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Cyclic representation of the Dirac equation 
Sergey Y. Kotkovskiy 

 
A new representation of the Dirac equation is obtained based on the chiral algebra of 
biquaternions we developed. Our formulation of this fundamental equation combines in a 

certain way the direct and reverse operators of 4-gradients acting on the right and left 

chiral components of the particle wave function, as well as the cyclic transformation 

operator acting on the entire wave function of the particle. The resulting representation 
allows us to see in the Dirac equation the connection between linear and cyclic times, while 

the chiral algebra used in this approach provides new methods for studying the relativistic 

physics of spin. An analog of the Lorentz transformation, a new rotation transformation is 
derived, that creates the proper rotation of a massive particle. It is shown that the cyclic 

transformation included in our representation of the Dirac equation is expressed via 

complex-valued Hadamard matrix, which indicates the connection of the Dirac equation 

with known algorithms of noise-resistant information transmission. 

Keywords: Dirac equation, biquaternions, nullquaternions, isotropic basis, chiral algebra, skew symmetry, 
chirality, cyclic representation,  cyclic conjugation, Hadamard matrices, spin, rotation transformation. 
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Introduction. 

The Dirac equation, defining the relativistic wave function, occupies a central place in 

quantum field theory [1]. This equation describes the wave functions of elementary particles of 

half-integer spin. The Dirac equation is usually derived by factorizing the Klein-Gordon equation. 

The meaning of the latter equation is that the square of the mass plays the role of an eigenvalue of 

the square of the energy-momentum operator. 

Previously, other authors obtained biquaternion representations of the Dirac equation 

[5][6]. In [8] a form of this equation in spinors composed of split quaternions was derived. In the 

current article, we present a new biquaternion formulation of the Dirac equation, which is 

fundamentally different from the representations obtained in the mentioned above works. 

 Our article is divided into two main parts. The first part, mathematical, is called "Chiral 

Algebra". It is devoted to the construction of new methods of biquaternion algebra using isotropic 

basis of biquaternion space based on nullquaternions. Here we introduce previously unknown 

methods of biquaternion multiplication and conjugation, and also define types of biquaternions 

with special projectivity properties. In the second, physical, part of the article, "Dirac Equation", on 

the basis of chiral algebra, we obtain a new representation of the Dirac equation. Our formulation of 

this fundamental equation combines the direct and reverse linear gradient operators acting on the 

right and left chiral parts of the particle's wave function, with the cyclic transformation operator 

acting on the entire particle's wave function.  
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Part 1. Chiral algebra. 
 

1.1. Biquaternions. 

 

Biquaternions were discovered by W. Hamilton following his discovery of quaternions, as a 

complex-valued extension of the latter [9]. L. Silberstein clarified the central role played by 

biquaternions in relativistic theory, or the theory of united space-time [10]. He also introduced the 

most convenient and intuitive scalar-vector representation of biquaternions. In the scalar-vector 

representation biquaternions have the form [2][7]: 

 ℬ = (𝑠, 𝐮), 𝑠 ∈ ℂ, 𝐮 ∈ ℂ𝟑 (1) 

As a rule, we will denote biquaternions in capital letters of the Latin alphabet, while scalars and 

vectors by small letters. As follows from the definition ((1), a biquaternion ℬ is a pair consisting of a 

complex number 𝑠, called a scalar, and a complex-valued three-dimensional vectorа  𝐮.  s and u are 

the scalar and vector parts of the biquaternion ℬ respectively. The sum of two biquaternions is 

calculated componentwise, separately for the scalar and для vector parts.  Common, or outer, 

product of two biquaternions ℬ1 = (𝑠1 , 𝐮1) and  ℬ2 = (𝑠2, 𝐮2) is calculated according to the 

formula: 

 ℬ1ℬ2 = ℬ1⨀ℬ2 = (𝑠1𝑠2 + 𝐮1 ⋅ 𝐮𝟐,  𝑠1𝐮2 + 𝑠2𝐮1 + 𝑖𝐮1 × 𝐮2 ), (2) 

where 𝐮1 ⋅ 𝐮2 , 𝐮1 × 𝐮2 are the scalar and vector products of vectors 𝐮1and, 𝐮2 respectively, 𝑖 is the 

imaginary unit. Unlike other types of biquaternion products, which will be discussed below, for the 

ordinary, or outer, product we will use both equivalent notations ℬ1ℬ2 and ℬ1⨀ℬ2. The outer 

product of biquaternions, same way as other types of their products introduced below, is non-

commutative – it depends on the order of the multipliers. 

An arbitrary complex vector 𝐮 ∈ ℂ𝟑 is a special case of a biquaternions whose scalar part is 

zero: 

 𝐮 =  𝐀 + 𝑖𝐁,    𝐀, 𝐁 ∈ ℝ3  (3) 

Complex conjugate of the biquaternion ℬ = (𝑠, 𝐮) has the form: 

 

  ℬ∗ = (𝑠∗, 𝐮∗)  (4) 

Complex conjugate of biquaternions corresponds to Hermitian conjugate of matrix algebras (see 

приложение Ошибка! Источник ссылки не найден.). 

 

Vector conjugation1 of the biquaternion ℬ = (𝑠, 𝐮)  has the form: 

 

                                                             
1 The conjugation referred here as "vector" is often simply called conjugation or "biquaternionic conjugation". 
We use the name "vector conjugation" to clearly distinguish this type from other types of biquaternion 
conjugation. 
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 ℬ̅ = (𝑠, −𝐮)  (5) 

Simultaneous application of complex and vector conjugates gives double conjugation of the 

biquaternion: 

 ℬ̅∗ = (𝑠∗, −𝐮∗)  (6) 

Two biquaternions are called equivalent, if they are equal to each other up to a scalar (complex 

number) factor: 

 

 ℬ1 ≈ ℬ2:  ℬ1 = 𝜆 ℬ2 , 𝜆 ∈ ℂ, 𝜆 ≠ 0  (7) 

Square modulus of the biquaternion ℬ = (𝑠, 𝐮) is a complex number defined according to the 

formula: 

 

 |ℬ|2 = ℬℬ̅ = 𝑠2 − 𝐮2 ,      |ℬ|2 ∈ ℂ (8) 

 

1.2. Isotropic basis. 

In this section, we introduce isotropic basis2 for the space of biquaternions. This basis is 
based on biquaternions that have zero square modulus. In physics, such quantities usually describe 
light and are called isotropic, which determines the name of the basis. 

Let's take a closer look at two possible types of biquaternions 𝑄 that have zero square 
modulus (8): |𝑄| = 0. In our terminology, such biquaternions are called nullquaternions [2]. The 
first of the two possible types of nullquaternions is nullvectors3 – three-dimensional complex 
vectors whose square is zero. Each nullvector 𝐪 is decomposed into sum of two mutually 
orthogonal real vectors 𝐀 and 𝑖𝐁 of the same length (Fig. 1): 
 

      𝐪 = 𝐀 + 𝑖𝐁,    𝐀, 𝐁 ∈ ℝ3,   A = B,  A ⊥ B 

     q ∈ ℂ3,   q2 = 0 

(9) 

Vector 𝐪∗, which is complex conjugate to the nullvector 𝐪 , is also a nullvector. Vector 𝜆𝐪 is also 
nullvector, where 𝜆 is an arbitrary nonzero complex number. 

The second type of nullquaternions is uniform nullquaternions 𝑁 , each of which can be 
obtained from the corresponding real vector of unit length 𝐧 as follows: 
 

                                    𝑁 = 𝜆(1, 𝐧),  𝐧 ∈ ℝ3 ,  𝐧𝟐 = 1 , 𝜆 ∈ ℂ;                𝑁𝑁̅ = 0 (10) 

                                                             
 
2 Another name for the isotropic basis is the light basis . 
3 Nullvectors are also called isotropic vectors. 
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The vector conjugation of a uniform nullquaternion 𝑁 again yields a uniform nullquaternion 𝑁̅ =
𝜆(1,−𝐧).   

Isotropic  basis of a biquaternion space consists of the following four elements, each of 
which is a nullquaternion: 
 

 

{
 
 

 
 

 

𝐪  =
1

2
(𝐀 + 𝑖 𝐁)

𝐪∗ =
1

2
(𝐀 − 𝑖 𝐁)

𝑁 =
1

2
(1,   𝐧)

𝑁̅  =
1

2
(1, −𝐧)

                      
𝐪, 𝐪∗, 𝑁, 𝑁̅ = 𝑐𝑜𝑛𝑠𝑡

𝐀, 𝐁,𝐧 ∈ ℝ3

𝐀𝟐 = 𝐁𝟐 = 𝐧𝟐 = 1

                           

 

 

(11) 

The first two of these elements 𝐪 and 𝐪∗ are nullvectors, and the remaining two 𝑁 and 𝑁̅ are 

uniform nullquaternions. Nullvectors 𝐪 and 𝐪∗ lie in the same plane П, which we will call the 

transverse plane; the real vectors A and B that compose q and q* also lie in the plane П. The unit 
longitudinal real vector 𝐧 is normal to this plane. Isotropic basis is thus defined by a certain 

constant direction in space (vector 𝐧) and a fixed turn angle in the plane П, which determines 

angular position of the pair 𝐀 and 𝐁. The nullvectors 𝐪 and 𝐪∗ and the uniform nullquaternions 𝑁 

and 𝑁̅ are bound by the following relations: 

                        

     𝐪𝐪∗ = 𝑁,   q∗q = 𝑁̅         

 

(12) 

In (12) 𝐪𝐪∗ and 𝐪∗𝐪 are common, or outer, biquaternion products (2). The vector relationship takes 

place: 𝐀 × 𝐁 = 𝐧, where 𝐀 × 𝐁 denotes the vector product of vectors 𝐀 and 𝐁. Figure 2 gives a 
schematic representation of isotropic basis. 

  
1. Nullvector 𝐪 

(plane П). 
2. Isotropic basis. 

 
In the Cartesian basis constructed on the real vectors 𝐀,𝐁, 𝐧, the vectors 𝐧, 𝐪, 𝐪∗ have the followingе 

complex coordinates: 
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     𝐧 = (
0
0
1
) ,    𝐪 =

1

2
(
1
𝑖
0
) ,    𝐪∗ =

1

2
(
1
−𝑖
0
)          

 

(13) 

An arbitrary biquaternion ℬ is decomposed within isotropic basis using the complex-numeric 

coordinates 𝛼, 𝛽, 𝜉, 𝑎𝑛𝑑 𝜂: 

                        

     ℬ = 𝛼𝐪+ 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅,     𝛼, 𝛽, 𝜉, 𝜂 ∈ ℂ         

 

(14) 

As easily shown, this decomposition is unique. 

 

Decompose the biquaternion ℬ (14) into two components: 

                        

     ℬ = 𝐮 +𝒫 ,             {
𝐮 = 𝛼𝐪 + 𝛽𝐪∗

𝒫 = 𝜉𝑁 + 𝜂𝑁̅
 

   

(15) 

The first component 𝐮, call it transverse component, is a complex vector lying in the plane П. The 

second component 𝒫, call it longitudinal component, is a biquaternion whose vector part is parallel 
to the vector 𝐧. The sum (15) thus gives a longitudinal-transverse representation of the biquaternion 

ℬ. 

   

Let us take a certain point of a biquaternion space considered as space-time. This point is 

described by Cartesian coordinates including time: 𝑡, 𝑥, 𝑦, 𝑧 . The relation between Cartesian and 

isotropic coordinates is expressed as follows:  

                        

     {

𝛼 = 𝑥 − 𝑖𝑦
𝛽 = 𝑥 + 𝑖𝑦
𝜉 = 𝑡 + 𝑧
𝜂 = 𝑡 − 𝑧

       

 

(16) 

Relations like (16) are naturally applicable not only to the coordinates of a point, but also to the 

components of any other biquaternion. From (16), we can obtain the relation between partial 
derivatives in isotropic and Cartesian bases: 

                        

     

{
 
 

 
 𝜕𝛼 =

1

2
(𝜕𝑥 + 𝑖𝜕𝑦)

𝜕𝛽 =
1

2
(𝜕𝑥 − 𝑖𝜕𝑦)

𝜕𝜉 =
1

2
(𝜕𝑡 + 𝜕𝑧)

𝜕𝜂 =
1

2
(𝜕𝑡 − 𝜕𝑧)

       

 
 

(17) 

 
1.3. Signed biquaternions and projectors. 

 
Group the members of a biquaternion (14) to represent it as follows: 

                        

 ℬ = ℬ+ +ℬ− ,                         {
ℬ+ = 𝛼𝐪+ 𝜂𝑁̅
ℬ_ = 𝛽𝐪∗ + 𝜉𝑁

 

 

(18) 
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Biquaternions of the form ℬ+ and ℬ− are called signed – positive and negative, respectively. We will 

denote the fact that a certain biquaternion ℬ is positive in symbolic form as ℬ = 𝐵+, and negative 

signed as ℬ = 𝐵− . 

 

We now represent the same biquaternion ℬ (14) in a different way: 

                        

 ℬ = 𝑃+ + 𝑃− ,                         {
𝑃− =  𝛼𝐪 + 𝜉𝑁

𝑃+ = 𝛽𝐪∗ + 𝜂𝑁̅
 

 
(19) 

Biquaternions of the form 𝑃− and 𝑃+ are called projectors – negative and positive, respectively. 

Further on we will explain this name. From the uniqueness  of isotropic basis expansion, it follows 

that each biquaternion is unambiguously decomposed into both the sum of signed biquaternions 
and the sum of projectors.  

 
Signed biquaternions and projectors are connected to each other by the vector conjugation 

operation (5): 

                        

             {
𝐵+̅̅ ̅̅ = 𝑃

−

𝐵_̅̅ ̅ = 𝑃+   
              {

𝑃−̅̅ ̅̅ = 𝐵+
𝑃+̅̅ ̅̅ = 𝐵−   

 

 

(20) 

The correspondence (20) implies an isomorphism between signed biquaternions and projectors by 

outer multiplication, provided that the product of two projectors must be taken in the reverse order 

to the product of signed biquaternions. It should be noted that although both types of biquaternions 
under consideration, projectors and signed biquaternions, have a sign characteristic, we apply the 

term "sign" and "signedness" only to the former. As will be shown later, in the wave function 

representation we use, the chiral states are projectors. 

 

1.4. Types of multiplication of biquaternions.  

In addition to the usual or outer method of multiplying biquaternions (2), we will introduce 

other methods for multiplying them. In this paper, we use four different methods for multiplying 

biquaternions. Below we show different product types for two biquaternions ℬ1 and ℬ2 , 

represented in the longitudinal-transverse representation and in isotropic basis as: 

 
 {
ℬ1 = 𝐮𝟏 + 𝒫1 = 𝛼1𝐪+ 𝛽1𝐪

∗ + 𝜉1𝑁 + 𝜂1𝑁̅

ℬ2 = 𝐮𝟐 + 𝒫2 = 𝛼2𝐪 + 𝛽2𝐪
∗ + 𝜉2𝑁 + 𝜂2𝑁̅

 
 (21) 

According to (18) each of these biquaternions can be decomposed into signed parts: 

 

 
 {
ℬ1 = ℬ1+ +ℬ1− 
ℬ2 = ℬ2+ +ℬ2− 

 
 (22) 

The first, outer, type of biquaternion multiplication given below corresponds to the first two 
possible ways of multiplying second-order square matrices – by adding the products of row 

elements of the first matrix to column elements of the second matrix . The second, inner, type,  

corresponds to the matrices with subtraction rule instead.  (see Appendix Ошибка! Источник 

ссылки не найден.). Outer and inner multiplications are directly involved in the formulation of 

the cyclic representation of the Dirac equation. The third, diagonal, type of multiplication in the 
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matrix representation uses the addition of the multiplied components not horizontally or vertically, 

but diagonally. We will use this type of multiplication when we describe the spin of a particle. The 

fourth, crossing type, in a certain way combines the first two types. 

1) Outer product  ⨀ 

The outer4, or common, product of biquaternions was defined above in the formula (2). In isotropic 

basis, the outer product of two biquaternions ℬ1 and ℬ2 is expressed as: 

ℬ1⨀ℬ2 = (𝜉1𝛼2 + 𝛼1𝜂2)𝐪 + (𝜂1𝛽2 + 𝛽1𝜉2)𝐪
∗ + (𝛼1𝛽2 + 𝜉1𝜉2)𝑁 + (𝛽1𝛼2 + 𝜂1𝜂2)𝑁̅ (23) 

2) Inner product  ⨂ 

In isotropic basis, the inner product of two biquaternions ℬ1 and ℬ2 is expressed as: 

ℬ1⨂ℬ2 = (𝛼1𝛼2 + 𝜉1𝜂2)𝐪 + (𝛽1𝛽2 + 𝜂1𝜉2)𝐪
∗ + (𝛽1𝜉2 + 𝜉1𝛼2)𝑁 + (𝛼1𝜂2 + 𝜂1𝛽2)𝑁̅ (24) 

Appendix Ошибка! Источник ссылки не найден. gives pairwise products of elements of 

isotropic basis with respect to outer and inner multiplication. Based on these products, you can get 

general formulas for the corresponding products (23),(24). 

Inner multiplication has a number of surprising and unexpected properties, which are beyond the 

scope of this article to study in detail. Here is just one example of such properties, such as the fact 

that the inner product of two complex numbers 𝜆1 and 𝜆2 is a vector: 𝜆1⨂𝜆2 = 𝜆1𝜆2𝐀. Also, the 

inner product of a number on a biquaternion does not hold the usual distributivity for such 

products:   𝜆⨂(𝛼𝐪+ 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅) ≠ 𝜆𝛼𝐪 + 𝜆𝛽𝐪∗ + 𝜆𝜉𝑁 + 𝜆𝜂𝑁̅. 

3) Diagonal product × 

In isotropic basis, the diagonal product of two biquaternions ℬ1 and ℬ2 is expressed as5: 

ℬ1 × ℬ2 = (𝛼1𝛼2 + 𝛽1𝜉2)𝐪 + (𝛼1𝛽2 + 𝛽1𝜂2)𝐪
∗ + (𝜉1𝛼2 + 𝜂1𝜉2)𝑁 + (𝜉1𝛽2 + 𝜂1𝜂2)𝑁̅ (25) 

4) Crossing product ⟡ 

The crossing product of biquaternions combines outer and inner multiplications in a certain way. 

The crossing product of two biquaternions ℬ𝐵1 and ℬ𝐵2 has the form: 
 

ℬ1 ⟡ ℬ2 = 𝐮𝟏⨀𝐮𝟐 + 𝒫1⨂𝒫2 (26) 

ℬ1 ⟡ ℬ2 = 𝜂1𝜉2𝐪 + 𝜉1𝜂2𝐪
∗ + 𝛼1𝛽2𝑁 + 𝛽1𝛼2𝑁̅ (27) 

The crossing product of a positive projector on the left side with any biquaternion on the 

right side always gives a positive signed biquaternion, and the crossing product of a negative 
projector on the left side with any biquaternion on the right side always gives a negative signed 

                                                             
4 Outer and inner products used in this paper have different meanings than in Grassmann algebra. 
5 It is important not to confuse the diagonal product sign × applied to biquaternions with the similar looking 
cross product sign applied to vectors. 
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biquaternion. The action of  projectors on the right side have similar properties. Write down all four 

possible variations of the projector products with an arbitrary biquaternion ℬ on the left and right 

sides: 
 

 
 

 ∀ℬ: {

𝑃+ ⟡ ℬ = 𝐵+
𝑃− ⟡ ℬ = 𝐵− 

ℬ ⟡ 𝑃+ = 𝐵−
ℬ ⟡ 𝑃− = 𝐵+

 

 

(28) 

The relations (28) determine the name of projectors: biquaternions of this type project an 

arbitrary biquaternion onto a positive or negative signed biquaternion. Note that there are relations 
similar (28), in which signed biquaternions have projection properties with respect to the 

projectors themselves.  

 

 

1.5. Exchange сconjugates ofя biquaternions. 

Above, we considered the classical types of conjugation of biquaternions: complex ℬ∗  (4) and vector  

ℬ̅ (5). In addition to the above conjugations, we can introduce other types of conjugation, which we 
will consider below. Each of these conjugates represents a certain permutation of the coordinates of 

a given biquaternion in isotropic basis. 

1) Exchange conjugation of the first type ℬ✶ .  

We define the exchange conjugation of the first type6 as follows: 

 ℬ = 𝛼𝐪+ 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅    →    ℬ✶ = 𝛼𝐪∗ + 𝜂𝑁 + 𝛽𝐪+ 𝜉𝑁̅      (29) 

Schematically, this conjugation is represented as: 

 
 

2) Exchange conjugation of the second type ℬ̃ . 

We introduce the exchange conjugation of the second type as follows: 

 ℬ = 𝛼𝐪+ 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅    →    ℬ̃ =  𝜉𝐪 + 𝜂𝐪∗ + 𝛼𝑁 + 𝛽𝑁̅      (30) 

or schematically: 

 
In the future, the exchange conjugation of the second type will also be referred simply as the exchange 
conjugation.  

                                                             
6 In our work [3], the first type of exchange conjugation was called "symbolic conjugation", the second type of 
exchange conjugation was called "exchange conjugation". It is also important not to confuse the symbol of the 
first type of exchange conjugation ✶ with the symbol of complex conjugation *. 
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3) Exchange conjugation of the third type ℬ⃛ . 

Exchange conjugation of the third type has the form: 

 ℬ = 𝛼𝐪+ 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅    →    ℬ⃛ = 𝜂𝐪 + 𝜉𝐪∗ + 𝛽𝑁 + 𝛼𝑁̅      (31) 

or schematically: 

 
 

Let's describe some properties of the three exchange conjugates introduced above. Each of 

these conjugates is self-inverse: ℬ✶
✶
=  ℬ, ℬ̃̃ =  ℬ, ℬ⃛⃛ =  ℬ.  Each of the three types of exchange 

conjugation is symmetric operation: ℬ2 =  ℬ1
✶  ⇔  ℬ1 = ℬ2

✶;      ℬ2 = ℬ̃1  ⇔ ℬ1 = ℬ̃2;                   

 ℬ2 = ℬ⃛1  ⇔  ℬ1 = ℬ⃛2 . Operations of different exchange conjugates are commutable: (ℬ
̃
)
✶

= ℬ✶̃ , 

etc. There is a transitive connection between different types of exchange conjugation: the combines 

application of two different conjugations gives a conjugation of the third type: ℬ✶̃ = ℬ⃛; ℬ✶⃛ =

 ℬ
̃
; (ℬ

̃
)
⃛

 = ℬ✶.   

 

Exchange conjugations make it possible to reverse the multipliers of the biquaternion 

product with changing product type: for two arbitrary biquaternions ℬ1, ℬ2 , the following identities 

hold: 

 

ℬ1⨂ℬ2 = ℬ2⨀ℬ1⃛ 

 ℬ1̃⨂ℬ2 = ℬ2⨀ℬ1
✶       

(32) 

In addition to the types of biquaternion conjugates discussed above, we present below another type 

of biquaternion conjugation – cyclic conjugation (40), which plays a key role in our formulation of 

the Dirac biquaternion equation. 
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Part 2. The Dirac equation 

 
2.1. The Dirac equation in Weyl spinors. 

 
In the representation of Weyl spinors, the Dirac equation has the following form [12]: 

 

 

 {
 
𝜕𝜓𝐿
𝜕𝑡

= −(𝝈 ⋅ 𝛁)𝜓𝐿 − 𝑖𝑚 𝜓𝑅  

𝜕𝜓𝑅
𝜕𝑡

= +(𝝈 ⋅ 𝛁)𝜓𝑅 − 𝑖𝑚𝜓𝐿

 

 

(33) 

Here 𝝈 is a three -dimensional vector composed of the Pauli matrices 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧: 

                        

     𝛁 = (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧) 

𝜎𝑥 = (
0 1
1 0

) ,  𝜎𝑦 = (
0 −𝑖
𝑖 0

),   𝜎𝑧 = (
1 0
0 −1

)       

 

(34) 

𝑚 – mass of the particle; 𝛁 = (𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧) – a three-dimensional nabla operator; 𝜓𝐿 and 𝜓𝑅  –Weyl 

spinor representing the left- and right-chiral states respectively: 

 

 

 

{
 
 

 
  𝜓𝐿 = (

𝑢

𝑣
)
𝐿

𝜓𝑅 = (
𝑢′

𝑣′
)
𝑅

                𝑢, 𝑣, 𝑢′ , 𝑣′ ∈ ℂ 

 

(35) 

The subscript characters L and R  for columns in parentheses indicate that these columns are 

different in their type: the first is left-chiral, and the second is right-chiral. In the  section "Spin" 
below, we will show how these types are expressed in matrices. For future purposes, we write the 

equations (33) in an expanded form using the complex-numeric components 𝑢, 𝑣, 𝑢′, 𝑣′  and partial 

derivatives in isotropic basis (17):  

 

{
 
 

 
 
𝜕𝜉𝑢 + 𝜕𝛽𝑣 = −𝑖𝑚𝑢′

𝜕𝜂𝑣 + 𝜕𝛼𝑢 = −𝑖𝑚𝑣′

𝜕𝜂𝑢
′ − 𝜕𝛽𝑣

′ = −𝑖𝑚𝑢

𝜕𝜉𝑣
′ − 𝜕𝛼𝑢

′ = −𝑖𝑚𝑣

 

(36) 
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2.2. Biquaternion wave function. 

 

Let's represent the 4-coordinate of a space-time point as a biquaternion  𝑍 = (𝑡, 𝐫), where 𝐫 = (
𝑥
𝑦
𝑧
). 

In isotropic basis, this biquaternion has the form7: 𝑍 = 𝛼𝐪 + 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅. The correspondence  

between Cartesian and isotropic coordinates is given by the formulas (16),(17). The wave function 

of a Dirac particle8 is described by a biquaternion function of space-time coordinates: 

 

 𝐹 = 𝐪𝑓𝛼 + 𝐪
∗𝑓𝛽 + 𝑁𝑓𝜉 + 𝑁̅𝑓𝜂  ,  (37) 

where 𝑓𝛼 , 𝑓𝛽 , 𝑓𝜉 , 𝑓𝑛𝑛  are scalar (complex-number) functions of space-time coordinates: 𝑓𝛼 =

𝑓𝛼(𝑡, 𝐫), 𝑓𝛼 ∈ ℂ , etc. 

 

Let us decompose  𝐹  (37) by the sum of its projection components according to  (19):  

 

 𝐹 = 𝑃+ + 𝑃− 

 {
𝑃− = 𝐪𝑓𝛼 +𝑁𝑓𝜉

𝑃+ = 𝐪∗𝑓𝛽 + 𝑁̅𝑓𝜂
  

(38) 

 

2.3. Gradients. 

 
Consider the 4-gradient operator expressed in scalar-vector biquaternion form: 𝐷 = (𝜕𝑡 , 𝛁). The 

vector-conjugate (inverse) operator has the form: 𝐷̅ = (𝜕𝑡 𝑡 , −𝛁).  Using the coordinate 

transformations (16),(17), these two operators can be represented in isotropic basis: 

 

 
   {
𝐷 = 2(𝐪𝜕𝛽 + 𝐪

∗𝜕𝛼 +𝑁𝜕𝜉 + 𝑁̅𝜕𝜂)

𝐷̅ = 2(−𝐪𝜕𝛽 − 𝐪
∗𝜕𝛼 + 𝑁𝜕𝜂 + 𝑁̅𝜕𝜂)

 
(39) 

In the operator 𝐷 partial derivative 𝜕𝛼 stands at 𝐪∗, and the partial derivative 𝜕𝛽 stands at 𝐪, and 

not vice versa, as would be expected at first glance.     

 

  The Dirac equation in the representation of Weyl spinors (33), can be apparently 
formulated using differential operator of the "spin 4-gradient" 𝐷𝑠 = (𝜕𝑡 , 𝝈 ⋅ 𝛁).  It is noteworthy 

that in isotropic basis, this operator coincides up to a factor  
1

2
  with the 4-gradient operator 𝐷 (39): 

𝐷𝑠 =
1

2
𝐷.  

 

The transition between forward and reverse 4-gradients 𝐷 = (𝜕𝑡 , 𝛁) and −𝐷̅ = (−𝜕𝑡 , 𝛁) is a 

reflection of time derivative: 𝜕𝑡  ⟷ −𝜕𝑡. Therefore, the operator 𝐷 is associated with changing the 

                                                             
7 Note that here and below the isotropic coordinates 𝛼, 𝛽, 𝜉, 𝜂 describe specifically the 4-coordinate of space-
time. Above, these same variables could describe the components of an arbitrary biquaternion. 
8 Following the generally accepted convention, we call a Dirac particle a particle that satisfies the Dirac 
equation. 



13  

  

object of differentiation forward in time, wile the operator − 𝐷̅ is associated with changing the 

object back in time. 

 

 

2.44. Cyclic conjugation. 

 

The biquaternion representation of the Dirac equation introduced below uses the cyclic 

conjugation operation. The cyclic conjugate 𝐹
⤺

 of the biquaternion 𝐹, is calculated according to the 

formula: 

 

 𝐹 = 𝐪𝑓𝛼 + 𝐪
∗𝑓𝛽 + 𝑁𝑓𝜉 + 𝑁̅𝑓𝜂     ⟶   𝐹

⤺

= 𝐪𝑓𝛽 + 𝐪
∗𝑓𝜉 +𝑁𝑓𝜂 + 𝑁̅𝑓𝜂     

(40) 

The cyclic conjugation (40) can be expressed using the following diagram, which shows a cyclic 

permutation of coordinates for a given biquaternion 𝐹, giving the output  𝐹
⤺

: 

 

 

 

 

(41) 

or: 

   

 

 

 
 

In the scheme (41), the basis elements remain in place, and the components of the wave function 
𝑓𝛼 , 𝑓𝛽 , 𝑓𝜉 , 𝑓𝑛  are transferred according to the arrows. Applying the cyclic conjugation operation four 

times returns the biquaternion to its original state, i.e. it implements a full cycle. The cyclic 

conjugation (40) is expressed via exchanged conjugations (29) (30): 

     𝐹
⤺

= (𝑃−̃ + 𝑃+)✶ = 𝑃−✶̃ + 𝑃+✶ = 𝑃1
+ + 𝑃1

− 

{
 𝑃1
+ = 𝑃−✶̃ = 𝑃−⃛

𝑃1
− = 𝑃+✶

 

 

(42) 

Applying the cyclic conjugation operation twice to the given wave function 𝐹, we obtain its 

exchange conjugation of the second type: 

 
 𝐹
⤺
⤺

= 𝐹̃    
(43) 

The formula (43) provides the expression for double cyclic conjugation, which will be used later in 

the section "Spin" to find out the physical meaning of the cyclic conjugation operation. 
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2.5. Cyclic representation of the Dirac equation. 

The Dirac equation in the cyclic representation9 has the form: 
 

 𝑃−⨀𝐷̅ +  𝐷⨂𝑃+ = 𝑖𝑚𝐹
⤺

  (44) 

In the equation (44), 𝐹 is the biquaternionic wave function of a Dirac particle (37), decomposed 

according (37) into the sum of its projection components: 𝐹 = 𝑃+ + 𝑃− ; 

𝐹
⤺

  is the cyclic conjugate of 𝐹 (40); m is the mass of a particle,  𝐷 is the 4-gradient biquaternion 

operator, 𝐷 ̅  – operator vector-conjugated to 𝐷 (39).  The expressions on the left side of the 

equation (44) are: 

 

 

 
𝑃−⨀𝐷̅ = 2((−𝜕𝛽𝑓𝜉 + 𝜕𝜉𝑓𝛼)𝐪 + (−𝜕𝛼𝑓𝛼 + 𝜕𝜂𝑓𝜉)𝑁)

𝐷 ⨂ 𝑃+ = 2((𝜕𝛼𝑓𝛽 + 𝜕𝜉𝑓𝜂)𝐪∗ + (𝜕𝛽𝑓𝜂 + 𝜕𝜂𝑓𝛽)𝑁̅)
 

 

Let's write the equation (44) component-wise: 

 

 

{
 
 

 
 𝜕𝜉𝑓𝛼 − 𝜕𝛽𝑓𝜉 = 𝑖𝑚𝑓𝛽
𝜕𝜂𝑓𝜉 − 𝜕𝛼𝑓𝛼 = 𝑖𝑚𝑓𝜂
𝜕𝜂𝑓𝛽 + 𝜕𝛽𝑓𝜂 = 𝑖𝑚𝑓𝛼
𝜕𝜉𝑓𝜂 + 𝜕𝛼𝑓𝛽 = 𝑖𝑚𝑓𝜉

 

 

(45) 

The equation (44), or (45), is equivalent to the original Dirac equation in Weyl spinors (33), 
or (36). The correspondence between the Weyl spinors 𝜓𝐿 and 𝜓𝑅  (35) and the biquaternionic 

wave function, represented in isotropic basis (37), 𝐹 = 𝐪𝑓𝛼 + 𝐪
∗𝑓𝛽 +𝑁𝑓𝜉 + 𝑁̅𝑓𝜂  , is given by: 

 

 
 {
 𝑢 = 𝑓𝛼
𝑣 = −𝑓𝜉

          {
𝑢′ = −𝑓𝛽
𝑣′ =  𝑓𝜂

 
(46) 

or 

 𝐹 = 𝐪𝑢 − 𝐪∗𝑢′ −𝑁𝑣 + 𝑁̅𝑣′ (47) 

From (46),(47), it follows that in the representation we use, chiral states are projectors. The right-

chiral state is a positive projector, while the left-chiral state is a negative projector: 

 

 
 {
 𝑃−~ 𝜓𝐿
𝑃+~𝜓𝑅

 
(48) 

Indeed, the positive projector  𝑃+ = −𝐪∗𝑢′ + 𝑁̅𝑣′ is formed from the same components 𝑢′ , 𝑣′ that 
make up the right-chiral Weyl state 𝜓𝑅  (35).  Similarly, the negative projector  𝑃− = 𝐪𝑢 − 𝑁𝑣 is 

formed from the components 𝑢, 𝑣  that make up the left-chiral state 𝜓𝐿..  

 

                                                             
9 The form of the Dirac equation (44) was first presented in our paper [5]. 
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In the section "Spin" below, we will explain the physical meaning of the operation of cyclic 

conjugation of the wave function 𝐹
⤺

. 
 

 

2.66. Separate presentation.  

Equation (44) can be rewritten as two separate equations for the left- and right-chiral states 

of the described particle: 

 
 {𝑃

−⨀𝐷̅   = 𝑖𝑚𝑃+
✶

𝐷 ⨂ 𝑃+ = 𝑖𝑚𝑃−⃛
 

(49) 

Let's write out separately conjugate projectors that are included in the right-hand sides of the 

equations (49): 

 𝑃+
✶
= 𝑓𝛽𝐪 + 𝑓𝜂𝑁 

𝑃−⃛ = 𝑓𝜉𝐪∗ + 𝑓𝛼𝑁̅
 

 

To write the equations (49), we used the expression (42) for cyclic conjugation. Note that in the 

first of the equations, both sides of the equation 𝑃−⨀𝐷̅ and 𝑖𝑚𝑃+
✶

are negative projectors, i.e. left-
chiral states. Similarly, in the second of these equations, both sides are positive projectors, i.e. right-

chiral states.  

 

Thus, cyclic representation of the Dirac equation (44) implicitly contains both equations 

(49), each of which describes one of the two chiral states. By using the cyclic conjugation operation, 
the equation (44) combines both chiralities. 

 

 

2.7. Lorentz transformations. 

 
We restrict ourselves to considering the most important special Lorentz transformation of the wave 

function of a Dirac particle – the boost with velocity 𝑉 = 𝑡ℎ2𝜃 in the direction of the vector 𝐧. In the 

Weyl spinor representation (35), this transformation has the following form [14]: 

 

 

 

{
 
 

 
  𝜓𝐿 = (

𝑢

𝑣
)
𝐿
 →   𝜓𝐿

′ = (
𝑒−𝜃𝑢

𝑒𝜃𝑣
)
𝐿

 

𝜓𝑅 = (
𝑢′

𝑣′
)
𝑅

→ 𝜓𝑅
′ = (

𝑒𝜃𝑢′

𝑒−𝜃𝑣′
)
𝑅

  

                

 

(50) 

To avoid confusion, note that in the formula (50), the stroke symbol has two different obvious 
meanings: for the functions 𝜓𝐿

′  and 𝜓𝑅
′  , this is the Lorentz-transformed quantity, and for the 

quantities 𝑢′ and 𝑣′, these are the components of the right spinor according to the formula (35). As 

we see below, in terms of chiral algebra, Lorentz transformations are expressed using the operations 

of outer and inner products.  
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We sill call the biquaternions 𝐿 and 𝐿  the longitudinal and transverse Lorentz operators, 

respectively: 

 

 
{
𝐿 = 𝑁𝑒𝜃 + 𝑁̅𝑒−𝜃

𝐿 = 𝐪𝑒−𝜃𝐪∗𝑒𝜃
 

(51) 

From (32) follows a rule, that allows us  to move these operators from the left side to the right side, 
and vice versa: 

 

  ∀ℬ:  ℬ⨀𝐿 = 𝐿 ⨂ℬ (52) 

The boost of the wave function described above has the form:  

 

  𝐹  →    𝐹′ =  𝐹⨀𝐿 = 𝐿 ⨂𝐹 (53) 

The transformation (53) can also be written by separating the projection components: 

 

  𝐹  →    𝐹′ = 𝑃+⨀𝐿 + 𝐿 ⨂𝑃− (54) 

According to (50) and (53) and correspondence rule (46), at Lorentz transformations projectors 

and Weyl spinors behave the same way. Applying the transformations (53) separately to each 

projection component 𝑃±, it is easy to verify the Lorentz covariance of the Dirac equation in the 

separated form (49), and thus the covariance of cyclic representation of this equation (44). 

 

In the Cartesian basis, the energy-momentum of a free particle is given by the biquaternion 
𝐾 = (𝜖, 𝐤), 𝐤 = (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧). In isotropic basis, the same value has the form:  𝐾 = 𝑘𝛼𝐪 + 𝑘𝛽𝐪

∗ +

𝑘𝜉𝑁 + 𝑘𝑛𝑁̅  , the energy-momentum components in the light and Cartesian bases are connected by 

the transformations of the form (17).  

 

The Lorentz transformation of energy-momentum 𝐾 is expressed in the operators 𝐿 and 

𝑇 = 𝐿  of the general form, which includes (51) as a special case: 

 

 𝐾 → 𝐾′ = 𝐿∗⨀𝐾⨀𝐿  

𝐾 → 𝐾′ = 𝑇∗⨂𝐾⨂𝑇 

(55) 

In (55), both variants of the Lorentz transformation are equivalent to each other. A comparison of 

the formulas (53) and (55) indicates an intrinsic feature of Lorentz transformations of quantities of 

various types. Namely, the wave function transformation is one-sided, while the energy-momentum  

transformation is two-sided in terms of Lorentz operators acting. 

 
 The space-time coordinate (4-coordinate) 𝑍 = (𝑡, 𝐫) is transformed like the energy-

momentum (55). From the energy-momentum of the particle and the 4-coordinate, we can form the 

well-known scalar Lorentz invariant: 
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𝛷 = 𝜖𝑡 − 𝐤 ⋅ 𝐫 =

1

2
(−𝑘𝛽𝛼 − 𝑘𝛼𝛽 + 𝑘𝜂𝜉 + 𝑘𝜂𝑁) 

(56) 

 

2.8. Plane waves. 

 

The simplest solution of the Dirac equation (44) has the form of a plane wave: 

 

 𝐹 = 𝐴𝑒𝑖𝛷 +𝐵𝑒−𝑖𝛷 , (57) 

where 𝛷  is the Lorentz-invariant phase of the wave defined according (56), and 𝐴 and 𝐵 are 
constant biquaternions having the following form for a moving particle: 

 

 𝐴 =  𝑎𝛼𝐪 + 𝑎𝛽𝐪
∗ + 𝑎𝜉𝑁 + 𝑎𝜂𝑁̅ ,            𝐵 = 𝑏𝛼𝐪+ 𝑏𝛽𝐪

∗ + 𝑏𝜉𝑁 + 𝑏𝜂𝑁̅ 

𝑎𝛼=𝑎1
𝑎𝛽=𝑎2

𝑎𝜉=
𝑚𝑎2−𝑘𝜂𝑎1

𝑘𝛼

𝑎𝜂=
𝑘𝜉𝑎2−𝑚𝑎1

𝑘𝛼

                                                   

𝑏𝛼=𝑏1
𝑏𝛽=𝑏2

𝑏𝜉=−
𝑚𝑏2+𝑘𝜂𝑏1

𝑘𝛽

𝑏𝜂=
𝑘𝜉𝑏2+𝑚𝑏1

𝑘𝛽

                         

(58) 

From the Dirac equation follows the dispersion relation: 

 

 𝜖2 − 𝐤2 = 𝑘𝜉𝑘𝜂 − 𝑘𝛼𝑘𝛽 = 𝑚
2 (59) 

which implies the subluminal character of a massive Dirac particle. Below we will also consider an 

analog of the Dirac equation for a superluminal particle. The components of the wave function 𝐴𝑒  𝑖𝛷 

and 𝐵𝑒−𝑖𝛷  are called positive-frequency and negative-frequency, respectively. 

 

For a massive particle, such as an electron or positron, the state of rest can be determined.  
In this case, 𝐾 = 𝑚, or 𝑘𝛼 = 𝑘𝛽 = 0, 𝑘𝜉 = 𝑘𝜂 = 𝑚 . The plane wave (57) takes the form: 

 

 𝐹 = 𝐴0𝑒
𝑖𝑚𝑡 +𝐵0𝑒

−𝑖𝑚𝑡 , (60) 

Where biquaternionic coefficients 𝐴0  and 𝐵0 are:  
 

 𝐴0 =  𝑎1𝐪 + 𝑎1𝐪
∗ + 𝑎2𝑁 + 𝑎2𝑁̅ ,          𝐵0 = 𝑏1𝐪− 𝑏1𝐪

∗ + 𝑏2𝑁 − 𝑏2𝑁̅  

 

2.9. Spin. 

 
Let us ask ourselves how operators of spin projections look in our biquaternionic representation. In 

the representation of Weyl spinors, these operators, up to a factor 
1

2
 , are the Pauli matrices  𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 

(34). Above we provided the standard expression for left-and right-chiral Weyl spinors in the form 

of matrix columns. Now we express these states in the form of 2x2 matrices themselves: 

 



18  

  

 

 

{
 
 

 
  𝜓𝐿 = (

𝑢

𝑣
)
𝐿
 ≡ (

𝑢 0
𝑣 0

) 

𝜓𝑅 = (
𝑢′

𝑣′
)
𝑅

≡ (0 𝑢′
0 𝑣′

)  

                

 

(61) 

The wave function of a general particle state is then expressed as: 
 

 𝜓 = 𝜓𝐿 +𝜓𝑅 = (
𝑢 𝑢′
𝑣 𝑣′

)  (62) 

As we can see, the matrix representation of Weyl spinors no longer requires specifying, which type, 

left - or right-chiral – this follows from the form of the matrix. At the same time, many of the 
operations that occur with columns can be carried out by these matrices, provided you use the 

usual matrix multiplication. Let us write out the form of eigenstates of the spin projection operators 

[14] for Weyl spinors in their matrix representation:  

 

 

{
  
 

  
 𝜓х↑ = (

𝑢 𝑢′

𝑢 𝑢′
) ,      𝜓х↓ = (

   𝑢    𝑢′

−𝑢 −𝑣′
)

  

𝜓𝑦↑ = (
 𝑢  𝑢′
𝑖𝑢 𝑖𝑢′

) ,          𝜓𝑦↓ = (
    𝑢     𝑢′
−𝑖𝑢 −𝑖𝑢′

)

𝜓𝑧↑ = (
𝑢 𝑢′
0 0

) ,  𝜓𝑧↓ = (
0 0
𝑣 𝑣′

)

 

 

(63) 

 

In (63), 𝜓𝑥↑ is the state with the x-projection of the spin pointing up;  𝜓𝑥↓ is the state with the x-

projection of the spin pointing down, and so on. Let us establish the following correspondence 

between the matrices that map the Weyl spinors (62) and the biquaternions: 

 

 
   𝐹 = 𝑓𝛼𝐪 + 𝑓𝛽𝐪

∗ + 𝑓𝜉𝑁 + 𝑓𝜂𝑁̅    ↔     𝜓 = (
    𝑓𝛼 −𝑓𝛽
−𝑓𝜉    𝑓𝜂

), 
(64) 

or 𝑢 = 𝑓𝛼 , 𝑣 = −𝑓𝜉 , 𝑢
′ = −𝑓𝛽 , 𝑣

′ = 𝑓𝜂 . Above, in (46), when establishing the equivalence of different 

representations of the Dirac equation, we already used this correspondence with respect to Weyl 

spinors-columns. Using this correspondence between matrices and biquaternions, we establish an 

isomorphism by addition and multiplication, provided we use the usual multiplication for matrices 

and diagonal multiplication for biquaternions (25): 

  𝜓1𝜓2  ↔  𝐹1 × 𝐹2 (65) 

Using this isomorphism, we can express the spin projection operators in biquaternions 

corresponding to the Pauli matrices: 
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{
 
 

 
 𝑆̂𝑥 = −(𝐪

∗ + 𝑁) 

𝑆̂𝑦 = 𝑖(𝐪
∗ − 𝑁)

𝑆̂𝑧 = 𝐪 −𝑁

𝑆̂𝑡 = 𝐪 + 𝑁̅ ≡ 𝐸

 

 

(66) 

Each of the spin operators (66) is a biquaternion and acts on the wave function on the left side. The 

fourth of these operators 𝑆̂𝑡  corresponds to the identity matrix and is the unit  for inner 

multiplication 𝐸. Let's express the spin states (63) in biquaternion form: 

 

 

{
 
 

 
 
𝐹х↑ = 𝑓𝛼𝐪 + 𝑓𝛽𝐪

∗ − 𝑓𝛼𝑁 − 𝑓𝛽𝑁̅,              𝐹х↓ = 𝑓𝛼𝐪 + 𝑓𝛽𝐪
∗ + 𝑓𝛼𝑁 + 𝑓𝛽𝑁̅

  
𝐹𝑦↑ = 𝑓𝛼𝐪 + 𝑓𝛽𝐪

∗ − 𝑖𝑓𝛼𝑁 − 𝑖𝑓𝛽𝑁̅ ,                 𝐹𝑦↓ = 𝑓𝛼𝐪 + 𝑓𝛽𝐪
∗ + 𝑖𝑓𝛼𝑁 + 𝑖𝑓𝛽𝑁̅

𝐹𝑧↑ = 𝑓𝛼𝐪 + 𝑓𝛽𝐪
∗ ,  𝐹𝑧↓ = 𝑓𝜉𝑁 + 𝑓𝜂𝑁̅

 

 

(67) 

According to the isomorphism (65), the spin operators (66) use diagonal multiplication. It is easy to 

verify that the wave functions (67) are indeed eigenstates of these operators with eigenvalues 

±1 (doubled spin):            

 

 

 

{
 
 

 
 
𝑆̂𝑥 × 𝐹𝑥↑ = 𝐹𝑥↑,   𝑆̂𝑥 × 𝐹𝑥↓ = − 𝐹𝑥↓

 
𝑆̂𝑦𝑥𝐹𝑦↑ = 𝐹𝑦↑ ,  𝑆̂𝑦𝑥𝐹𝑦↓ = −𝐹𝑦↓

𝑆̂𝑦 × 𝐹𝑧↑ = 𝐹𝑧↑ ,  𝑆̂𝑥 × 𝐹𝑧↓ = − 𝐹𝑧↓

 

 
(68) 

The longitudinal direction 𝐧 (or 𝑧) is distinguished in our approach according to the choice 

of isotropic basis10. We define the longitudinal spin as the projection of the spin on the direction 𝑧. 

Applying exchange conjugate (30) to the eigenstates of the longitudinal spin 𝐹𝑧↑ and  𝐹𝑧↓,  we find 

that this operation reverses the direction of the longitudinal spin: 

 

 𝐹
~

𝑧↑  =  𝐹𝑧↓,    𝐹
~

𝑧↓ = 𝐹𝑧↑ 
(69) 

We saw above in (43) that the exchange conjugation coincides with the double cyclic conjugation. 

Thus, (69) can be rewritten as: 

 
𝐹
⤺
⤺

𝑧↑ =  𝐹𝑧↓,     𝐹
⤺
⤺

𝑧↓ = 𝐹𝑧↑ 
(70) 

 

At the rest state (60) with the spin directed up along z-axis, the wave function (for a 

positive-frequency component) has the form: 𝐹𝑧↑ = 𝑎𝑎1𝐪+ 𝑎𝑎1𝐪
∗ .  By applying cyclic conjugation 

transformation to this state, we will receive the new state 𝐹0: 𝐹0 = 𝐹
⤺

𝑧↑ = 𝑎1(𝐪
∗ +𝑁). Let us 

determine the value of z-projection of the spin for the state 𝐹0. To do this, we obtain a 

representation of this state in Weyl spinors (46): 𝜓0𝐿 = (
0−1
−1
)
𝐿
, 𝜓0𝑅 = (

−1
0
)
𝑅.

  The average value of 

                                                             
10  In our terminology, the longitudinal direction may not coincide with the direction of the particle's 
momentum, so the projection of the spin onto the longitudinal direction is not helicity. 
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the spin projection 𝑠𝑧 in this state is 0: < 𝑠𝑧 > =  𝜓0𝐿
∗  𝜎𝑧 𝜓0𝐿 + 𝜓0𝑅  𝜎𝑧 𝜓0𝑅 = 0.  We will call 𝐹0 the 

positive-frequency zero state of spin. Similarly defined is the negative-frequency zero state of spin.  

 

Thus dual cyclic conjugation, which coincides with exchange conjugation of 2nd type, is the 

operation of turning the longitudinal spin. It follows that cyclic conjugation is spin half-flip operation. 
In our units, the spin projection varies from +1 to -1, so a half-flip from the state with a projection of 

+1 or -1 translates the longitudinal spin to zero state 𝐹0 or vice versa – from the zero state 𝐹0 to the 

state with a projection of ± 1. As we have just seen, z-projection of the spin in zero state is, as it 

should be, 0. We should keep in mind that the cyclic conjugation operation must be applied separately 
to the positive- and the negative-frequency zero states. So, applying cyclic conjugate to a state with 

zero longitudinal spin projection creates a state with a spin projection of ± 1 . But the longitudinal 

direction can be chosen arbitrarily – when we choose isotropic basis. Therefore, we can conclude that 

cyclic conjugation is the operator of assigning spin to a massive particle.  

 

 

2.10. Transformation of rotation. 

 

As you know, general Lorentz transformations include boosts and turns11. A boost from the particle's 

rest state creates a state with a non-zero linear velocity, and a turn rotates this velocity in space.  But 

then there must be analogous transformations: first that moves the particle to the state of its proper 
rotation and the second that transfers the center of this rotation in space (translation). If we associate 

the spin of the particle with its proper rotation, then, as we saw in the previous section, the rotation 

of the particle is created by cyclic conjugation. Cyclic conjugation of the particle wave function is rep-

resented by the right-hand side of the Dirac equation (44). This means that for a Dirac particle, the 
wave function transformation on the left-hand side of the equation also works (although in different 

manner) as particle rotation generator: 

 

 𝐹 → 𝐹𝑟𝑜𝑡
′ = 𝑃−⨀𝐷̅ +  𝐷⨂𝑃+  (71) 

We show that (71) has a structure similar to Lorentz transformation (54), but of a slightly different 

kind. Let's rewrite the expression for the plane wave (57) in the following form: 

 

 𝐹 = 𝑄1 + 𝑄2, (72) 

where 𝑄1 = 𝐴𝑒
𝑖𝛷  and 𝑄2 = 𝐵𝑒

−𝑖𝛷 are the positive and negative frequency components of the wave 

function 𝐹.  For the plane wave (57)(72), the following substitutions can be made: 𝐷̅ = 𝑖𝐾, 𝐷 = 𝑖𝐾̅ k 

for the positive-frequency component, and 𝐷̅ = −𝑖𝐾, 𝐷 = −𝑖𝐾̅ for the negative-frequency 

component, so that the transformation (71) can be written as:  

 

 

 
𝐹 → 𝐹𝑟𝑜𝑡

′ = 𝑄−⨀𝐾 + 𝐾̅⨂𝑄+   

{
𝑄− = 𝑄1

− −𝑄2
−

𝑄+ = 𝑄1
+ −𝑄2

+ 

(73) 

                                                             
11 Please distinct between turns and rotations, 
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We call  𝑄− and 𝑄+ subtractive components of 𝐹, and call (73) rotation transformation.  

 

Let us put together Lorentz transformation (54) and rotation transform (73) of the wave 

function: 

 𝐹 → 𝐹𝑙𝑜𝑟
′ = 𝑃+⨀𝐿 + 𝐿 ⨂𝑃−

𝐹 → 𝐹𝑟𝑜𝑡
′ = 𝑄−⨀𝐾 + 𝐾̅⨂𝑄+

 
(74) 

From (74) we see the similarity of both transformations, with the difference that the Lorentz 

transformation 𝐹𝑙𝑜𝑟
′  includes the usual projection components of the wave function 𝑃± , while 

rotation transformation 𝐹𝑟𝑜𝑡
′  includes its subtractive components 𝑄± . Also the longitudinal and 

transverse operators are related to each other in a different way. In the case of the rotation 

transformation the energy-momentum biquaternion K and its vector conjugate 𝐾̅ play roles similar 

to Lorentz operators (𝐿 и 𝐿 ). The connection between the longitudinal and transverse operators in 

the first case is carried out through exchange conjugation 𝐿 →  𝐿 , while in the second case –through 

vector conjugation 𝐾 → 𝐾.̅  Thus, the rotation transformation is similar to Lorentz transformation. 

 

 In terms of rotation transformation, the Dirac equation (44) can be re-written as: 

 

 

 
𝐹 → 𝐹𝑟𝑜𝑡

′ = 𝐹
⤺

 (75) 

As a result of rotation transformation applied to the wave function of a Dirac particle, the latter 

acquires spin, which exhibits by the right-hand side of the equation 𝐹
⤺

. Therefore, this transformation 
is an analog of the Lorentz transformation, that creates the proper rotation of a particle. We have 

discussed the necessity of such transformation in the beginning of this section. The question of 
finding the other, translational, transformation remains open. 

 

 

2.11. Alternative forms of cyclic representation. 

 

In addition to (44), there are three other analogous representations of the Dirac equation that use 

their own types of cyclic conjugation. Cyclic conjugations of all four types are closely related to   
exchange conjugation.  A detailed discussion of all these equations and their cyclic conjugates is 

beyond the scope of this article. Here are all four possible representations of the Dirac equation in 

projectors, starting with the representation (44) described above: 

  



22  

  

 𝑃−⨀𝐷̅ +  𝐷⨂𝑃+ = 𝑖𝑚𝐹
⤺

 

𝑃−⨀𝐷̅ −  𝐷⨂𝑃+ = 𝑖𝑚𝐹
↝

 

𝑃+⨀𝐷̅ +  𝐷⨂𝑃− = 𝑖𝑚𝐹
⤻

 

𝑃+⨀𝐷̅ −  𝐷⨂𝑃− = 𝑖𝑚𝐹
↜

 

 

(76) 

 

In (76) 𝐹
↝
, 𝐹
⤻
,𝐹
↜

 are three other types of cyclic conjugation similar to cyclic conjugation 𝐹
⤺

 introduced 

above in (40),(41). Each of the equations (76) uses its own representation and Weyl spinor 
correspondence identical or similar to (40). Each of these equations is equivalent to the Dirac 

equation and therefor they are all equivalent to each other. 

 

 Above, we considered cyclic representations of the Dirac equation in projectors (76). The 

isomorphism of projectors and signed biquaternions (18) was pointed out above. By virtue of this 

isomorphism, the Dirac equation also has cyclic representations in signed biquaternions, which we 

do not consider here. 
 

 At the end of this section, we give the form of the Dirac equation for a superluminal particle:  

 𝑃−⨀𝐷̅ −  𝐷⨂𝑃+ = 𝑖𝑚𝐹
⤺

  (77) 

As we can see, the superluminal Dirac equation (77) differs from the subluminal one (44) only by the 

sign between projection-like components 𝑃−⨀𝐷̅  and  𝐷⨂𝑃+.  The dispersion relation for the plane 

wave (59) is replaced here by 𝜖2 − 𝐤2 = 𝑘𝜉𝑘𝑛 − 𝑘𝛼𝑘𝛽 = −𝑚
2 , which confirms the superluminal 

character of the particle described by the equation (77).  

 

 

2.112. The Dirac equation and the Hadamard matrix. 

 
Using the inverse coordinate transformation (16), we can verify that in Cartesian coordinates, the 
cyclic conjugation is expressed in terms of a complex Hadamard matrix 𝐻4:  

 

 

   (

𝑥′

𝑦′

𝑧′
𝑡′

) = (

1 𝑖 1 1
𝑖 −1 −𝑖 −𝑖
−1 𝑖 −1 1
1 −𝑖 −1 1

)(

𝑥

𝑦
𝑧
𝑡

) =  𝐻4 (

𝑥

𝑦
𝑧
𝑡

) 

(78) 

As is well known, Hadamard matrices work in noise-suppressing algorithms of discrete information 

transmission. Specifically Walsh functions used for signal encoding are constructed on their basis. 

The presence of Hadamard matrices in the Dirac equation indicates the informational aspect of this 

equation. 

 

Similar mechanisms of noise immunity also work in the genetic code of DNA, that is 

characterized by its multilevel skew symmetry and is described in terms of Petoukhov genetic 

matrices [11]. Previously, we proposed a mathematical model of the genetic code based on chiral 

algebra [5]. An explicit similarity between genetic code model and spin theory allowed us to 
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assume that the genetic code contains structures of biological nature similar to spin, which we 

called biospin. 
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Appendix. 

1. Isomorphism of biquaternions and matrices. 

There exists an isomorphism between biquaternions and second-order square matrices [13]. 

Let's fixate some isotropic basis of biquaternionic space (11). Then each  biquaternion ℬ represented 

in this basis according to (14) can be put in a one-to-one correspondence with a second-order square 
matrix  𝑀: 

 
   ℬ = 𝛼𝐪 + 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅    ↔     𝑀 = (

𝜉 𝛼
𝛽 𝜂

) 
(79) 

According to this correspondence rule, there is an isomorphism by addition and outer 

multiplication between biquaternions and second-order square matrices. The usual rule of matrix 

multiplication, denoted here by the symbol ⨀ (same as for biquaternions), has the well-known 

form: 

 

𝑀1⨀𝑀2 = (
𝑎11 𝑎21
𝑎12 𝑎22

)⨀(
𝑏11 𝑏21
𝑏12 𝑏22

) = (
𝑎11𝑏11 + 𝑎21𝑏12 𝑎11𝑏21 + 𝑎21𝑏22
𝑎12𝑏11 + 𝑎22𝑏12 𝑎12𝑏12 + 𝑎22𝑏22

) 
(80) 

 

If we replace biquaternionic outer multiplication ⨀  by inner multiplication ⨂, then another 

isomorphism is established between biquaternions and matrices: 

 
   ℬ = 𝛼𝐪 + 𝛽𝐪∗ + 𝜉𝑁 + 𝜂𝑁̅    ↔     𝑀 =  (

𝜉 𝛼
−𝛽 −𝜂

) 
(81) 

However, for this isomorphism , one needs to change the multiplication rule for matrices to the 

following: 
 

𝑀1⨂𝑀2 = (
𝑎11 𝑎21
𝑎12 𝑎22

)⨂(
𝑏11 𝑏21
𝑏12 𝑏22

) = (
𝑎11𝑏11 − 𝑎21𝑏12 𝑎11𝑏21 − 𝑎21𝑏22
𝑎12𝑏11 − 𝑎22𝑏12 𝑎12𝑏12 − 𝑎22𝑏22

) 
(82) 

 

It follows that outer multiplication of biquaternions corresponds to usual multiplication of 

matrices (80), and inner multiplication corresponds to the multiplication of matrices (82), in which 

the products of row elements of the first matrix by column elements of the second matrix are not 

added, but subtracted from each other.  

 

In this paper, we primarily use a representation of biquaternions based on an isomorphism 

of the first type. Because of this, outer product of biquaternions has the usual properties of matrix 

multiplication, including associativity. Inner product of biquaternions, unlike outer product, does not 

possess associativity. It also turns out that outer product of biquaternions does not depend on chosen 
basis, while their inner product is basis-dependent.  However, you can use an alternative 

representation of biquaternions, in which, on the contrary, inner product will be associative and 

basis-independent, while outer product will be non-associative and basis-dependent. 
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2. Products of elements of isotropic basis. 

Table 1 shows pairwise products of the elements of biquaternion isotropic basis for two 

basic types of multiplication: outer ⨀ and inner ⨂. 

 
Table1. Multiplication table of the elements of isotropic basis. 

Outer product ⨀ 
 

Inner product ⨂ 

𝐪⨀𝐪 = 0 𝐪∗⨀𝐪∗ = 0 

𝑁⨀𝑁̅ = 0 𝑁̅⨀𝑁 = 0 

𝐪⨀𝐪∗ = 𝑁 𝐪∗⨀𝐪 = 𝑁̅ 

N⨀N=N 𝑁̅⨀𝑁̅ = 𝑁̅ 

𝐪⨀𝑁 = 0 𝐪∗⨀𝑁̅ = 0 

𝑁⨀𝐪 = 0 𝑁̅⨀𝐪∗ = 0 

𝐪⨀𝑁̅ = 𝐪 𝐪∗⨀𝑁 = 𝐪∗ 

𝑁⨀𝐪 = 𝐪 𝑁̅⨀𝐪∗ = 𝐪∗ 
 

𝐪⨂𝐪∗ = 0 𝐪∗⨂𝐪 = 0 

𝑁⨂𝑁 = 0 𝑁̅⨂𝑁̅ = 0 

𝐪⨂𝐪 = 𝐪 𝐪∗⨂𝐪∗ = 𝐪∗ 

𝑁⨂𝑁̅ = 𝐪∗ 𝑁̅⨂𝑁 = 𝐪 

𝐪⨂𝑁 = 0 𝐪∗⨂𝑁̅ = 0 

𝑁̅⨂𝐪 = 0 𝑁⨂𝐪∗ = 0 

𝐪⨂𝑁̅ = 𝑁̅ 𝐪∗⨂𝑁 = 𝑁 

𝑁⨂𝐪 = 𝑁 𝑁̅⨂𝐪∗ = 𝑁̅ 
 

 

 

In particular, as follows from this table, the elements 𝑁, 𝑁̅ are idempotent with respect to outer 

multiplication ⨀ and nilpotent with respect to inner multiplication ⨀, and the elements 𝐪, 𝐪∗ are, 
on the contrary, nilpotent with respect to inner multiplication ⨂ and idempotent with respect to 

outer multiplication. Thus, switching from one type of multiplication to the other converts 

idempotents and nilpotents into each other. 

 

 

Discussion and conclusions. 
 

By extending multiplication and conjugation operations and using isotropic basis, we 

constructed a biquaternion algebra, which we call chiral. In terms of chiral algebra, we obtained a 

new representation of the Dirac equation (44), that we called cyclic. In this biquaternionic 

representation, the Dirac equation is written in a single biquaternion string, implicitly combining 
the equations for the states of both chiralities – right and left. Besides the operations of outer and 

inner multiplication of biquaternions, the new representation is using a special cyclic conjugation 

operation. Thus, this representation reveals the inner cyclic nature of a Dirac particle. 

 

From the representation (44), we can conclude that the Dirac equation describes the 
relationship between linear and cyclic times that characterize the development of the wave 

function of a Dirac particle. As we have seen above, the usual gradient D is associated with the 

change of the wave function forward in time, while the opposite gradient −𝐷̅ is associated with the 

change of the wave function backward in time. Note that in our equation, each of forward and 

reverse gradients is combined with its own type of multiplication, inner or outer, and with its own 
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side of action, right or left: as ⨀𝐷̅ and 𝐷⨂. In general, it can be concluded that three types of time 

flow converge in the Dirac equation: linear forward, linear inverse, and cyclic. A given particle is 

evolving as a result of the relationship of these types of time. The presence of all three types of time 
is possible only for a massive particle.  Cyclic representation of the Dirac equation clearly reveals 

the time asymmetry of this equation. 

 

The Dirac equation and chiral algebra are closely related to each other. In the language of 

chiral algebra, the Dirac equation is written in a concise and homogeneous form, with easily seen 
physical meaning. At the same time, this equation also provides concrete meaning to purely 

mathematical operations of chiral algebra. Thus, the exchange conjugation serves as a spin flip 

operation, and the cyclic conjugation provides the particle with its spin.  

 

We have derived the rotation transformation – an analog of the Lorentz transformation, that 
creates the proper rotation of a massive particle.  The left-hand side of the Dirac equation gives 

such a transformation for the case of a plane wave. It is noteworthy that the rotation 

transformation is formed by the joint action of two linear energy-momentum operators, which 

resembles the action of a pair of linear momenta in classical mechanics, creating a rotation of a rigid 

body near a fixed center. We still need to determine a translation transformation related to rotation 
transformation. They will be connected to each other just as turn and boost transformations are 

related to each other.  

 

Chiral algebra provides a new mathematical framework for spin theory different from the 

traditional spinor formalism. In many respects, this apparatus, as well as biquaternions in general, 
is much simpler and easier to handle than the traditionally used tensor-spinor apparatus. A 

significant advantage of the biquaternion apparatus is the absence of cluttering up formulas with 

indexes.  

 

When using chiral algebra to describe spin, one does not need to resort to gamma matrices. 
Accordingly, the formulas are expressed in a more natural way. Especially important is the fact that 

all four components of the expansion in isotropic basis are fundamentally different from each other 

and reflect the essential characteristics of the longitudinal-transverse expansion. This allows us to 

see transverse and longitudinal nature in the obtained solutions of the equation. 

 

 An additional, inner, type of biquaternion multiplication allows to bypass the well-known 

problem of zero divisors of a biquaternion space, which used to be a major obstacle on constructing 

a biquaternion algebra with division. This problem has always been a stumbling block in the 

construction of the theory of biquaternionic analytic functions. As we saw above, the product of the 

same multipliers in one type of multiplication can be zero, but at the same time in another type of 
multiplication it is non-zero. Using both of these types of multiplication, we can construct division 

algebras for biquaternions and then, as we hope, a full-fledged biquaternion analysis. In such a two-

side analysis, the Dirac equation will presumably turn out to be a condition for analyticity of the 

wave function. If there is a particle mass, this analytical function will have a singularity point, where 
its analyticity is violated, and the function residue will be described by the right-hand side of the 

Dirac equation.  
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The expression of cyclic conjugation through a complex Hadamard matrix, that we 

discovered, indicates the connection of the Dirac equation with noise immunity algorithms involved 

in the processes of information transfer.  

 

In this paper, we have not investigated in the framework of the new approach such 

questions as quantum probabilities, currents, Fermi-Dirac statistics, secondary quantization, etc., 

leaving these important items for future consideration. 
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