A Geometric Algebra (GA) Solution to a Multiple-Tangency Problem

February 17, 2025

James Smith LinkedIn group "Pre-University Geometric Algebra" https://www.linkedin.com/groups/8278281/

Abstract

Using GA's capacities for formulating reflections, we solve an interesting multiple-tangency problem. The solution is obtained in two ways, the easiest of which transforms the relevant reflections into a single rotation. The solution is validated via a GeoGebra worksheet.

The two small circles are congruent. What is the ratio b/a?

1 Statement of the Problem

Fig. 1 Shows the problem statement ([1], [2]).

Figure 1: Problem statement: The two small circles are congruent. What is the ratio b/a?

2 Ideas that We Will Use

See also Macdonald [3].

- 1. Two multivectors A and B are equal if and only if all of their respective parts of equal grade are equal to each other. For example, in the case of two vectors \mathbf{u} and \mathbf{v} , if $\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \wedge \mathbf{v} = \alpha + \beta \mathbf{B}$, where α and β are scalars, and $\beta \mathbf{B}$ is a bivector, then $\mathbf{u} \cdot \mathbf{v} = \alpha$, and $\mathbf{u} \wedge \mathbf{v} = \beta \mathbf{B}$.
- 2. We will use Macdonald's definitions for the inner and outer product ([3], p. 101). In the case of vectors, $\mathbf{u} \cdot \mathbf{v} = \langle \mathbf{u} \cdot \mathbf{v} \rangle_0$, and $\mathbf{u} \wedge \mathbf{v} = \langle \mathbf{u} \cdot \mathbf{v} \rangle_2$.
- 3. The reflection of a vector \mathbf{q} with respect to vector \mathbf{t} can be written as the product \mathbf{tqt}^{-1} , which is equal to $[\mathbf{tqt}]/||\mathbf{t}||^2$.

Thus, the reflection of ${\bf q}$ with respect to $\hat{\bf t}$ is $\hat{\bf t} {\bf q} \hat{\bf t}$.

- 4. Products of unit vectors as rotation operators. (See Fig. 2.) The product $\hat{\mathbf{p}}\hat{\mathbf{q}}$ of two unit vectors $\hat{\mathbf{p}}$ and $\hat{\mathbf{q}}$ rotates (without dilation) any vector \mathbf{v} that is parallel to the plane that contains $\hat{\mathbf{p}}$ and $\hat{\mathbf{q}}$.
 - (a) $\mathbf{v}(\hat{\mathbf{p}}\hat{\mathbf{q}})$ evaluates to the rotation of \mathbf{p} by the bivector angle from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$.
 - (b) $(\hat{\mathbf{q}}\hat{\mathbf{p}})\mathbf{v} = \mathbf{v}(\hat{\mathbf{p}}\hat{\mathbf{q}}).$
 - (c) Therefore,

$$\begin{split} \left(\hat{\mathbf{q}} \hat{\mathbf{p}} \right) \mathbf{v} \left(\hat{\mathbf{p}} \hat{\mathbf{q}} \right) &= \left[\left(\hat{\mathbf{q}} \hat{\mathbf{p}} \right) \mathbf{v} \right] \left(\hat{\mathbf{p}} \hat{\mathbf{q}} \right) \\ &= \left[\mathbf{v} \left(\hat{\mathbf{p}} \hat{\mathbf{q}} \right) \right] \left(\hat{\mathbf{p}} \hat{\mathbf{q}} \right), \end{split}$$

which evaluates to the rotation, twice, of **v** through the bivector angle from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$. Or equivalently, through the double of the bivector angle from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$.

(d) The product $\hat{\mathbf{p}}\hat{\mathbf{q}}$ is by definition $\hat{\mathbf{p}}\cdot\hat{\mathbf{q}}+\hat{\mathbf{p}}\wedge\hat{\mathbf{q}}$. It can also be written in the "trigonometric" form $\cos\theta + \mathbf{i}\sin\theta$, where θ is the angle of rotation from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$. (The equivalent exponential form is $e^{\mathbf{i}\theta}$.) Equating the scalar parts of $\hat{\mathbf{p}}\cdot\hat{\mathbf{q}}+\hat{\mathbf{p}}\wedge\hat{\mathbf{q}}$ and $\cos\theta + \mathbf{i}\sin\theta$, we have $\cos\theta = \hat{\mathbf{p}}\cdot\hat{\mathbf{q}}$. Equating the bivector parts, we have $\mathbf{i}\sin\theta = \hat{\mathbf{p}}\wedge\hat{\mathbf{q}}$, from which $\sin\theta = -\mathbf{i}(\hat{\mathbf{p}}\wedge\hat{\mathbf{q}})$.

Figure 2: The product $\mathbf{v}(\hat{\mathbf{p}}\hat{\mathbf{q}})$ evaluates to the rotation of \mathbf{p} by the bivector angle from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$. The product $[\mathbf{v}(\hat{\mathbf{p}}\hat{\mathbf{q}})](\hat{\mathbf{p}}\hat{\mathbf{q}})$ evaluates to the rotation, twice, of \mathbf{v} through the bivector angle from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$. Or equivalently, through the double of the bivector angle from $\hat{\mathbf{p}}$ to $\hat{\mathbf{q}}$.

Or more correctly, any vector ${\bf v}$ that is parallel to the bivector $\hat{\bf p} \wedge \hat{\bf q}$. Macdonald ([3], p. 98) presents a set-theoretic definition as well.

3 Analysis of the Problem, and Initial Formulation

Because GA is particularly suited to formulating/manipulating rotations and reflection, we analyze and formulate the problem in those terms (Fig. 3). Note, too, that we use the similarity of triangles to derive the relation $(a + 2r) / (a - 2r) = (\sqrt{a^2 + 4b^2}) / a$, where r is the radius of the two small circles (Fig. 3).

Figure 3: Diagram for exploration, analysis, and initial formulation. We can see that ray \overrightarrow{BE} is the reflection of ray \overrightarrow{BD} with respect to ray $\overrightarrow{BC_2}$, and that \overrightarrow{BE} is also the reflection of ray \overrightarrow{BA} with respect to ray $\overrightarrow{BC_1}$. In addition, from the similarity of triangles $\triangle C_1 \mathcal{O}F$ and $\triangle B\mathcal{O}A$, $\frac{C_1\mathcal{O}}{\mathcal{O}F} = \frac{B\mathcal{O}}{\mathcal{O}A}$, from which $\frac{a/2+r}{a/2-r} = \frac{\sqrt{(a/2)^2 + b^2}}{a/2}$. That relation can be simplified to $\frac{a+2r}{a-2r} = \frac{\sqrt{a^2+4b^2}}{a}$.

4 Solution Strategy

In Fig. 3, we have already identified a relationship between a, b, and r from similarity of triangles. We will derive a second, independent relationship between a, b, and r from the reflection relationships shown in Fig. 3. After eliminating r from that pair of equations, we will find the ratio b/a.

5 Final Formulation

To implement our solution strategy, we formulate the problem as shown in Fig. 4.

Figure 4: Formulation in GA terms. We define two vectors: $\mathbf{w} = \frac{a}{2}\hat{\mathbf{a}} + b\mathbf{a}\mathbf{i}$, and $\mathbf{z} = (a - r)\hat{\mathbf{a}} + r\mathbf{a}\mathbf{i}$. The vector $\hat{\mathbf{s}}$ is the reflection of $\hat{\mathbf{a}}$ with respect to \mathbf{z} , and is also the reflection of $\hat{\mathbf{a}}\mathbf{i}$ with respect to \mathbf{w} . Thus, $\hat{\mathbf{z}}\hat{\mathbf{a}}\hat{\mathbf{z}} = \hat{\mathbf{w}}(\hat{\mathbf{a}}\mathbf{i})\hat{\mathbf{w}}$. Also shown, for convenience, is the angle ϕ , to which we will refer later.

We define two vectors:

$$\mathbf{w} = \frac{a}{2}\hat{\mathbf{a}} + b\mathbf{a}\mathbf{i}, \text{ for which } \|\mathbf{w}\|^2 = \frac{a^2}{4} + b^2, \text{ and}$$

$$\mathbf{z} = (a-r)\hat{\mathbf{a}} + r\mathbf{a}\mathbf{i}, \text{ for which } \|\mathbf{z}\|^2 = (a-r)^2 + r^2.$$
(5.1)

We also have two independent equations in a, b, and r:

$$\frac{a+2r}{a-2r} = \frac{\sqrt{a^2+4b^2}}{a}$$
(5.2a)

$$\hat{\mathbf{z}}\hat{\mathbf{a}}\hat{\mathbf{z}} = \hat{\mathbf{w}}\left(\hat{\mathbf{a}}\mathbf{i}\right)\hat{\mathbf{w}}.$$
 (5.2b)

6 Solution

6.1 Derivation of a relation between a, b, and r

Starting from Eq. 5.2, we will derive a relation between a, b, and r in two different ways.

6.1.1 First Method: Substitution into Eq. (5.2)

We begin by substituting our expressions for \mathbf{w} and \mathbf{z} (Eqs. 5.1) into Eq. 5.2. Because the product of any three coplanar vectors evaluates to a vector, each side of the equation $\hat{\mathbf{z}}\hat{\mathbf{a}}\hat{\mathbf{z}} = \hat{\mathbf{w}}(\hat{\mathbf{a}}\mathbf{i})\hat{\mathbf{w}}$ is a vector. By substituting our expressions for for \mathbf{w} and \mathbf{z} into that equation, we transform each side into a linear combination of $\hat{\mathbf{a}}$ and $\hat{\mathbf{a}}\mathbf{i}$. Then, we use the fact that $\hat{\mathbf{a}}$ and $\hat{\mathbf{a}}\mathbf{i}$ are perpendicular to each other to derive an equation for r in terms of a and b.

More specifically, we will first obtain an equation for r by equating $\hat{\mathbf{a}}$ terms, after which we will verify that equation by deriving it by equating $\hat{\mathbf{a}}$ terms.

First, we transform Eq. (5.2) slightly:

$$\hat{\mathbf{z}}\hat{\mathbf{a}}\hat{\mathbf{z}} = \hat{\mathbf{w}} \left(\hat{\mathbf{a}}\mathbf{i}\right)\hat{\mathbf{w}}$$
 $\frac{\mathbf{z}\hat{\mathbf{a}}\mathbf{z}}{\|\mathbf{z}\|^2} = \frac{\mathbf{w}\left(\hat{\mathbf{a}}\mathbf{i}\right)\mathbf{w}}{\|\mathbf{w}\|^2}$

Now, making our substitutions for \mathbf{z} , \mathbf{w} , $\|\mathbf{z}\|^2$, and $\|\mathbf{z}\|^2$,

$$\frac{\left[\left(a-r\right)\hat{\mathbf{a}}+r\mathbf{a}\mathbf{i}\right]\hat{\mathbf{a}}\left[\left(a-r\right)\hat{\mathbf{a}}+r\mathbf{a}\mathbf{i}\right]}{\left(a-r\right)^{2}+r^{2}}=\frac{\left[\frac{a}{2}\hat{\mathbf{a}}+b\mathbf{a}\mathbf{i}\right](\hat{\mathbf{a}}\mathbf{i})\left[\frac{a}{2}\hat{\mathbf{a}}+b\mathbf{a}\mathbf{i}\right]}{\frac{a^{2}}{4}+b^{2}}$$

After cross-multiplying, expanding, and simplifying, we arrive at

$$\left[\frac{a(a-2r)}{(a-r)^2+r^2}\right]\hat{\mathbf{a}} + \left[\frac{2r(a-r)}{(a-r)^2+r^2}\right]\hat{\mathbf{a}} = \left[\frac{4ab}{a^2+4b^2}\right]\hat{\mathbf{a}} + \left[\frac{4b^2-a^2}{a^2+4b^2}\right]\hat{\mathbf{a}}\hat{\mathbf{i}}.$$
 (6.1)

Now, we equate the $\hat{\mathbf{a}}$ coefficients of the two sides, thereby obtaining

$$\left[\frac{a\left(a-2r\right)}{\left(a-r\right)^{2}+r^{2}}\right] = \left[\frac{4ab}{a^{2}+4b^{2}}\right]$$

From this equation, we obtain the following quadratic in r:

$$8br^{2} + 2(a - 2b)^{2}r - a(a - 2b)^{2} = 0,$$

whose two roots are $r = \frac{a}{2} - b$, and $r = \frac{a}{2} - \frac{a^2}{4b}$. From Fig. 4, we can see that $r = \frac{a}{2} - b$ is a negative number. Therefore,

$$r = \frac{a}{2} - \frac{a^2}{4b}.$$
 (6.2)

To validate that result, we also solve for r by equating the $\hat{\mathbf{a}}\mathbf{i}$ coefficients of both sides of Eq. (6.1)

$$\frac{2r(a-r)}{(a-r)^2+r^2} = \frac{4b^2-a^2}{a^2+4ab}.$$

Formally, we take the inner product of both sides with $\hat{\mathbf{a}}$, taking advantage of the fact that $\hat{\mathbf{a}} \cdot (\hat{\mathbf{a}}\hat{\mathbf{i}}) = 0.$

An additional argument for the uniqueness of the solution $r = \frac{a}{2} - \frac{a^2}{4b}$ is that as we will now see, this root is the only one that makes the $\hat{a}i$ coefficients equal, as well as the \hat{a} coefficients.

After cross-multiplying, expanding, and simplifying, we arrive at

$$16b^2r^2 - 16ab^2r + a^2\left(4b^2 - a^2\right) = 0,$$

which has the roots

$$r = \frac{a}{2} \pm \frac{a^2}{4b}.$$

Because the radius r cannot be larger than $\frac{a}{2}$, the root $\frac{a}{2} + \frac{a^2}{4b}$ is impossible. Therefore, as in Eq. (6.2), $r = \frac{a}{2} - \frac{a^2}{4b}$.

6.1.2 Second Method: Transforming Eq. (5.2) into a Rotation of â

This method uses the "rotation operator" properties of products of unit vectors. We begin by transforming Eq. 5.2:

$$\begin{split} \hat{\mathbf{z}} \hat{\mathbf{a}} \hat{\mathbf{z}} &= \hat{\mathbf{w}} \left(\hat{\mathbf{a}} \mathbf{i} \right) \hat{\mathbf{w}} \\ \hat{\mathbf{w}} \hat{\mathbf{z}} \hat{\mathbf{a}} \hat{\mathbf{z}} \hat{\mathbf{w}} &= \hat{\mathbf{w}} \hat{\mathbf{w}} \left(\hat{\mathbf{a}} \mathbf{i} \right) \hat{\mathbf{w}} \hat{\mathbf{w}} \\ \left[\left(\hat{\mathbf{w}} \hat{\mathbf{z}} \right) \hat{\mathbf{a}} \right] \hat{\mathbf{z}} \hat{\mathbf{w}} &= \hat{\mathbf{a}} \mathbf{i} \\ \left[\hat{\mathbf{a}} \left(\hat{\mathbf{z}} \hat{\mathbf{w}} \right) \right] \hat{\mathbf{z}} \hat{\mathbf{w}} &= \hat{\mathbf{a}} \mathbf{i}. \end{split}$$

Next, we recognize that $\hat{\mathbf{a}}\mathbf{i}$ is the rotation of $\hat{\mathbf{a}}$ by $\pi/2$ in the sense of \mathbf{i} , and that $[\hat{\mathbf{a}}(\hat{\mathbf{z}}\hat{\mathbf{w}})]\hat{\mathbf{z}}\hat{\mathbf{w}}$ is the rotation of $\hat{\mathbf{a}}$ by twice the angle of rotation (call it ϕ) from $\hat{\mathbf{z}}$ to $\hat{\mathbf{w}}$ in the sense of \mathbf{i} . Thus, $\phi = \pi/4$.

We can express this reasoning in exponential form by writing $\hat{a}e^{i2\phi} = \hat{a}e^{i\pi/2}$, from which $\phi = \pi/4$.

Now, we equate the expansion of $\hat{\mathbf{z}}\hat{\mathbf{w}}$ to the trigonometric form of that product:

$$\hat{\mathbf{z}} \cdot \hat{\mathbf{w}} + \hat{\mathbf{z}} \cdot \hat{\mathbf{w}} = \cos \phi + \mathbf{i} \sin \phi.$$
(6.3)

Because $\phi = \pi/4$, $\cos \phi = \sin \phi$. Therefore, making use of the ideas that we reviewed in Section 2, our derivation is as follows:

$$\cos \phi = \sin \phi$$

$$\hat{\mathbf{z}} \cdot \hat{\mathbf{w}} = -\mathbf{i} \{ \hat{\mathbf{z}} \wedge \hat{\mathbf{w}} \}$$

$$\mathbf{z} \cdot \mathbf{w} = -\mathbf{i} \{ \mathbf{z} \wedge \mathbf{w} \}$$

$$\langle \mathbf{z} \mathbf{w} \rangle_0 = -\mathbf{i} \langle \{ \mathbf{z} \mathbf{w} \} \rangle_2$$

$$\langle [(a-r) \hat{\mathbf{a}} + r\mathbf{a}\mathbf{i}] \left[\frac{a}{2} \hat{\mathbf{a}} + b\mathbf{a}\mathbf{i} \right] \rangle_0 = -\mathbf{i} \langle \left\{ [(a-r) \hat{\mathbf{a}} + r\mathbf{a}\mathbf{i}] \left[\frac{a}{2} \hat{\mathbf{a}} + b\mathbf{a}\mathbf{i} \right] \right\} \rangle_2$$

$$\frac{a}{2} (a-r) + br = -\mathbf{i} \left\{ \left[b (a-r) - \frac{a}{2}r \right] \mathbf{i} \right\}$$

$$\frac{a}{2} (a-r) + br = b (a-r) - \frac{a}{2}r$$

$$\therefore r = \frac{a}{2} - \frac{a^2}{4b} \qquad (6.4)$$

Figure 5: A careful examination of this figure confirms that $b = \frac{2a}{3}$, and $r = \frac{a}{8}$.

7 The result: $b = \frac{2a}{3}$, and $r = \frac{a}{8}$

Substituting the result $r = \frac{a}{2} - \frac{a^2}{4b}$ in Eq. (5.2), we obtain

$$=\frac{2}{3}a.$$
 (7.1)

Thus we also find that $r = \frac{a}{8}$. These results are confirmed by Fig. 5.

b

References

- [1] "Two Moons" mirangu.com/two-moons
- [2] "What's Special in this Geometry Problem?" https://www.youtube.com/watch?v=kQUaLNHSYVg
- [3] A. Macdonald, *Linear and Geometric Algebra* (First Edition), CreateSpace Independent Publishing Platform (Lexington, 2012).