)
of T with T"(x) = x. To show the denseness of these periodic-points
of T one demonstrates that one can find periodic-points whose binary-
expansion start with an arbitrary-sequence a.,...a,. The point W =
0.[0a,...a,]... < Y2 is periodic under S with period n+1. Because T
is the shift-transformation when the 1%* digit of the argument is 0, one
will obtain x = 'T(w) = 0.a,...a,0, and x is periodic under T with
period n-+1.
It will be continued with the deviation of the mixing-property for the tent-transformation.
Given are 2 open-intervals 1 and J in the unit-interval. It is always possible to choose 1 large
enough and bits a,...a, and b,...b, so that all binary-numbers in (0,1) whose binary-
expansion begin with a,...a., are in interval 1 and all binaries starting with b,...b, arein J.
Now one specifies an initial-point Xo € 1 such that the n* iterate is in J, x,, = T"(x,) € J.
Again one treats the 2 cases a, = 0 and a, = 1 separately.
<a = 0> | One chooses xg = 0.8,...a,b,...b, and verifies: x, = T"(xy) =
T(S* (%)) = T(0.a,b;...b,) = T(0.0b,...b,) = 0.b,...b, € J.
<a=1> | One chooses Xy = 0.8,...a,b,*... b,* and verifies: x,, = T"(xg)
=T(S" '(xq)) = T(0.a,b,*...b,*) = T(0.1 b;*...b,*)
= 0.b,*...b,*11... € J.
There is an elegant solution for the problem of deducing sensitivity which has been worked-oui
by a group of Australien-mathematicians [Ref. I]. They showed in a theorem that the
properties of mixing and dense-periodic-points are already suffice to show the 3 property of
chaos, sensitivity. In other words, if T is chaotic and f and g are equivalent via change h of
coordinates, i.e., f(h(x)) = h(g(x)), then g is chaotic too. The consequences for f and g
are strong. For instance, when T is mixing then g is mixing, and likewise when g is mixing
then § is mixing. Similarly, when f has dense-periodic-points then so has g and vice versa.
A®, | | Thus, the knowledge of the shift-operation and its relation to the tent-transformation
has provided the key to derive at least the 2 chaos-properties dense-periodic-points
and mixing. It is quite natural to ask whether the 3 chaos-property is in fact
independent. That is, whether 2 of these conditions could imply the 3" one or not.
Another natural question is that of inheritance. Given that a mapping { is chaotic
and that g is related to £, can one conclude that g is chaotic as well. After having
analyzed the chaos-properties of saw-tooth-transformation S it was relatively easy to
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establish chaos-properties for the tent-transformation ' when using the functional-
equation T'T' = T'S. The proper notions in connection with the open questions
above are those of topological-conjugacy and topological-semi-conjugacy.
What follows could be carried-out in very general situation but in the subsequent
discussion it is preferred to stay with fransformations of the real-line.

A%, | Let X and Y be 2 subsets of the real-line and f and g be 2 transformations f:
X—X and g: Y—Y. Then { and g are said to be topological-conjugate provided £
and g are continuous and there is a homeomorphism h: X —'Y such that the
Sunctional-equation h(f(x)) = g(h(x)) holds for all x € X.

<1> | The transformation { is said to be continuous provided for any x € X
and any sequence X X,X,... with limit X one has the sequence
£(x, )E(x2)E(x3) ... which a limit £(x). Alternatively and equivalently
could be stated: The transformation { is continuous provided for any
open-set U in Y the pre-image £ '(U) = {x € X | f(x) € U} is open
in X.
<2> | A subset V of the real-line R is said to be open provided for any x € V
there is an open interval | containing x which is entirely in V. A subset
U of X is said to be open in X provided there is an open-subset of the
real-line R, say V, such that U = XNV.
<3> | A mapping h: X—'Y is said to be a homeomorphism provided h is
continuous, 1—t0—1 and onto, and the inverse-mapping h™" is
continuous (00.
<4> | It should be noted that topolegical-conjugacy is an equivalence-relation,
thus the following 3 properties are true:

<a> { f is topologically-conjugate to £.

<b> i If £ is topologically-conjugate to g then g is topologically-

| conjugate to f.
<e> | Iff is topologically-conjugate to g and g is topologicaliy-
conjugate to h then f is topologically-conjugate to h.
A?, | In the discussion of the saw-tooth- and tent-transformation the crucial-relation TT = TS was
established. In other words, if b = T one gets a functional-relation of the form hS = Th.
But there is a problem in using this for a topological-conjugacy between I and S. The
transformation 'U is continuous and S is not. If h were a homeomorphism then aiso S would
have to be continuous because of the functional-equation hS = Th (which would be
equivalent to S = h™"T'h), but this is not the case. The reason for that is h is not a
homeomorphism. It is continuous and onto, but not 1—to—1 (each y #+ 1 in (0,1) has 2
pre-images X, # %) such that h(x,) = y = h(x,), and there is no inverse-transformation
for h. This situation leads to a very useful modification of the notion of topological-conjugacy
the so calied topological-semi-conjugacy.

A?, | Let X and Y be 2 subsets of the real-line and f and g be transformations £: X —X
and g: Y —Y. Then g is said to be topologically-semi-conjugate to { provided there
is a continuous-and-onto-transformation h: X —'Y such that functional-equation
h(f(x)) = g(h(x)) holds for all x € X.

A34‘2 1t should be noted this is not a equivalence-relation, because as g is topologically-
semi-conjugate to £, { may still not be topologically-semi-conjugate to g. Moreover,
it should be noted there is no requirement for t or g to be continuous.

A3,y | This is exactly the situation which was found for T and S previously. In other
words, T is semi-conjugate to S.

A3, | This leads to important consequences:

<1> | The functional-equation hf = gh implies hf" = g"h for any natural-number n.
Indeed, hf = gh implies ghf = g*h, using gh = hf this implies hf*> = g*h.
Likewise, one may obtain the general-case by induction.

<2> | If g is assumed to be topological-semi-conjugate to { via a continuous and onto
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<a>

<b>

A® . | One has

3
A 6.1.1

3
A 6.1.2

transformation h and £ may have the properties dense-periodic-points and mixing,
then g has dense-periodic-points and mixing as well.

<3> | This shows that the chaos-properties of T established above from that of S has to be
seen in a very general background. Dense-periodic-points and mixing are inherited.

In order to prove this, let £: X —X and g: Y —Y. Periodic-points g are
densein Y and 'y € Y. It will be shown that there is a sequence of

periodic-points of g with limit y. As a pre-image of v under I, x will be

chosen, i.e. h(x) =y (because h is onto). Since periodic-points of f are
dense in X one can find a sequence X,X,X5... with limit x, such that
f'(x,) = x.. In other words, X is a periodic-point of period 0. One
claims that the sequence {y .} with y, = h(x,) has limit y and is a
sequence of periodic-points of g. The 1% claim is true because h is
continuous. The 2° claim follows from the functional-equation hf® =
g°h. Indeed: g"(y,.) = g™(h(x.)) = h(f*(x.)) = h(x.) = y..-
Secondly, the transformation g is mixing. Let U and V be 2 open-sets
inY. One should find y € U and a natural-number 0. such that g"(y)
€ V. Beginning with taking the pre-images A =h'(U) and B =
h™Y(V). It should be noted that A and B are open, because h is
continuous. Thus there exists a natural number 0. and X € A such that

f*(x) € B, since f is mixing. Set y = h(x) and by using the functional-

equation one will obtain g"(y) = g"(h(x)) = h(f"(x)). Since £*(x)
€ B one can conclude that h(f"(x)) = h(B) = V.

A% | Finally one should come to a discussion of whether the 3 chaos-properties are independent
Jrom each other. In this context the following statement is true: If X is an arbitrary subset of
the real-line and £: X — X is a continuous transformation which has the property of mixing
and possesses dense-periodic-points. Then { also shows sensitivity-on-initial-conditions. In
other words, if f is chaotic and g is topologically-semi-conjugate to f, then g is chaotic too.
The proof of this fact is sketched subsequently:

to find A > O so that for any x € X and any open-subset JCX containing

X one has to find a point z € J and a natural number 1 so that |*(x)—"(z)| >
d. The argument has 2 steps:

Firstly, there is a 8o > 0, such that for any x € X there is a periodic-
point p € X with the property that |F(p)—x| > 8o/2, for all k =
0,1,2,.... Indeed, choosing 2 arbitrary periodic-points T and s with
disjoint orbits, i.e., such that f(x) + £1(s) for all k,j. If 8 is the
distance between these orbits 8, = min{|f*(r)—f(s)] | k,j €
{0,1,2,...}} and x € X. Then by triangle-inequality: 8, < |f*(r)—
fi(s)| = |f(r)—x+x—fi(s)| = |f(r)—x|+|x—F(s)|. Thus, either
X has a distance of at least 8, /2 to the orbit of T or the orbit of s.
Otherwise if |(r)—x| < 8¢/2 and |x—£(s)| < 8o/2 for all k,j,
one will arrive at a contradiction.

Secondly, it will be shown that { has sensitive-dependence-on-initial-
conditions with sensitivity-constant & = 8, /8. There may be any point
x € X and J may be any open subset of X containing x. Since
periodic-points are dense in X one can find a periodic-point p in U =
JN(x—8,x+3). The period of p may be denoted by n. There may exist
a periodic-point q € X whose orbit has at least a Ad—distance from X.
One may set: W; = (£(q)—98,0(q)+8)NX and V = f(W,)N
FAWy)N...nE™(W,) with j = 1...n where fI(A) = {z € X |
£(z) € A} is the pre-image of the set A under f. It should be noted
that q € V, so that V is not empty. Moreover, V is an open set because
f is continuous. Since t is also mixing one find a natural-number k and
v € U such that f*(y) € V. Thus, 1 < ni—k < n. By construction
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one will obtain that the point I (y) = " *(f*(y) ef™ (V) is
contained in the open set W ;_,. On the other hand T (p) = p so that
by triangle-inequality: | (p)—£"(y)| = [p—"(y)| = [x—F""*(q)+f""
“(a)—f"(y)+lp—x| = [x—F""(q)|-If" (@) (V) |- Ip—=x|.
Therefore, since p € (x—8,x+8) and f"(y) € (" *(q)—8,f
“(q)+8)NX one obtains: |f(p)—f"(y)| > 46—8—8 = 28. Thus
one obtained either |f*(x)—f"(y)| > 8 or |[f*(x)—"(p)| > 8.
Indeed, if both distances would be strictly less than 8, then by the
triangle-inequality: | (p)—f"(y)| = |f(p)—"(x)+"(x)—
fi(y)] < |F(p) —F(x) |-+ [ (x) ()| < 28, which is a
contradiction. Since (p, y) € UCJ one gets that the ni—th iterate of
f at p or y is more than a distance 8 from the ni—th iterate of f at x.
A3, By applying the formulas from (A14) (appropriate for the chance of coordinates) one can
easily find a periodic-point of the guadratic-iterator. All one needs is a periodic-point for the
teni-transformation, say Xg. Then one applies the equivalence transformation fo obtain
sin®(1wxg/2) which is guaranteed to be periodic in the quadratic-iterator. Thus, the iteration
of the teni-transformation and the parabola are totally equivalent. All the signs of chaos are
Jfound when iteration the quadratic-iterator f(x) = Ax(1—x).
<a> | Points that are periodic for the tent-transformation correspond to points that are

periodic for the parabola.
<b> | Points that show mixing by leading from one given sub-interval to another for the
tent-transformation correspond to points that show the same behaviour for the
parabola.

<c> | Points that exhibit sensitivity for the tent-transformation correspond to points that
show sensitivity for the parabola.

However, it has to be remarked that these conclusions are not self-evideni. In the following a
proof for first 2 properties is presented.

A?, | | It may be: The tent-transformation denoted by T, the guadratic-transformation
denoted by £(x) = Ax(1—x), the transformation for the chance of coordinates
denoted by h(x) = sin’(nwx/2) and the functional-equation as shown above
(h(x)) =h(T(x)) fork =1, 2, ... and x € (0,1). Furthermore, one
knows that periodic points of T are dense in (0,1) and T is mixing.

A®,, | One claims that periodic-points of { are dense in (0,1) with y € (0,1). It will be
shown that there is a sequence of periodic-points from £ with a limit y. One may
choose X as pre-image of y under h (i.e. h(x) = y) because h is onto. Since
periodic-points of 'T are dense in (0, 1) one can find a sequence of points X,X,...
with a limit X and such that each point X is a periodic-point of 'T' with some period
(say D). Thus, TP(x.) = X, for € = 1,2,.... One claims that the sequence of
points ¥,¥... with y, = h(x,.) has a limit y and is a sequence of periodic-points
Sfrom £.

A%, | The 1** claim is true because h is continuous. The 2°° claim follows from the
functional-equation £°h = h'T°. Indeed, f*<(y,.) = f«(h(x.)) = h(T"(x.)) =
h(Xe) = Ye-

A?,, | One further claims that the transformation f is mixing. U and V are supposed to be
2 open intervals in (0,1). One must find a point y € U and a natural-number € so
that £°(y) € V.

A®, 4, | Starting by taking the pre-images A = h™(U) = {x € [0,1] | h(x)
€ U} and B = h™ (V). It should be noted that A and B are open,
because h is continuous. Thus there exists a natural-number € and X €
A such that T°(x) € B, since T is mixing.

A?, ., | There may be y = h(x) and now using the functional-equation one
obtains: £°(y) = f°(h(x)) = h(f*(x)). Since £°(x) = B one may
conclude that h(f°(x)) € h(B) = V. Therefore f is mixing.

A3, . | Dense-periodic-points for the tent-transformation and the equivalence of T and f
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vield that also T has dense-periodic-points. Mixing for T and the equivalence yield
that £ is mixing too. This approach does not work for the e property-of-chaos,
sensitivity. Sensitivity-on-initial-conditions is not generally inherited from one
dynamical-system to another which has iterations that are equivalent by change-of-
coordinates. In contrast, the properties of mixing and dense-periodic-points are
passed-over to the equivalent-system.

A®, o | But analogous to what had been expressed already in (A*;, A®g) with respect to
the independence of chaos-properties from a transformation or inheritance of them
between fransformations can also be used here as a scheme for deducing sensitive-
dependence-on-initial-conditions for the quadratic-iterator.

B' | Analysis of Period—Doubling—Regime.

Chaos and order have long been viewed as antagonistic-states in sciences. Special methods of investigation and
theory have been designed for both. Natural laws like KEPLER s-law or NEWTON’s-law represent the domain
of order. Chaos was understood to belong to a different face of nature, seen as a higher degree of complexity or
a more complex form of nature. One of the great surprises revealed through the studies of the quadratic-iterator
Xy = ax,(1—x,), is that both antagonistic-states can be ruled by a single law. An even bigger surprise was
the discovery that there is a very well-defined route which leads from one state (order) into the other state
(chaos). Furthermore, it was recognized that this route is universal. Route means that there are abrupt
qualitative-changes (called bifurcations) which mark the transition from order into chaos like schedules and
universal means that these bifurcations can be found in many natural-systems both qualitatively and
quantitatively.

B, | In this context, the question is at forefront: what is the long term behaviour of the quadratic-iterator
Xnp1 = aX,(1—x,) for all parameters 1 < a < 4. Means, what happens to the iterates X, when the
dependence on the initial choice x is diluted to almost 0 ?

B, . | Clearly, the iteration produces values x,, which remain in the interval (0,1) as long as the
intial-value X is from that interval. For instance, with parameter 3 = 2 and a randomiy
chosen initial-value X one would obtain a time-series XoX X ... for this parameter. This
poly-line (after a transient-phase of a few iterations) will settle-down at the fixed-point /2
which is called the final-state of this orbit. If one repeats this experiment for different initial-
values xg € (0,1) one always will reach the same final-state. The complete set of final-
states from quadratic-iterator for initial-values xo € (0,1) in dependence on the

parameter-range 1 < a, < 4 is shown in the next diagram, called FEIGENBAUM-diagram.
: 1

Final-state-diagram for the quadratic-
iterator and parameters 1 < a < 4.

/ o
f',..m,”.r.‘..”..,,,k,,v,..rr_l_rjo
4

B, .1 | ¥ should be noted that for a. > 3 the final-state is not a mere point but a
collection of 2, 4 or more points. For 2. = 4 one gets chaos as discussed in the
form of (A) and the points of the final-states densely fill-up the complete unit-
interval vertically.

B, , | One essential-structure seen in the FEIGENBAUM-diagram is that of a branching-tree

which portrays the qualitative-changes in the dynamical-behaviour of the iterator X —

ax(1—x). Out of a major stem one can see 2 branches bifurcating, and out of these

branches another 2 branches bifurcate and so on in the same way. This is the period-

doubling-regime of the scenario. Period-doubling crudely explained means:

B, | Where one will see just 1 branch the long-term-behaviour of the system tends
towards a fixed-state, which depends on the parameter-value a and will be
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i
B 1.3

1
B 1.4

i
B 1.2.2

reached (no matter at which initial-value xy € (0,1) ) an iteration will be
started. As soon as 2 branches will be seen, this means that the long-term-
behaviour of the system is now alternating between 2 different states, a lower
one and an upper one. This is called periodic-behaviour and since there are 2
such states now, the situation describes a period—2—behaviour and compared to
the former development the period has doubled. When one sees A branches
instead of 2, all that has changed is that the period of the final-state-behaviour
has increased from 2 fo 4. This becomes the period-doubling-regime of the
FEIGENBAUM-diagram: 1 — 2 — 4 — 8 — 16 — ... — 2V ..., where N
is a natural number.

Beyond this period-doubling-cascade at the right-end of the figure a structure
can be observed with a lot of detailed designs. Chaos has set-in and eventually

at the parameter-value a. = 4 it governs the unit-interval of the graph vertically.

The structure in figure {Bll_l) has self-similarity-properties, means that the route from
order to chaos is one with infinite detail and complexity.

1
B 1.3.1

Next figures show a sequence of close-ups, starting with a reproduction of figure
(B',.,) and magnifying the rectangular window indicated in the initial-diagram,
but showing it upside-down.

.
R 9
i T
B / %
L o
s LTI I S ———— L
P 35 3.50383 3.54416 3.56 3.57490

B, 4, | 4 close-up-sequence of the final-state-diagram of the quadratic-
iterator reveals its self-similarity. One should note that the vertical
value in the upper-left and bottom-left magnifications have been
reversed to reflect the fact that the previous diagram has been
inverted. The upper-right magnification is also a vertical- inversion
of the upper-left magnification the values, however, are in their
normal relationship. Theoretically, one could go on infinitely often,
in other words, the final-state-diagram is a self-similar-structure.

The branches in the period-doubling-regime become shorter and shorter as one looks from
left to right. It’s therefore a tempting thought to imagine that the lengths of the branches in
direction of the a—axis might decrease relative to each other perhaps according to some
geometric-law. This idea would lead to several consequences:

]
B 1.4.1

i
B 1.4.2

First of all, it would constitute a threshold, i.e., a parameter a beyond which the
branches of the tree could never grow. This would mark the end of the period-
doubling-regime. Indeed, there is such a threshold which became known as
FEIGENBAUM-point s,, = 3.5699456... = a. It is precisely the a—value at
which the sequence-of-rectangies shown in (311_3_1) converge. The
FEIGENBAUM-point splits the final-state-diagram into 2 very distinct parts, the
period-doubling-tree on the left and the area governed by chaos on the right.
Secondly, if there is a rule that quantifies the way the period-doubling-tree
approaches the FEIGENBAUM-point, one could try to compare it with the laws
which might observe in related iterators. In fact, these ideas were carried-out by
FEIGENBAUM himself and he found that a law could be isolated from the
branching-behaviour and was exactly the same for many different iterators. In a
very precise-sense the law can be captured in just 1 number which was measured
to be & = 4.6692... and was called as FEIGENBAUM-counstant.

Udo E. Steinemann, “Possible Transition from Order into Chaos and vice versa”, 17-Feb-2025.

13




B!,

Oy

3
i

e p—ET The ratio 6 is the

n

e

e

M magnification-factor
;\\ = of succeeding
\4‘\“\\3‘”“ " branch-lengths.

w 0
3 35

Its appearance in many different systems was called universality. Roughly the
meaning of constant & is this: if one measures the lengths of 2 succeeding-
branches (in a—axis-direction) then their ratio turns-out to be approximately 8.
BY ... | Some years after FEIGENBAUM ’s-work physicists discovered that
the scenario of period-doubling and the value of 0 manifested
themselves in real physical experiments, the meaning of universality
was rot mere covering very primitive mathematical models but real
physical phenomena. In essence that means whenever a system
behaves in a period-doubling fashion, then it is very likely that one
will see the full structure of the FEIGENBAUM-diagram in it. In
other words, although the quadratic-iterator in some sense is much
to simiple to carry any information about real systems, in a very
striking and general sense it does carry the essential-information
about how systems may develop chaotic-behaviour.
The portion of the final-state-diagram fo the left of the FEIGENBAUM-point S, is a self-similar
Sfractal tree. It describes the period-doubling-scenario of the quadratic-iteraror, which leads from
a very simple and orderly behaviour of the dynamics right to the beginning of chaos-region. One
now should try to understand the mechanism lying at the base of its generation and leading to the
self-similarity of the free.

’
///<
! The period-doubling-tree, 1* portion of
e 3\ .
_— \ the final-state-diagram.
/ he
/ |
¥d !
1 2 3 5
BY, . | The discussion starts with the stem-of-the-tree, the part of 1 < a < 3. This part

represents a stable situation where the iteration is always led to 1 rest-point.
1 1

Plot shows time-series of initial-point Xy =
0.1 for parameter-value a, = 1.75, the
U ool topqation settles-down at 3 /7. Starting from
d /»——»——»ww f 0 < xp < 1 this value will always be
‘ / /i af)pro.ached. Right graph ‘shows adeqguate
ol R I S situation for a = 2.75 with result 7/11,
0 20 o 0 20 4 course of iteration is not direct, if oscillates
around final-state while settling-down.
B, ., | In both cases one has a situation, no matter where one chooses the initial-value
0 < xg < 1, it can be expected that a long run will settle-down at the
approptiate attractor A(a).
BY, .. | When starting the iteration of the quadratic-iterator f, = ax(1—x) exactly

from attractor X5 = A(a), one gets for all iterates Xg = X; = X3 = ... = Xy
the same value. In other words X is a fixed-point of £,. Thus X solves the
equation ax(1—x) = x and deliver the 2 solutions (a—1) /a. = p, and py =
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0. Moreover, it can be noted that if Xo = 1 then X1 = Xy = ... = 0. In other
words can be said 1 is a pre-image of py = 0. But X5 = 0 and xo = 1 are the
only initial-values which lead to O, all other values are attracted by p, = (a—

1)/a.

Graphical-iferation near stable
fixed-point. Iteration is performed
fora = 1.75 (left) and a =2.75
7 : (right). Both cases were started
/Jf ™ ! | fromxq = 0.1. The iteration

N - settles at p, = (a—1)/a which is
3/7 (left) and 7 /11 (right).
In other words, iteration is pushed away from rest-point Dy = 0. One says, Dy is
a repeller or unstable-fixed-point. On the other hand p, = (a—1) /a is a stable
—fixed-point or attractive-fixed-point of all parameters a between 1 and 3. One
can verify these facts using graphical-iteration from above.

B',... | The iteration is represented here by a path with horizontal and
vertical steps called a poly-line. For the situation of a. = 1.75 the
parabola ax(1—x) insects the bisector at the fixed-points py = 0
and p, = (a—1) /a. Between these values the parabola lies above
the bisector, but its vertex lies beyond the intersection. Thus the
iteration must be repelled away from U. On the other hand the poly-
line is trapped between the parabola and the bisector and thus is led
directly to the 2°° intersection-point at (a—1) /a..

B, 1., | The right graph in figure (B, , ,) shows the situation for a =
2.75. In this case the bisector intersets the parabola beyond its
vertex. Thus the poly-line begins to spiral around the point of
intersection. The spiraling is directed inwards, the process again
settles-down at (a—1) /a. In other words, the fixed-point is still
attractive although the local-behaviour (the way orbits are attracted)
has changed. Spiraling sets in as scon as the vertex of the parabola
surpasses the right intersection-point of the parabola and the
bisector. In other words, it has to be searched for the case where the
intersection-point and the vertex of the parabola come fogether.
Since the parabola has its maximum af X, = Y2, one has to solve
the equation "2 = a | 2(1—%2) for it, the solution is 2, next figure
shows the appropriate situation:

i L i 1 Fora=2super-
aftractive-situation

to be bserved. The

y ‘
4 | g . s
HBY| rommrmiosmesmsrssimsnes /147‘\\ . graphical-iteration
/ % . | shows orbit rushes
i N | into fixed-point.
0 T G 0 i J
0 20 0 01 1

BY, ... | Left graph is a plot of the time-series for the initial-
value 0.1. Compared with the time-series for a =
2.75 in figure (B',,) it can be remarked that for a
= 2 the attractive fixed-point is approached much
Jaster. Indeed, this point is called super-attractive. It
is very special in the interval 1 < a < 3 and occurs

only at pointa = s, = 2.

B, Having studied the dynamics of the quadratic-iterator £, in detail for the parameters 1 < a < 3, now
discussion will be continued by increasing a. beyond 3. For those parameter-values the fixed-point p,
= (a—1) /a will lose its stability and become a repeller. The question arises now, is there a different
attractor that takes over the role of p,? To start answering here, next figure shows a case for a = 3.1.
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IE o |
_/\/\N\N\NW\ f W /ﬁ\l‘ﬁvﬂw\/\[\/\ ‘ ' Time-series for parameter a = 3.1 where the
! i ' orbit started from initial-values Xy = 0.1. The
j ! | iteration leads to a final state which consists of 2
/ || points x(2) and x,(a).
°s T2 40 1 T 4
B, | In the above picture a time-series is obtained which exhibits an entirely new behaviour.

There is oscillation as in case of 2 < a < 3, but it does not finally settle-down to 1 single
point. Rather, it stabilizes in oscillating between 2 values, a low one x,(2) and a high one
xXn(a). Thus, in the final state-diagram one obtains just these 2 points at parameter a, =

3.1:

Graphical-iteration for a. =
3.1. The periodic-cycle {x,(a),
xu(a)} is theattractor for the
quadratic-iterator. On the left

; initial-point for the orbit is X
// = 0.075, while onthe right

\| itis xg = 0.65.

1
B 3.1.2

T 7 T 7
x5 Xy X i

In left-graph one first notices a familiar staircase. But then the poly-line turns
into an inward-spiral which slowly runs into a repeating loop. In the right plot
initigl-value Xg is close to the unstable fixed-point p,. Its orbit spirals-ontwards
the same loop as seen on the left. In other words, while for a. < 3 the fixed-point
D, atfracts all iterations, it turns into a repeller when a > 3. Close o D,
iteration will be pushed away. Fixed-point D, loses its stability as a crosses the
border by = 3. This particular-parameter-value is called a bifurcation-point.
Findings for the final-state-diagram shall be sununurized in the next figure.
p. = (a—1)/a is attractor for all iterations starting in interval (0,1) at
parameter-values 1 < a < 3. Formally the attractor is a single point A(a) =
{p.} for 1 < a < 3. For a > 3., p, still exists. Thus, an iteration started
precisely at this point and remains there forever, p, = Xg = Xy = .... However,
D. is a repeller and therefore not part of the final-state A(a). The attractiveness
has been taken over by the loop which oscillates between 2 values x,(a) and
xy(a). Thus the final-state is the attractor made of 2 points A(a) = {x(a),
xy(a)} for a > 3. The pair is called a 2—cycle or orbit of period 2. It’s
characterized by the fact that X, is transformed into X, and vice-versa. This
periodic-orbit exists for all parameters 3 < a. < 4. However, al fixed-point p,
loses stability at by = 3, also the 2—cycle loses stability at a certain parameter-
value by > 3, this will be discussed next.

=

x(a) =(a+1+Va?-2a-3 )/ Ca)

Within this bifurcation-
diagram the fixed-point
D, and 2 cycleiterations
{x(a), xu(a)} are

shown.

p£=(a -1)/a

)

% (a) =(a+1-Va*20-3 )/ {24)

0 3
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B;, Writing again £, = ax(1-—x) for the quadratic-iterator, one needs to find the solutions
of the 4™ order equation £,(f,(x)) = —a*x*+2a%x*—(a?+a’)x?+(a?~1)x = 0.

B, | One already knows the fixed-points of the iteration which solve f,(x) = x (i.e.,
0 and (a—1) /a). The solution x = 0 allows to simplify the equation to a 3™
order equation —a>x>+2a*x?—(a’+a*)x+(a?—1) = 0. Knowing the 2°°
solution (a—1) /a, one divides the 3™ order equation by x = (a—1) /a, which
leads to -a*x*+ (a’+a’)x—(a’+a) = 0 or further dividing by —a> gives
x?—(a+1)x/a+ (a+1)/a® = 0. The roots of this quadratic-equation are
x,(a) = (a+1+V/[a®—2a—3]) /2a and x,(a) = (a+1—/[a?—2a—
3])/2a.

Considering only parameters O < a < 4, one will note that these solutions are
defined only for a. > 3. Moreover, at a = 3 one gets x,(a) = x,(a) = (a—
1)/a, the 2 solutions bifurcate from the fixed-point p,. Figure (B, ,) shows
the bifurcation-diagram of the explicitly calculated solutions. One should note
that in the final-state-diagram one cannot see the solution of p, = (a—1) /a for
a > 3. This corresponds to the fact that although the fixed-point continues fo
exist, it has become unstable (i.e., the iteration is pushed away from this point).
B',; | In case of quadratic-iterator the notation £,(x) = ax(1—x) had been introduced so far as
a symbol for the set of typical-orbits with initial-values 0 < %o < 1 and parameter-values 1
< a < 3. The 2°"—order-composition £,(f,(x)) = £,%(x) called 2°*—iterate of T, now
considered too. The graph of £,%(x) is given by the 4™ —degree-polynomial £,%(x) =
a?x(1—x)(1—ax(1—x)) = (—a®*x*)+2a°x*—(a’+a®)x*+a?x. It has 4 fixed-
points {0, p,, x,(a), x,(a)}, these are the 2 fixed-points of T, and 2 elements of the 2—
eycle. The graphs of £,(x) and £,%(x) shall now be compared more systematically.

bifurcation // [ superatt -/

A~~~ N\

losing stability / biturcation /'/E siipet sifiactive /
! - H

el [
// \ \ \ / SN \

B a=1 P -

/ i i ¥

1
'

T T = AR T o
a=3 Py P, a=l+Vs Xy Pa *u

- " . Comparing f (top-left) and faz(top-right) Sfor
//\y\/ // \ a=(1A2).
/ k | \ \ ' Comparing {,(middle-left, . = 3) and
/. / P |\ £, 2(middle-right, a = 144/5).
4 / i\, Comparing £ (bottom-left, a = 3) and
) | £,%(bottom-right, a = 3.4496).

T T T
Py a=34495 ¥ Py Xy

By | It will be started at a = 1, which is the parameter where the fixed-point py = 0
of £,(x) becomes unstable and a new fixed-point p, = (a—1) /a begins to exist
(for 2. > 1). Here the graph of £,%(x) looks a bit lower and the fixed-points are
identical to those of £,(x). Then at a = s; = 2 one reaches the super-
attractive-case for £,(x). The new fixed-point p, and the critical-point X ,,, =
Y coincide. The graph of £,%(x) has now reached the same height, but its top
is almost flat.

By, | Ata = by = 3 the fixed-point p, for £,(x) looses its stability. Also for £,%(x)
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B2

1
B4

the fixed-point p, looses its stability, but here 2 new, additional fixed-points
begin to exist (for a. > 3), x,(a) and x,,(a). Note that the portion of the graph
which is enclosed be the dashed square looks like the graph of f,(x) fora = 1.
The bifurcation at by = 3 is called a period-doubling-bifucation, a fixed-point
becomes unstable and gives birth to a 2—cycle.

Blyss | Then at a = s, = 14/ 5 one obtains the super-attractive-case for £,7(x), the
fixed-point x,(2) and the critical-point X ;; = V2 are identical. For f,(x) does
this mean that iterating X ., for 2 steps leads back to X, again. If one increases
the parameter further to 3 = b, = 3.4495, the fixed-point x,(a) of ,%(x)
becomes unstable too. In other words, all the changes which one observes for
£,(x) while varying 1 < a < 3 can also be found for £,>(x) in parameter-
range a froma > 3 to a = b,,

B', 4 | Now one can guess what happens if one increases a beyond by. One will find
fixed-points of £,%(£,%(x)) which bifurcate-off from x,(a) and x,(a). This
composition of £,%(x) is nothing else but the A" —iterate of f,(x), ie.,

£, (F(F(F,(x)))), and will be written as £,*(x). The new stable fixed-points of
f.* are equivalent to the birth of a stable-cycle of period—A4 for £,. If one
increases the parameter 3, further, stability is lost again, which marks the birth
of a period—8—cycle for {, and so on. Again, the bifurcations are called period-
doubling-bifurcations. The periods of the attractive-cycles are 1, 2,4, 8, 16,
32 cesy 2 for n=10,1; 25 «u:.

The process establishes 2 sequences of important parameters. The paramelters 81, Sy, S3,-.
for which super-attractiveness of f,, faz, fa4,... is to be obtained. For these the critical-
point T, = Yo is a fixed-point of £, £,2, f.4,.. ect. The sequence by, by, bs,... of
parameter-values for which one has a period-doubling-bifurcation. it has been marked that
81 = 2, 85 =3.236..., by = 3 and by, = 3.44949..., where these sequences lead to the
FEIGENBAUM-point s,. The sequence of period-doubling-bifurcations will now be
discussed a bit further. It seems that the distance d, between 2 successive-bifurcation-points
d, = by, —by, k = 1,2,3,... decreases rather rapidly. This is also visible in the next

figures where the period-doubling-tree has been enlarged to show some more of its
bifurcation-poinis.

— | ]

e

Il

L
|

i

b, b, by b, ] by b,
T T R T T o T T O T Ty O T O T Ra T ATy [ T T AT e i T T ' T v ! T
3.5

Period-doubling-tree. Positions by,...,by

indicate that {(Da—by ) /{b3—Dby) =

(bs—bs)/ (bs—bs).

BY, .1 | A 1% guess would be that the decrease is geometric, i.e. that d, /d, , = 6. In
this case bifurcations b, would form a converging-sequence b, = b +d,(1+
1/6+ ...+1/8%?%), k=2, 3, ... with limit b,, = 8;+d;0/(8—1).
Unfortunately things are not that easy. The decrease in d, from bifurcation to
bifurcation is not exactly geometric but only approximately geometric (i.e. the
ratio 6, = d, /d, ., converges with increasing k), computations by
FEIGENBAUM resulted in lim,_,(8,) = 8 = 4.6692016091029....

Analysis at FEIGENBAUM-—Point and its surroundind Neighbourhood.

Self-similarity-features in the final-state-diagram of the quadratic-iterator had previously been discussed in
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B?,

B2,

connection with the figures (Bll_&l) . This kind of self-similarity is already contained in the period-doubling-
tree, ranging from a = 1 to a = s_. However, the self-similarity in either case is not strict; although the
branches look like small copies of the whole tree, there are parts, like the stem of the tree, which clearly do
not. Moreover, even the branches of the tree are not exact copies of the entire tree. Here one has to use the
term self-similarity in a more intuitive-sense without being precise.

For the period-doubling-tree is to be observed that the sequence of differences dy between the
parameters of the bifurcation-points is not precise-geometric. In other words, when one makes
close-ups as in figures (Bl,_ 3.1), scaling-factor slightly changes among the close-ups approaching &
= 4.669.... But this is only true for the scaling in horizontal-direction of parameter a.. With
respect to the vertical-direction one has to scale (in limit) with approximately 2.3.

scaling-factors d, /d, = 4.669. The vertical-range of the
coniplete tree is Vy and the range of upper main-branch
Vy. The ratio is vy /vy = 2.3. It is fo be noted that the
leaves of the tree form a strictly self-similur CANTOR-set.

I ’ Schematic-representation of period-doubling-tree with

d Pd i %

B2, | When comparing this tree with the origininal bifurcation-tree, the non-linear-distortion
becomes apparent. Here branches of the same stage are exactly the same. In the original
period-doubling-tree, branches have different sizes. Nevertheless, one can identify
corresponding branches.
B2, , | Also the leaves of the original-tree form a CANTOR-set. This happens right at the
FEIGENBAUM-point s.., where the final-state-diagram reaches a new stage with more
delicate situations than for parameter-values less than s...
For all parameters 3 < a < S, one will observe stable periodic-orbits as final-states. Now the
question arises, what kind of dynamics does one have for a = 8,2
B?,, | Symbolic-addresses for the branches and leaves of the period-doubling-tree shall now be
introduced similar to what had been done in figure (Bz 1) already. First one labels the
lower main-branch of the tree with L. = Low and the top-branch with H = High. When
the 2 branches split into A one labels the upper 2 parts with HH and HL and the lower 2
parts with L and LL. This is the 2 stage of the addressing-hierarchy. The branches of
the 3™ stage will obtain the labels HHH, HHL, HLH, HLL, LHH, LHL, LLH,
LLL. In general one will obtain 2*—sub-branches labelled with k—letter-addresses for
stage k. One can start now the dynamics of orbits on the CANTOR-set in terms of these
addresses.
B2, | Now, one can start discussing the dynamics of orbits on the CANTOR-set at the
FEIGENBAUM-point in terms of addresses. For all parameters a between by = 3 and
by = 3.4495 there is a stable periodic-oscillation of period—2. This is the
range of parameters where 1—letter-addresses are sufficient. Oscillations occur
between H—banches and Li—branches:
: b % Period—2—dynamics stage—
H s 1: H is mapped into L and L
)’\ { is mapped into H. Left
L SN diagram shows in form of
/ / \ CANTOR-construction
/s \ corresponding mapping of
/ / \
\ addresses on the 2 axes.

0

B2, | Next stage bo< a < bs which represents the oscillation between 4 different values. 2—
letter-addresses are needed:
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2
B?,

HH i

- : Period—A4—dynamics stage—2: HH — LL — HL —
/ . LH — HH.

LHfery g

LL b / 5 o i

! :

\ !

/ \

/ \

% 1

The same kind of arguments allows one to determine the address-sequences which describe orbits of
period 8, 16, 32, ... each one bifurcating from a 2*—cycle (with k = 2, 3, 4, ...). Infinite
address-sequences show transformations from points in the CANTOR-set (at FEIGENBAUM-point)
1o other points in the CANTOR-set. It describes the symbolic dynamics of the quadratic-iterator at
the FEIGENBAUM-point.

2
B,

2
B

2
B 3.3

A, may be the set of all k—letter-addresses (formed by H and L) and A, the set of all
infinite addresses. The dynamics of a periodic-orbit with respect to point-addresses is
described by a transformation f,: A, — Ay; for instance the 4—cycle can be described
by: f,(HH) = LL, f5(LL) = HL, £,(HL) = LH, f,(LH) = HH. This

transformation can be visualized as a stage—2—transformation-diagram in next figure:

HH

. The axes of this transformation-diagram are divided as
in a typical CANTOR-set-construction. in limit one will
""" S obtain a diagram visualizing the transformation f,: A,

— A as transformation of points of a CANTOR-set.

LH

LL

LL LH HL

For each stage, the axes of the transformation-diagrams are divided as in a fypical
CANTOR-set-construction. Thus, in limit one will obtain a diagram which visualizes the
transformation £ : A — A as a transformation of points of a CANTOR-set. The
refinement of the lower-right grey box of the stage—1—diagram (of (B?,.,) left) shall
now be discussed. In stage 3 it becomes apparent that here a diagonal of boxes begin (o
form. Thus, for the corresponding addresses starting with Il one get the transformation-
rule: f,(HX ;X 3X4...) = L(X3)"(X3)"(X4)"..., where X" = {(Hif X =L),(L
if X=H)}

Next, the refinement of the 2 upper boxes from stage—2—diagram (B2, ,) shall be
examined. The refinement of the left-most grey-box again leads to a diagonal of boxes:

HHH T - ar
HHL : #H-;- =5 ﬁT
HLH E .
HLL B el I
LHH &
LHL _‘ﬁ - N
B 2
LLH TE 5
LLL i -
wid 2 - T
(R

Graphs from above show the CANTOR-diagams for period—8 (left) for period—16

(middle) and period—32 (right).
Again one can write-down a transformation-rule, now for the addresses which start with
LL: £ (LLX3X  X5...) = HLX3X  X5.... The refinement of the top-most grey-box
is not simple, but even more striking since here self-similarity is built-in. In fact, the
refinement of this box shown in stage—3 is just a scaled-down copy of the stage—1—
diagram, and in general at stage—k this is a scaled-down copy of the complete stage for
the addresses which start with diagram at stage—(k—2). In limit this leads to the self-
similarity of the transformation-diagram for £ _: the graph of £ for the addresses which
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start with 1.H is a scaled-down-copy of the complete graph.

B2, | To compute the transformation of an address beginning with LHX ;X ;X ... one first
writes-down HH, then one drops the first 2 letters of the original address and applies £,
to the remaining letters, thus one obtains £ (X3 X, X5...). Finally one appends the
result of this evaluation to the initial letters HH.

B2, | At FEIGENBAUM-point the final-state of the iterator is given by an infinitely long non-
periodic orbit in a CANTOR-set which gets arbitrarily-close to every point of the
CANTOR-set.

B2, | Now it’s shall be turned to the self-similarity-features related to the change of dynamics as the
parameter a increases. For 1 < a < 3 one has just 1 attractive-fived-point at p, = (a—1/a) and
all orbits belonging to initial values between O and 1 converge to this atfractor.

B24_1 The way initial-vaiues are attracted changes at 3, = s, = 2 which marks the supper-
attractive case. For parameters below 8, initial-values are attracted directly monotonically
while for parameters above Sy the orbit spirals around the fixed-point.

B?,, | Ata = b, = 3 the fixed-point p, becomes unstable, and an attractive—2—cycle is born.
The old fixed-point p, continues to exist, but now has become a repeller. The 2—cycle
undergoes all changes which one could see for the fixed-point. Especially to be noted that
there is again the super-attractive case at a. = Sy. The 2—cycle finally becomes unstable
at a. = by, and everything is repeated for a A—cycle and so on.

B2, | At each period-doubling-bifurcation the dynamics of the iteration becomes more complex, though
the mechanism is always the same. This is related to the similarity of the graph f,(x) = ax(1—x)
(parabola) to sections of graphs of the iterated transformations £,%(x), £,%(x), £,%(x) and so on
at higher parameters a..

Al A , /\ : [“” \ ;}” {[ Singularity of parabola: f, (x)
/,/ f / A VS :""}5,// \j : and parts of the graph fsf(x)
/7’4 g ’ ] e ‘\1 | \/:u b" and £, *(x) at super-attractive-
V4 N e \ / 2 ~ parameters S,, Sy and Sg.
/ \\ ‘,// 19 !
0 10 10 1

B2, | One can make the similarity of the graphs even more apperent if one makes a close-up of
the squares outlined in the figures above. One enlarges the squares such that they maitch
the unit-square which encloses the whole graph.

Enlargements: similarity

j between the graphs £, (x)
/ . and close-ups of £, (x)
N\ 4 . and ', (z) (dotted
\ '

N squares in figure above).

1 0 (a) 0 (@)

B?.1.1 | Only the left graph is a parabola, the 2 others represent A" — and 8" —order
polynomials. It should be noted that when magnifying t2s,(x) the graph has
become also been flipped herizontally and vertically. If one does this for all
values s, and the corresponding fsm one will obtain a sequence of close-ups
settling-down on the graph of a new function f .

C | From Order to Chaos, the Mirror—Image.
It concerns the second part of the final-state-diagram, the parameter-range between the FEIGENBAUM-
poini a =8 and a = 4. This part of the diagram is called the chaotic mirror-image of periodic-doubling
-tree. There are features of period-doubling of the 1% part of the final.-state-diagram (though in reverse
order). However, while in 1% part of the diagram for each parameter a one exactly can predict what the
dynamics are, here (where chaos reigns) it becomes more complicated.
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Final-state-diagram of the quadratic-iterator: Part—2.

0 R L I I L U

Seo 38 4

C, | The situation for parameter-value 2. = 4 had already been investigated previously in chapter (A). This
is region where the graph of f,(x) = ax(1—x) spans the unit-square and chaos can be observed in
the whole unit-interval. In final-state-diagram this is represented by the randon-looking distribution of
dots which vertically span the range between 0 and 1.

C, | This kind of chaotic-dynamics is not present for all parameters in the 2% —part of the diagram.

C,, | Chaos seems to be interrupted by windows of order where the final-state again collapses to
only a few points, corresponding fo attractive-periodic orbits.

C,, | Additionally there seems to be an underlying-structure of bands resulting from points not
being uniformly-distributed in each vertical-line. Points seem to condense af certain lines
which border bands that encapsulate the chaotic-dynamics.

C,, | Fora = 4 there is only 1 band spanning the whole unit-interval. As parameter a decreases
this band slowly narrows. Then at a parameter labelled with 1y, it splits-into 2 parts; and at a.
= m, the 2 bands split-into 4 parts:

t 1

0.725

g oy 0
T IEERA RN R [BEERE LR TTTTT [ IEE R RN ¥ ¢ v FrA— g T T .
5 oo 38 4 Seo 3.6 3.65 !

C,.4 | If one magnifies the diagram between the parameters S, and 10, at the window shown in
figure (C, 3), more band-splitting-points can be found. In fact, there is an infinite,
decreasing sequence of parameters Iy, My, M3, ... at which one observes the splitting into
2,4,8, ... (in general 2%) bands. This can be interpreted as another consequence of the self-
similarity of final-state-diagram at the FEIGENBAUM-point, because this sequence leads
exactly to the FEIGENBAUM-point 8,, = 1.

C,uy | As shown in [Ref.2] the band-merging-points obey a growth-law d,, = 10, —10y
similar to what had already been found for the sequence of the super-attractive-
parameters and parameters of the period-doubling-bifurcation-points in the 1% part
of final-state-diagram. Furthermore, it could be confirmed that the ratio
dk/dk+1 converges to the unversial-constant 5 = 4.669... as the number k
decreases.

C, | What kind of change lies hidden behind the band-splitting (or band-merging)? The following graphs
show a typical time-series of an orbit £, for the parameter a. = 3.67, which is slightly below a = m,
= 3.6785.

L

Ll il L = i
UMY R | V727
\ ”

i‘! . V[\»W\/\/’\J \A \

LSS T - i

Udo E. Steinemann, “Possible Transition from Order into Chaos and vice versa”, 17-Feb-2025.

22




Csa

Although the dynamics behave chaotically, it oscillates from step to step back and forth
between 2 distinct bands (left graph). In other words, if one looks at the dynamics of fa2 one
sees points only moving chaotically either in the upper or in the lower band (vight graph). In
summary, the 1°* band-splitting is also a kind of period-doubling-bifurcation.

Again f, and T, 2 shall be compared by using graphical-iteration. Next figure shows the resulf for a =
4 (lef 1) and a = my = 3.6785 (right):

A "";’ - "\‘“"""”"“"’“""/ \’ o \ _ chags parabola..
. Y ~ /N
‘ \\ >/ ) \ / N \ /4 A
el \ / / \\ i \ P A \.\ ‘
A % i z ] \ b
¥ o b i \ Y
/ / \ AN \ /1
/ / / i N \
/ ) e 4 |
4 \ // o / k
chaos parabola a=4 X it p‘a e x‘ 1 I"a ’! h

The parabola in the lefi-left graph Ax(1—x) is called generic-parabola. Genertc—parabolas
are characterized by the fact that their graphs precisely fits into a square which has one of ifs
diagonals on the bisector of the (X,y ) —coordinate-system.

It should be noted that for a = m, = 3.6785 a generic-parabola in £,” could also be found
(the right-right graph above). However, this is not quite correct, because ff is not really a
parabola, but rather a 4™ degree polynomial having a graph that only looks parabolic in the
outlined region enclosed by the dashed square.

Cys.1 | Once the iteration of fml2 has led into this region it is trapped, and it is expect fo see
chaotic-behaviour which spans the interval (1 /a, (a—1)/a). This corresponds to
the lower-band visible in the final-state-diagram right at a = m. The upper-band
corresponds to the part of the graph of fa2 enclosed by the small dotted square. Also
in this region the iteration is trapped and spans the interval ((a—1) /a, a/4).

Now it can be guessed what the situation for all other parameters a = m_will be. In all these
case one will find a generic-parabola (i.e. in the graphs of T, fmss, . (i=a=
2, 3,4, ...). Of course this explains what one sees at the specml pammeters a=m_ Onthe
other hand it seems possible to trace these bands in between. Somehow they shine through the
whole 2°° part of the final-state-diagram: there is a mechanism behind this observation. Next
figure shows the graphical-iteration of a few initial values whicl had been chosen to be
equally-spaced near 0 5

i

Initial-values near 0.5: graphical-iteration
of some equally-spaced initial-values near
0.5. The first 3 iterates condense at v, =
B £,(0.5), f,(v,) and £,%(v,).

VU

For each initial-value 3 iterations have been performed and the corresponding
outcome has been drawn on the right side of the graph. If can be noted that the
iterations never leaves the outlined square (i.e. the points of the final-state-diagram
have to be within the interval between the critical-value v, = £,(0.5) and £,(v,)).
Furthermore, is to be observed that the values of the iteration condense a bit at
these points. This happens because the parabola has its vertex at 0.5 which
squeezes nearby orbits together. In the histogram, one thus can expect a spike ai v,
= £,(0.5). Moreover, there should be another spike at the next iterate £,(v,) =

£.2(0.5), and also at the following one, £,°(v.), and so on. For a = 4, however,
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v, = 1 and all further iterates are 0. Thus, it is reasonable to expect only the 2
spikes at O and 1. For a = m,, on the other hand, one has f,*(v,) = p, = (a—

1) /a, the fixed-point of {, and all futher iterates are the same. Therefore, there
should be 3 spikes at v, £,(v,) and £,%(v,) = p,.

Cyqs | In summary, this leads to the conjecture that what one sees shinning through as
lines of condensation in figures (C) and (C,) could be the trace of the iterates of
the critical-value v ,.

C; | Next figure shows an experiment which confirms the conjecture. The first 8 iterates of 0.5 have been

computed for the parameter-range s, < a < 4.
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Cs.1 | The left plot shows the first 4 iterares (i.e., v, to £,3(v,)). These lines apparently correspond
to the main-bands which shine through the final-stare-diagram in figures (C) and {Cu).
The right plot shows all 8 iterates exhibiting more of the relation to finer band-structures.
Although these critical-lines (i.e., the iteration fak(va) of the critical-value v ,) explain the
perception of the band-structure in the final-state-diagram, this dores not mean that the
complete lines as shown are part of the final-state. The final-states are bound by these lines,
but one can see that from a certain parameter-value (about a = 3.82843) the final-states
consist of a stable attracting periodic-cycle of which only 1 point is shown in next bow-up.
Cq | In fact, this blow-up shows a small part of the white windows which interrupt the chaotic-region of the
final-state-diagram. There are an infinite number of such windows, which all correspond to stable
periodic-cycles. The one between a. =~ 3.828 and a ~ 3.857 is the most prominent one; it is the so-
called period—3—window. Not only this window has been indicated in next figure but also the windows

of period—5, period—T and period—6:
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Windows of periodicity: Starting with the
period—3—window at a ~1+4/8 = 3.8284
down to period—G—window.
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The period-3—window shall first be examined a bit further. The bottom-part of the above
figure shows 2 successive close-ups of the part which is marked by the black-frame. Again

one will discover self-similarity. One sees smaller and smaller copies of the whole final-state-
diagram. And indeed, one can find the complete scenario of the period-doubling-chaos and
band-splitting again, however on a much smaller scale. And again, the mechanisms behind
this are the same as before. There is only one important difference, instead of £,(x),
everything is based now on £,%(x).

Period-doubling begins when the 3 fixed-points of fa3(x) loose their stability and 6 new fixed-
points of faﬁ(x) are born (i.e., for £, one has a 6—cycle). As a increases further, each

of the stable-fixed-points of £,8 will undergo a period-doubling-bifurcation (i.e., for T, one will
obtain attracting-cycles of lenghth 3-22), and so on. The relative-length of the interval for
which these stable-cycles exist will be governed once more by universal-number 6=
4.669.... At the end of this period-doubling-scenario, near 3 = 3.8415..., there will again
be a transition to chaotic behaviour very much like that at the FEIGENBAUM-point S,

By taking a close look at some graphs of fa3, the following figure for the super-attractive-case
can be drawn:
N o "
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Graph of the 3™ iterate £, of £,,.
Left super-attractive-case. Right
fully developed chaos.

okl |
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Cqs, | At the centre again one observes a segment which looks like a small parabola.
Indeed, the changes of this small part are responsible for the complete scenario of
the period-doubling which ends at a ~ 3.857 in fully developed chaos as itis
shown in the centre-part of figure (Cg). The corresponding graph of £, is shown

on the right hand side of figure (Cg 3). And indeed, at the centre a generic-
parabola is visible.

Cs.ao | If one magnifies any of the other periodic-windows, one will make exactly the same
findings, but everything will be on an even smaller scale. In fact, between the
period—3—window and the band-merging-point 1, there are an infinite number of
windows for all odd integers 3, 5,7, 9, 11, .... which can be found in reversed
order. But as the period increases the size of these windows rapidly decreases.

At left part of figure (Cs(top)) enclosed in a dashed rectangle, one can find everything once
again, but now with a double period. In other words, it starts with a period—6—window, then
one finds a period—10—window, ect. In general, in this step one will find windows of period—
(2+k), for all odd integers k > 3.

All windows mentioned under (Cg) are contained as parts in bands resulting from splittings at
points 8, = 1y, My, Mg, .... But only these latter bands are crucial in a discussion about a
continous, geometrical transition between 1% part of the final-state-diagram and its mirrored
image at FEIGENBAUM-point S,. The various windows contained in these bands will only
have an influence on the dynamics within the bands.

C, | The decreasing sequence of band-splitting-points M, My, Mg, ... (mentioned in (C,.4) and (Cy.44)
above) and the increasing sequence of bifucation-points by, by, bs, ... (described in {B13_4)‘ and
(Blg_ 1) during 1% part of the final-state-diagram) converge in an identical manner from both sides
towards the FEIGENBAUM-point S.,. From this fact one may guess that the CAN’ TOR-set at s, will
enable geometrical continuity (a < s,,) 2 (5, > a).

C., | The band organating from the chaos-region of the quadratic-iterator at a = 4 splits into 2

sub-bands at a. = 1. The upper one of these sub-bands may be named H (for high) and the
lower one may be called L (for low). Following this naming-convention Sfurther on, newly
oenerated bands at 3 = M, will have to be designated then by HH, HL., LH and LL ( from
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fop to bottom). As one finally symbolically addressed all bands due to band-splitting-points m,
withk = 1, 2, 3, ... this way, the sequence m,, will lead one exactly to the limitm,, = s,.
Moreover in [Ref.2] it could be verified that the ratio d, /d,.,, converges to the universal-
constant § = 4.669... as the number k increaes. Thus, in horizontal direction one obtains
same conditions as under (B?,) and (B2, ,).

Cy, | As shown in next graph, there will be no vertical discontinuity at s, for the parameter-
variation (a < s,,) 2 (S, > a). This means, also the scaling with respect to the vertical
direction one has to scale (in limit) with approximately 2.3, similar as under (le) and
(B%.)-

Final-state-diagram for
L the quadratic-iterator and
parameter 3 between 2.8
and 4.
3

Crs | Thus, geometrically speaking it doesn’t matter which direction (a < s,) = (s, > a) one
will cross the FEIGENBAUM-point. But the dynamics is highly dependend on the cross-over-
direction, because in the 1** part of the final-states are only effected by period-doublings, while
in the mirror-image-part of the diagram complicated interactions between various band-types
take place.
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