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Abstract

By incorporating gravitational binding energy into an effective mass Meff , we derive the RG
flow and the running gravitational coupling G(k). The gravitational coupling is given by G(k) =

GN

[
1− 3GNMfr

5Rmc2

(
1 + 15

14
GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3 k
(
1 + 15

14
GN

Rmc3 k
)]

, where Rm is the radius

of the mass or energy distribution, and Rgp−GR ≈ 1.16(
GNMfr

c2 ) ≈ 0.58RS is the critical radius
derived from general relativity at which the negative gravitational self-energy (binding energy)
balances the mass-energy. At Rm = Rgp−GR, where G(k) = 0 and the gravitational coupling
vanishes, G(k) resolves gravitational divergences without quantum corrections and provides effective
renormalization. This study proves that the QFT cut-off Λ ∼ MP c

2 serves as a physical boundary
across all energy scales in quantum gravity. Quantum fluctuations (∆E ∼ MP c

2) with ∆t ∼ tP
yield an energy distribution radius Rm ∼ lP , where negative gravitational self-energy balances
(or offsets) mass-energy, yielding ET ≈ 0 and thus eliminating divergences via G(k) = 0 and
preventing negative energy states. In contrast, for proton or electron masses, Rm ≫ Rgp−GR (or
Rgp), leading to ET ≈ Mc2, rendering gravitational effects negligible and unsuitable for a cut-
off. This affirms the Planck scale’s unique role in quantum gravity. For Rm < Rgp−GR, G(k) < 0,
inducing a repulsive force that prevents singularity formation in black holes. This framework unifies
solutions to gravitational divergences and singularity issues, offering new insights into cosmological
phenomena such as cosmic acceleration.

1. Introduction

Gravity is basically given by the Einstein-Hilbert action, where G is Newton’s constant and R is the scalar
curvature derived from the Riemann curvature tensor.

S =
1

16πG

∫
d4x

√
−gR (1)

However, it is known that several problems arise when trying to quantize this gravity theory.

1) The coupling constant has a dimension
Newton’s constant G, which is the coupling constant of gravity, has the dimension of mass−2 [1]. On the

other hand, the gauge theory covered in the Standard Model has a dimensionless coupling constant (scale-
invariant), so it can control the flow in an appropriate way at high energies.

However, in the case of gravity, since the coupling constant has a dimension, the divergence is not controlled
at high energies, and as it becomes more and more severe, it cannot be renormalized with only a finite number
of terms.

2) Non-renormalizability
In two-loop and above, non-renormalizable divergence inevitably appears.
Therefore, it is known that quantum gravity based on general relativity is fundamentally not renormalized,

and a new concept is needed. There are several methods to solve the divergence problem of gravity, but among
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them, there is a method called Asympotic Safety proposed by Weinberg [2] [3] [4]. The concept of Asympotic
Safety is a hypothesis that if the coupling constant of gravity converges to a specific fixed point at high energy,
the theory can be maintained finitely [4].

In this paper, I will present a solution to the renormalization problem of gravity using a method similar to
this asympotic safety. To do so, I will look at the solution to the singularity problem inside a black hole, where
the idea started, and then approach the renormalization problem of gravity.

2. Solution of the singularity problem of a black hole 2

2.1. Mass defect effect due to gravitational binding energy or gravitational potential energy
When two masses m are separated by r, the total energy of the system is

ET = 2mc2 − Gmm

r
(2)

If we introduce the negative equivalent mass −mgp for the gravitational potential energy,

−Gmm

r
= −mgpc

2 (3)

ET = 2mc2 − Gmm

r
= 2mc2 −mgpc

2 = (2m−mgp)c
2 = m∗c2 (4)

The gravity of a composite particle composed of two objects acting on a mass m3 that is relatively far away
is

F = −Gm∗m3

R2
= −G(2m−mgp)m3

R2
= −G(2m)m3

R2
− G(−mgp)m3

R2
(5)

That is, when considering the gravitational action of a bound system, not only the mass in
its free state but also the binding energy term (−mgp) should be considered. The total mass or
equivalent mass m∗ of the system is less than the mass of 2m when the two objects were in a free state. The
bound objects experience a mass loss (defect) due to the gravitational binding energy. This is equivalent to
having a negative equivalent mass in the system.

In gravitationally bound systems, changes in configuration (e.g., orbital reduction) lead to a decrease in
total energy and effective mass due to energy radiation, as seen in celestial mechanics [6].

2.2. Gravitational self-energy or total gravitational potential energy of an object
The concept of gravitational self-energy is the total of gravitational potential energy (Ugp) possessed by

a certain object M itself. Since a certain object M itself is a binding state of infinitesimal mass dMs, it
involves the existence of gravitational potential energy among these dMs and is the value of adding up these.
M =

∑
dM . The gravitational self-energy is equal to the minus sign of the gravitational binding energy. Only

the sign is different because it defines the gravitational binding energy as the energy that must be supplied to
the system to bring the bound object into a free state.

In the case of a spherical uniform distribution, total gravitational potential energy or gravitational binding
energy (−Ugp) is

Ugp = −3

5

GMfr
2

R
(6)

Ugp−Black−hole(R = RS) = −3

5

GMfr
2

R
≈ −3

5

GMfr
2

(
2GMfr

c2 )
= −0.3Mfrc

2 (7)

2Chapter 2 is almost the same as the contents of the previous paper [5]. And, some research contents have been
added. It is cited to understand the mass defect effect due to gravitational binding energy or gravitational potential
energy, and the negative equivalent mass effect.
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Figure 1: Since all mass M is a set of infinitesimal mass dMs and each dM is gravitational source,
too, there exists gravitational potential energy among each of dMs. Generally, mass of an object
measured from its outside corresponds to the value of dividing the total of all energy into c2.

Strictly speaking, the mass M of a black hole is not the mass Mfr in the free state, but the equivalent mass
(or effective mass) including the binding energy. Here, Mfr is used for simple estimation.

In the general case, the value of gravitational potential energy is small enough to be negligible, compared
to mass energy Mc2. So generally, there was no need to consider gravitational potential energy. However the
smaller R becomes, the higher the absolute value of Ugp. For this reason, we can see that Ugp is likely to offset
the mass energy in a certain radius.

Thus, looking for the size in which gravitational potential energy becomes equal to mass energy
by comparing both,

Ugp = | − 3

5

GMfr
2

Rgp
| = Mfrc

2 (8)

Rgp =
3

5

GMfr

c2
(9)

This equation means that if mass Mfr is uniformly distributed within the radius Rgp, negative gravitational
potential energy for such an object equals positive mass energy in size. So, in case of such an object, positive
mass energy and negative gravitational potential energy can be completely offset while total energy is zero.
Since total energy of such an object is 0, gravity exercised on another object outside is also 0.

Comparing Rgp with RS, the radius of Schwarzschild black hole,
In the rough estimate above, since the gravitational potential energy at the event horizon is Ugp =

−0.3Mfrc
2, the mass energy of the black hole will be approximately EBH = 0.7Mfrc

2.

RS =
2GM

c2
≈

2G( 7
10Mfr)

c2
=

7

5

GMfr

c2
(10)

Rgp =
3

5

GMfr

c2
=

3

7
(
7GMfr

5c2
) ≈ 3

7
RS ≈ 0.43RS (11)

This means that there exists the point where negative gravitational potential energy becomes equal to
positive mass energy within the radius of black hole, and that, supposing a uniform distribution, the value
exists approximately at the point 0.43RS .

Even if we apply the kinetic energy and virial theorem, the radius only decreases as negative energy cancels
out positive energy, but the core claim that “there is a region that cannot be compressed any further due
to negative gravitational potential energy” remains unchanged. Although potential energy changes to kinetic
energy, in order to achieve a stable bonded state, a part of the kinetic energy must be released to the outside
of the system.

Considering the virial theorem (K = −U/2),

Rgp−vir =
1

2
Rgp (12)
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Figure 2: The internal structure of a black hole based on the radius of the mass (or energy) distribution.
a) Existing Model. b) New Model. If Rm is less than Rgp(orRgp−vir), this region becomes negative
energy(mass) state. There is a repulsive gravitational effect between the negative masses, which
causes it to expand again. This region (within Rgp(orRgp−vir)) exercises anti-gravity on all particles
entering this area, and accordingly prevents all masses from gathering to r = 0. If, over time, the
black hole stabilizes, the black hole does not have a singularity in the center, but it has a zero (total)
energy zone. Since there is a repulsive gravitational effect between negative energies (masses), the
mass distribution expands, and when the mass distribution expands, the magnitude of the negative
gravitational potential energy decreases, so it enters the positive energy state again. When the system
(mass distribution) becomes a positive energy state, gravitational contraction will exist again. In this
way, gravitational contraction and expansion will be repeated until the total energy of the system
becomes 0, and finally it will stabilize at a state where the total energy is 0. The maximum size of
the Zero Energy Zone is Rgp.

2.3. No singularity at the center of a black hole
The total energy of the system, including the gravitational potential energy or binding energy, is

ET (R) =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
=Mc2 − 3

5

GM2

R
(13)

Let’s gradually reduce R from when R is infinite.
This is assuming that it is stationary after the orbital transition. If there is kinetic energy due to rotation

in the orbit, we can reflect only half of the negative gravitational potential energy term by using the virial
theorem. K = −1

2U

ET (R = ∞) = Mfrc
2 − 3

5

GMfr
2

R
= Mfrc

2 (14)

ET (R = RS) = Mfrc
2 − 3

5

GMfr
2

R
≈ Mfrc

2 − 3

5

GMfr
2

(
2GMfr

c2 )
= Mfrc

2 − 3

10
Mfrc

2 = 0.7Mfrc
2 (15)

ET (R = Rgp) = Mfrc
2 − 3

5

GMfr
2

R
= Mfrc

2 − 3

5

GMfr
2

( 35
GMfr

c2 )
= Mfrc

2 −Mfrc
2 = 0 (16)

ET (R =
1

10
Rgp) = Mfrc

2 − 3

5

GMfr
2

R
= Mfrc

2 − 3

5

GMfr
2

( 3
50

GMfr

c2 )
= Mfrc

2 − 10Mfrc
2 = −9Mfrc

2 (17)

From the equation above, even if some particle comes into the radius of black hole, it is not a fact that it
contracts itself infinitely to the point R = 0. From the point Rgp (or Rgp−vir), gravity is 0, and when it enters
into the area of Rgp (or Rgp−vir), total energy within Rgp (or Rgp−vir) region corresponds to negative values
enabling anti-gravity to exist. This Rgp (or Rgp−vir) region comes to exert repulsive effects of gravity on the
particles outside of it, therefore it interrupting the formation of singularity at the near the area R = 0.

4



However, it still can perform the function as black hole because the emitted energy will exist in a region
larger than r > Rgp (or Rgp−vir). Since the emitted energy cannot escape the black hole, it is distributed in
the region Rgp (or Rgp−vir) < r < RS . Since the total energy of the entire range (0 ≤ r < RS) inside the black
hole is positive, it functions as a black hole.

If you have only the concept of positive energy, please refer to the following explanation.
The total energy of the system, including the gravitational potential energy, is

ET =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
= Mc2 − 3

5

GM2

R
(18)

If, R = Rgp

ET (R = Rgp) = Mfrc
2 − 3

5

GMfr
2

R
= Mfrc

2 − 3

5

GMfr
2

( 35
GMfr

c2 )
= Mfrc

2 −Mfrc
2 = 0 (19)

From the point of view of mass defect, r = Rgp(orRgp−vir) is the point where the total energy of the system
is zero. For the system to compress more than this point, there must be an positive energy release from the
system. However, since the total energy of the system is zero, there is no positive energy that the system can
release. Therefore, the system cannot be more compressed than r = Rgp(orRgp−vir). So black hole doesn’t
have singularity.

2.4. The gravitational singularity can be solved by gravity, not by quantum mechanics
In case of the smallest black hole with three times the solar mass [7], RS = 9km. Rgp of this object is as far

as 3.87km. In other words, even in a black hole with smallest size that is made by the contraction
of a star, the distribution of internal mass can’t be reduced to at least radius 3.87km(Rgs−vir =
1.94km). Even for black holes of varying sizes, from supermassive to stellar-mass, the critical radius Rgp

prevents singularity formation before quantum scales are reached.
Before reaching quantum mechanical scales, the singularity problem is solved by gravity itself.

2.5. The minimal size of existence

[ Existence = the sum of infinitesimal existences composing an existence ]

A single mass M for some object means that it can be expressed as M =
∑

dM and, for energy, E =
∑

dE.
The same goes for elementary particles, which can be considered a set of dMs, the infinitesimal mass.

Rgp equation means that if masses are uniformly distributed within the radius Rgp, the size of negative
binding energy becomes equal to that of mass energy. This can be the same that the rest mass, which used to
be free for the mass defect effect caused by binding energy, has all disappeared. This means the total energy
value representing “some existence” coming to 0 and “extinction of the existence”. Therefore, Rgp is considered
to act as “the minimal radius” or “a bottom line” of existence with some positive energy.

Gravitational self-energy can provide the concept of minimal length or minimal radius, one of the reasons
for introducing string theory.

lmin ≈ Rmin ≥ Rgp =
3

5

GM

c2
(20)

The important point here is that the minimum length or minimum radius is proportional to
the fundamental physical quantity of existence, mass M , or energy E. In other words, there is a limit
to compressing large energy into a small space.

This resolution of the singularity problem via gravitational self-energy sets the foundation for addressing
gravitational divergences at high energies, as discussed in Section 4.
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3. Extension of general relativity and new solution 3

In all existing solutions, the mass term M must be replaced by (Mfr −Mgp)
As discussed in Chapter 2, binding energy becomes significant in strong gravitational fields, necessitating

a redefinition of mass as Mfr − Mgp in solutions. We can solve the problem of singularity by separating the
term(−Mgp) of gravitational potential energy (gravitational self-energy) from mass and including it in the
solutions of field equation.

M → (Mfr) + (−Mgp), In all existing solutions(Schwarzschild, Kerr, Reissner-Nordström, ... ), the mass
term M must be replaced by (Mfr −Mgp).

For example, Schwarzschild solution is,

ds2 = −(1− 2GM

c2r
)c2dt2 +

1

(1− 2GM
c2r )

dr2 + r2dθ2 + r2sin2θdϕ2 (21)

Schwarzschild-Choi solution is

ds2 = −(1− 2G(Mfr −Mgp)

c2r
)c2dt2 +

1

(1− 2G(Mfr−Mgp)
c2r )

dr2 + r2dθ2 + r2sin2θdϕ2 (22)

In the case of a spherical uniform distribution,

−Mgp = −3

5

GMfr
2

Rc2
(23)

1) If Mfr ≫ | −Mgp|, in other words if r ≫ RS , we get the Schwarzschild solution.
2) If Mfr = | −Mgp|, It has a flat space-time.
3) If Mfr ≪ | −Mgp|, in other words if 0 ≤ r ≪ Rgp,

ds2 ≃ −(1 +
2GMgp

c2r
)c2dt2 +

1

(1 +
2GMgp

c2r )
dr2 + r2dθ2 + r2sin2θdϕ2 (24)

In the domain of 0 ≤ r ≪ Rgp,
The area of within Rgp has gravitational potential energy of negative value, which is larger than mass energy

of positive value. Negative mass has gravitational effect which is repulsive to each other [8]. So, we can assume
that −Mgp is almost evenly distributed.

4. Effective renormalization of gravity

4.1. Asymptotic Safety Method
Since Newton’s constant GN has a negative mass dimension ([GN ] = −2 in 4 dimensions), it is difficult

to renormalize because high-order infinities appear during perturbation expansion. However, the Asymptotic
Safety method is the idea that even in theories such as quantum gravity, which are difficult to renormalize using
traditional perturbation methods, a theory that can be predicted at UV (ultra-high energy) can be constructed
using a nonperturbative method [2] [3] [4].

Generally, the RG (Renormalization Group) flow for coupling gi is expressed as follows:
Beta function equation

βi(g) =
dgi
d ln k

(25)

The conventional beta function form of G(k) in nonperturbative RG flow

dG(k)

d ln k
= β(G) = (d− 2)G− cG2 (26)

3Chapter 3 is almost the same as the contents of the previous paper [5]. It is cited to understand the mass defect
effect due to gravitational binding energy or gravitational potential energy, and the negative equivalent mass effect.
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d: spacetime dimension (usually d = 4 is assumed)
c: quantum correction factor, which varies depending on the details of the theory.
When solving the RG flow equation, the general solution of G(k) is expressed as follows.

G(k) =
G0

1 + cG0 ln(k/k0)
(27)

G0: Initial Newton constant (value at low energy, usually known as GN )
k0 : Initial energy scale

4.2. Find G(k) or Meff (k)
Usually, when applying RG flow, G(k) is used as follows.

F = −G(k)Mm

r2
(28)

G(k) is a function that varies with distance or energy, and k basically means energy scale (or momentum
scale). k ∼ p ∼ E

c

In Newtonian gravity, the mass M of an object is not simply its free state mass, but rather the equivalent
mass that includes all forms of energy associated with the object-such as rest mass energy, binding energy, kinetic
energy, and potential energy. Similarly, in general relativity, the energy-momentum tensor Tµν represents the
equivalent mass-energy, encompassing all energy contributions present in the system [9].

Therefore, when using the mass term in gravitational analyses, it is essential to recognize that the physically
relevant quantity is not the free mass but the equivalent mass Meff , which incorporates various energy com-
ponents. While Meff can be complex due to the inclusion of multiple energy terms, for practical analysis, we
often focus on the minimal physical quantities that must exist whenever mass or energy is present. For example,
in the case of electromagnetic energy, the presence of charge is required; if there is no charge, electromagnetic
energy does not need to be considered.

However, for any nonzero mass or energy, there always exists a minimal physical quantity that must be
included: the gravitational binding energy or gravitational self-energy. This gravitational self-energy arises
inherently from the existence of mass or energy and, being negative, has a unique and essential role.

Thus, when considering mass or energy distributions, the minimal form of the effective mass can be expressed
as

Meff = Mfr −Mbinding (29)

where Mbinding denotes the equivalent mass of the gravitational binding energy or gravitational self-energy.

Existing researchers are having difficulties while focusing on G(k), but let’s think a little differently,

F = −GNMeffm

r2
= −

(GN
Meff

M )Mm

r2
= −G(k)Mm

r2
(30)

In the framework of classical Newtonian mechanics and general relativity, the effective mass Meff is inher-
ently incorporated, and from this Meff , a new gravitational coupling constant G(k) naturally emerges.

Previously, when solving the singularity problem of black holes, we were able to know that the mass M
changes by including binding energy or gravitational potential energy. This is a method that utilizes that.

For a simple calculation, assuming a spherical uniform distribution

Meff = Mfr −Mgp = Mfr −
3

5

GNMfr
2

Rc2
(31)

Meff (k) = (1− 3

5

GNMfr

Rc2
)Mfr = (1− 3

5

GN
E
c2

Rc2
)Mfr = (1− 3GN

5Rc3
k)Mfr (32)
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This can be reorganized and expressed in the form of G(k).

F = −G(k)Mfrm

r2
= −GNMeffm

r2
= −

GN (1− 3GN

5Rc3 k)Mfrm

r2
= −(1− 3GN

5Rc3
k)GN

Mfrm

r2
(33)

G(k) = (1− 3GN

5Rmc3
k)GN = (1− 3GNMfr

5Rmc2
)GN = (1− Rgp

Rm
)GN (34)

Rm is the radius of the mass distribution or energy distribution. To avoid confusion with the Ricci scalar
R or the usual R notation, the previously used R is changed to Rm.

Rgp is the radius where the gravitational potential energy (or binding energy) with a negative value is equal
to the positive energy.

Rgp =
3

5

GNMfr

c2
(35)

If B ≡ 3GN

5Rc3 is defined,

G(k) = (1− 3GN

5Rc3
k)GN = (1−Bk)GN (36)

If, k∗ = 1
B = 5Rc3

3GN
or R = Rgp, G(k∗) = 0

G(k∗) = 0 means that at that particular energy scale (for example, in the UV regime) the effective gravi-
tational coupling vanishes. In other words, rather than diverging to infinity at high energies, the gravitational
interaction actually disappears at that scale.

We want lim
r→0

Meff

r2 = 0 to eliminate divergence. That is, Meff must decrease faster than r2.

In the previous analysis, Rgp = 3
5
GMfr

c2 ≈ 3
7RS

At Rgp = 3
5
GMfr

c2 before r reaches 0, Meff goes to 0. Therefore, we can solve the gravitational divergence
problem. Also, in the low energy limit, G(k) → GN . And, in the Meff equation, when r ≫ RS , we can see
that it is consistent with the Newton equation.

4.3. New beta function

G(k) = (1− 3GN

5Rc3
k)GN = (1−Bk)GN (37)

Differentiating both sides with respect to ln k:

dG(k)

d ln k
=

d

d ln k
(1−Bk)GN = GN (−B)

dk

d ln k
(38)

dk

d ln k
= k (39)

β(G) = −BGNk (40)

At a specific k∗ = 1
B = 5Rc3

3GN
, G(k∗) = 0, the value of the beta function is

β(G)|k= 1
B
= −BGNk = −GN (41)

Therefore, the new β(G) is, if we adjust the existing equation,

β(G) = (d− 2)G(k)− cG(k)
2
(1− G(k)

GN
)−GN (42)

Looking at this equation, if k = k∗ = 1
B = 5Rc3

3GN
or R = Rgp, G(k) = 0, and we get β(0) = −GN , which is

consistent with the previous result.

In the Asymptotic Safety method, when the energy goes to infinity (k → ∞), we find a Non-Gaussian Fixed
Point (NGFP) where the coupling constants have a specific finite value. However, in this model, G(k) does not
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simply converge to a finite value, but there is a point where G(k) → 0 at a specific scale R = Rgp. This solves
the divergence problem of gravity in a new way.

Also, when k > 1
B = 5Rc3

3GN
or R < Rgp, we get G(k) < 0, a repulsive force occurs. This repulsive force

prevents gravitational collapse, so that a singularity is not formed at the center of the black hole.

And, in the existing model, a quantum correction term was added to produce the Non-Gaussian Fixed Point
(NGFP) and repulsive effects. However, in this model, if k > 1

B , antigravity is generated, solving the singularity
problem. Therefore, there is no need to introduce a quantum correction term.

Therefore, If the quantum correction term is deleted, the beta function becomes a simpler form.

β(G) = (d− 2)G(k)−GN (43)

To find a fixed point, if d = 4, β(G) = 0

β(G) = 2G(k)−GN = 2(1− Rgp

R
)GN −GN = (1− 2Rgp

R
)GN = 0 (44)

Fixed point is

R = 2Rgp =
6

5

GMfr

c2

4.4. Relativistic correction to gravitational binding energy and the running gravitational
coupling4

In previous sections, the gravitational binding (self) energy of a uniform sphere was described using the
Newtonian mechanics,

Ugp = −3

5

GNMfr
2

Rm
(45)

which is accurate for weak gravitational fields (GM
Rc2 ≪ 1).

However, in regimes approaching the Planck scale or inside black holes, general relativistic effects become
significant.

1) Relativistic binding energy [9] [10]

Ugp = c2
∫ R

0

4πr2ρ(r)

[
1−

(
1− 2GM(r)

rc2

)− 1
2

]
dr (46)

Ugp ≈ c2
∫ R

0

4πr2ρ(r)

[
−GM(r)

rc2
− 3

2

G2M(r)
2

r2c4
− 5

2

G3M(r)
3

r3c6
· · ·

]
dr (47)

Ugp ≈ −3GM2

5R

(
1 +

15

14

GM

Rc2
+

25

18
(
GM

Rc2
)
2)

(48)

4Here I am using several gravitational binding energy or gravitational potential energy functions. This may not be
a completely accurate value. However, the core argument remains the same: “We must consider gravitational binding
energy (or self-energy), and considering gravitational binding energy (or gravitational self-energy) will solve the problem
of gravity divergence.” And, we use approximations in many fields. If you can find a better binding energy function or
gravitational self-energy function, you can use that.

Also, if you want to consider the energy of the gravitational field, not the gravitational potential energy, then here is
the possibility: According to Shell Theorem and Birkhoff’s Theorem, in a spherically symmetric system, the gravitational
effect at a given radius is determined only by the mass or energy content surrounded within that radius, and contributions
from outside the shell do not affect the internal dynamics. Although the energy of the gravitational field is generally
considered to be a global quantity and is difficult to localize in general relativity, the application of these theorems
allows us to treat the gravitational field energy as a localized contribution within the shell (That is, the energy of the
gravitational field is considered only in the 0 ≤ r ≤ Rm part). This approach is justified by including only the energy
density, pressure, and other physical quantities inside the shell in deriving cosmological equations such as the Friedmann
equation.
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If we approximate only the first term and change it to the notation of this paper

Ugp−GR ≈ −3GNMfr
2

5Rm

(
1 +

15

14

GNMfr

Rmc2

)
(49)

Accordingly, the effective mass incorporating relativistic gravitational self-energy becomes

Meff = Mfr −
|Ugp−GR|

c2
≈ Mfr −

3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)
(50)

The running gravitational coupling constant G(k) is derived based on the effective mass Meff incorporating
the general relativistic (GR) correction to the gravitational self-energy. We define G(k) as proportional to the
ratio of effective mass to free mass:

Meff = Mfr −
|Ugp−GR|

c2
(51)

Substituting the expression for Meff :

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
(52)

Using the critical radius Rgp = 3
5
GNMfr

c2 , derived from the Newtonian approximation where the total energy
ET = 0, the running gravitational coupling constant G(k) can be expressed as:

G(k) = GN

[
1− Rgp

Rm

(
1 +

25

14

Rgp

Rm

)]
(53)

This expression incorporates both the first-order (Newtonian) and second-order (general relativistic correc-
tion) terms. At approximately Rm ≈ Rgp, the gravitational coupling G(k) approaches zero under the first-order
approximation, indicating the vanishing of gravitational interaction. For smaller Rm, G(k) becomes negative,
suggesting a repulsive force.

Using the Schwarzschild radius RS =
2GNMfr

c2 , which characterizes the event horizon of a black hole for
mass Mfr(based on free state mass), the running gravitational coupling constant G(k) can beexpressed as:

G(k) = GN

[
1− 3RS

10Rm

(
1 +

15

28

RS

Rm

)]
(54)

This form incorporates both the Newtonian term and the general relativistic correction. At approximately
Rm ≈ 0.3RS , which aligns with the critical radius under first-order approximation, G(k) ≈ 0, indicating the
vanishing of gravitational interaction. For smaller Rm, G(k) < 0, suggesting a repulsive gravitational force that
prevents singularity formation.

If we look for the Rgp−GR value that makes G(k) = 0,

Rgp−GR ≈ 1.93Rgp ≈ 1.16
GM

c2
≈ 0.58RS (55)

This result indicates that the GR correction increases the magnitude of the gravitational self-energy, resulting
in a critical radius approximately 1.93 times larger than the Newtonian approximation and about half of the
Schwarzschild radius RS . At this critical radius Rgp−GR, the effective mass approaches zero, leading to G(k) = 0,
which signifies the vanishing of gravitational interaction and resolves divergences at high energy scales. If the
radius is less than Rgp−GR, G(k) < 0, suggesting a repulsive gravitational force that prevents singularity
formation in black holes.

[ Implications and Physical Interpretation ]
The relativistic corrections make the critical radius at which the total energy disappears approximately 1.93

times larger.

10



For Rm ≫ Rgp−GR ≈ 0.58RS , the gravitational self-energy term is negligible, and the running gravitational
coupling G(k) returns to the gravitational coupling constant GN .

As the radius approaches the critical value Rm = Rgp−GR ≈ 0.58RS , the coupling G(k) smoothly goes to
zero, ensuring that gravitational self-energy does not diverge. Remarkably, this mechanism allows gravity to
undergo self-renormalization, naturally circumventing the issue of infinite divergences without invoking quantum
modifications.

For Rm < Rgp−GR ≈ 0.58RS , the gravitational coupling becomes negative (G(k) < 0), indicating a repulsive
or antigravitational regime. This provides a natural mechanism preventing further gravitational collapse and
singularity formation, consistent with the arguments in Section 2.

In summary, replacing the Newtonian gravitational self-energy term with the relativistically corrected form
throughout our framework leads to an effective running gravitational coupling that remains finite-indeed,
vanishes-at high energies or small length scales, thus providing a robust solution to the problem of gravita-
tional divergences without recourse to quantum corrections. This strengthens the key claim of this work: that
gravity can renormalize itself by including the full (relativistic) gravitational binding energy.

2) Post-Newtonian binding energy [9]

Ugp = −
∫ R

0

Gm(r)

r

dm(r)[
1− 2Gm(r)

rc2

] 1
2

(56)

Ugp ≈ −3GM2

5R

(
1 +

5

7

GM

Rc2
+

5

6
(
GM

Rc2
)
2

+ · · ·
)

(57)

If we approximate only the first term and change it to the notation of this paper

Ugp−PN ≈ −3GNMfr
2

5Rm

(
1 +

5

7

GNMfr

Rmc2

)
(58)

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

5

7

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

5

7

GN

Rmc3
k

)]
(59)

If we look for the Rgp−PN value that makes G(k) = 0,

Rgp−PN ≈ 1.7Rgp = 1.02(
GNMfr

c2
) = 0.51RS (60)

4.4.1. Determination of momentum or energy scale k at which G(k)=0
In the context of the running gravitational coupling constant G(k), the parameter k represents the mo-

mentum scale, which carries the dimension of momentum and is related to both momentum P and energy via
k ∼ P ∼ E/c. This relationship reflects the characteristic energy or momentum scale associated with the physi-
cal system under consideration, often tied to the inverse of the spatial extent of the mass or energy distribution
(Rm), as k ∼ c/Rm.

We solve for the critical momentum scale k at which G(k) = 0, indicating the vanishing of gravitational
coupling, using the expression:

G(k) = GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
= 0 (61)

Solving the above equation for k, we obtain the positive root corresponding to a physically meaningful scale:

k ≈ 0.865
Rmc3

GN
(62)

For example, if Rm is on the Planck scale,
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k ≈ 0.865(
Rmc3

GN
) = 0.865(

lP c
3

GN
) = 0.865(

√
h̄c

GN
c) ≈ MP c (63)

This value of k represents the momentum or energy scale at which G(k) = 0, signifying the point where
gravitational coupling vanishes. The result depends on the radius Rm, suggesting that the critical scale varies
with the size of the mass or energy distribution. For instance, if Rm is on the Planck scale, i.e., Rm ∼
lP =

√
h̄GN

c3 , the critical k corresponds to a momentum scale near the Planck momentum, k ∼ MP c, where

MP =
√

h̄c
GN

is the Planck mass. This alignment with the Planck scale further supports the notion that

gravitational interactions are suppressed at ultra-high energies, providing a natural mechanism to eliminate
divergences without quantum corrections.

4.5. Solving the problem of gravitational divergence at high energy: Gravity’s Self-Renormalization
Mechanism

At low energy scales (E ≪ MP c
2,∆t ≫ tP ), the divergence problem in gravity is addressed through effective

field theory (EFT) [11] [12]. However, at high energy scales (E ∼ MP c
2,∆t ∼ tP ), EFT breaks down due to

non-renormalizable divergences, leaving the divergence problem unresolved [13].

Since the mass M is an equivalent mass including the binding energy, this study proposes the running
coupling constant G(k) that reflects the gravitational binding energy. At the Planck scale (Rm ∼ Rgp−GR ≈
1.16(

GNMfr

c2 ) ≈ lP ), G(k) = 0 eliminates divergences, and on higher energy scales than Planck’s
(Rm < Rgp−GR), a repulsion occurs as G(k) < 0, solving the divergence problem in the entire energy
range.This implies that gravity achieves self-renormalization without the need for quantum corrections.

With the relativistic correction, the running gravitational constant G(k) can be equivalently written as:

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
(64)

where k ∼ P ∼ E/c

If Rm > Rgp−GR ≈ lP , G(k) > 0, yielding an attractive force.
If Rm = Rgp−GR ≈ lP , G(k) = 0, the gravitational coupling vanishes. Gravity is also zero.
If Rm < Rgp−GR ≈ lP , G(k) < 0, yielding a repulsive force or antigravity.

This repulsive force prevents gravitational collapse and prevents the formation of a singularity at the center
of the black hole. Since the point where Rm < Rgp−GR exists inside the event horizon of the black hole, it
solves the singularity problem without colliding with observations.

4.5.1. At Planck scale

If, M ∼ MP =
√

h̄c
GN

Rgp−GR ≈ 1.16(
GNMP

c2
) = 1.16

√
h̄GN

c3
= 1.16lP (65)

This means that Rgp−GR, where G(k) = 0, i.e. gravity is zero, is the same size as the Planck scale.
At Rm = Rgp−GR,

G(k) = 0 ⇒ Πdiv ∼ G(k)
ε R2 = 0

This means that divergence is eliminated at the Planck scale.

4.5.2. At high energy scales larger than the Planck scale
If Rm < Rgp−GR ≈ lP (That is, roughly E > MP c

2)

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
< 0 (66)
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In energy regimes beyond the Planck scale (Rm < Rgp−GP ), where G(k) < 0, the gravitational coupling
becomes negative, inducing a repulsive force or antigravity effect. This anti-gravitational effect prevents grav-
itational collapse and singularity formation while maintaining uniform density properties, thus mitigating UV
divergences across the entire energy spectrum by ensuring that curvature terms remain finite. While this re-
pulsive force is a novel prediction of our model and may be regarded as unverified due to the lack of direct
experimental evidence for antigravity in other research frameworks, we propose that this mechanism is not
only a theoretical construct for resolving gravitational divergences but also manifests in observable cosmological
phenomena.

Specifically, we argue that the accelerated expansion of the observable universe provides indirect evidence
of antigravity effects related to G(k) < 0. The observable universe, with a radius of approximately 46.5
billion light-years, has a total mass-energy that would correspond to an event horizon of roughly 475.3 billion
light-years 5. if calculated based on standard general relativity. However, the critical radius Rgp−GR, where
negative gravitational self-energy balances positive mass-energy, is estimated at approximately 275.7 billion
light-years (Rgp−GR = 0.58RS , When using Rgp, 142.6 billion light-years) for the observable universe’s mass-
energy content [5]. Since the current radius of the observable universe (Rm ≈ 46.5 billion light-years) is less
than Rgp−GR ≈ 275.7 billion light-years, the universe itself resides in a regime where Rm < Rgp−GR, implying
G(k) < 0. Consequently, there exists a repulsive gravitational effect that promotes the accelerated expansion
of the observable universe, which is the cause of the accelerated expansion and the source of dark energy [14].
This contrasts with conventional dark energy models by attributing cosmic acceleration to a fundamental
gravitational mechanism rather than an additional energy component.

This interpretation suggests that the mechanism introduced to resolve gravitational divergences at high
energies is actively at play on cosmological scales, providing a unified explanation for both the theoretical issue
of UV divergences and the empirical phenomenon of cosmic acceleration. Thus, the anti-gravitational effects
predicted by our model are not simply unverified claims, but is potentially verifiable by comparing the observed
dark energy value with the dark energy value calculated by this model. Direct experimental verification of
anti-gravity remains challenging, but it can also be verified by calculating the Rgp of the observable universe
and comparing it to the inflection point of the observed acceleration expansion [14].

While the concept of negative mass and energy states associated with G(k) < 0 may face skepticism due
to historical biases in mainstream physics favoring positive energy conditions (e.g., Strong and Weak Energy
Conditions), such conditions are not fundamental laws but rather analytical tools used for categorizing systems
and simplifying validations. In physics, the ultimate standard for judgment is not human perception but the
reality of nature and the universe itself. The discovery of the universe’s accelerated expansion, driven by dark
energy with negative pressure [15] [16], illustrates that deviations from positive energy conditions do not result
in physical inconsistencies.

Similarly, in our model, the negative mass state that generates a repulsive gravitational effect does not
breach causality, as it does not entail superluminal propagation [8]. Superluminal propagation is linked to
tachyons with imaginary mass, not negative mass.

The objections frequently raised against negative mass, such as the vacuum instability problem, runaway
motion, and perpetual motion issues, arise from misconceptions about the characteristics of negative mass, and
these assertions are flawed [17].

4.5.3. Resolution of the two-loop divergence in perturbative quantum gravity via the effective
mass framework

In perturbative quantum gravity, the Einstein-Hilbert action is expanded around flat spacetime using a
small perturbation hµν , with the gravitational field expressed as gµν = ηµν + κhµν , where κ =

√
32πG(k) and

GN is Newton’s constant. Through this expansion, interaction terms such as L(3), L(4), etc., emerge, and
Feynman diagrams with graviton loops can be computed accordingly.

gµν = ηµν + κhµν (67)

5Rm = 46.5BLY , ρ = ρc = 8.50× 10−27kgm−3, RS = 2GMfr/c
2, Rgp = 0.3RS , Rgp−GR = 0.58RS
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S =

∫
d4x(L(2) + κL(3) + κ2L(4) + · · ·) (68)

κ =
√
32πGN (69)

where L(2) represents the free graviton Lagrangian, and L(3), L(4), . . . denote higher-order interaction terms
(e.g. 3-point and 4-point graviton interactions). At the 2-loop level, Goroff and Sagnotti (1986) [13] demon-
strated that the perturbative quantization of gravity leads to a divergence term of the form:

Γ
(2)
div ∝ κ4R3 (70)

This divergence is non-renormalizable, as it introduces terms not present in the original Einstein-Hilbert
action, thus requiring an infinite number of counterterms and destroying the predictive power of the theory.

However, this divergence occurs by treating the mass M involved in gravitational interactions as a constant
quantity. The concept of invariant mass pertains to the rest mass remaining unchanged under coordinate
transformations; this does not imply that the rest mass of a system is intrinsically immutable. For instance, a
hydrogen atom possesses different rest masses corresponding to the varying energy levels of its electrons. Both
Newtonian gravity and general relativity dictate that the physically relevant source term is the equivalent mass,
which includes not only rest mass energy but also binding energy, kinetic energy, and potential energy. When
gravitational binding energy is included, the total energy of a system is reduced, yielding an effective mass:

Meff = Mfr −Mbinding

Based on this, a running gravitational coupling G(k) can be derived:

G(k) = GN

[
1− 3GNMfr

5Rmc2

(
1 +

15

14

GNMfr

Rmc2

)]
= GN

[
1− 3GN

5Rmc3
k

(
1 +

15

14

GN

Rmc3
k

)]
(71)

At this point Rm = Rgp−GR ≈ 1.16(
GNMfr

c2 ), G(k) = 0, implying that the gravitational interaction vanishes.

Since the perturbative expansion uses κ =
√
32πG(k), it follows that:

κ(k) =
√
32πG(k) → 0 as Rm → Rgp−GR

Building upon the resolution of the 2-loop divergence identified by Goroff and Sagnotti (1986), our model
extends to address divergences across all loop orders in perturbative gravity through the running gravitational
coupling constant G(k). At the Planck scale (Rm = Rgp−GR), G(k) = 0, nullifying the coupling parameter

κ(k) =
√
32πG(k). If G(k) → 0, κ → 0.

As a result, all interaction terms involving κ, including the divergent 2-loop terms proportional
to κ4R3, vanish at this scale. This naturally eliminates the divergence without requiring quantum corrections,
rendering the theory effectively finite at high energies. Here, R3 refers to the third-order term of the Riemann
curvature tensor, specifically of the form Rρσ

µνR
λτ
ρσR

µν
λτ , which arises in the 2-loop divergence as computed by

Goroff and Sagnotti (1986) [13]. This mechanism effectively removes divergences, such as the 2-loop
R3 term, as well as higher-order divergences (e.g., R4, R5, . . .) at 3-loop and beyond, which are
characteristic of gravity’s non-renormalizability.

In addition, in the energy regime above the Planck scale (Rm < Rgp−GR ≈ lP ), G(k) < 0, and the
corresponding energy distribution becomes a negative mass and negative energy state in the presence of an
anti-gravitational effect. This anti-gravitational effect prevents gravitational collapse and singularity formation
while maintaining uniform density properties, thus mitigating UV divergences across the entire energy spectrum
by ensuring that curvature terms remain finite.

However, due to the repulsive gravitational effect between negative masses, the mass distribution expands
over time, passing through the point where G(k) = 0 due to the expansion speed, and reaching a state where
G(k) > 0. This occurs because the gravitational self-energy decreases as the radius Rm of the mass distribution
increases, whereas the mass-energy remains constant at Mc2. When G(k) > 0, the state of attractive gravity
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acts, causing the mass distribution to contract again. As this process repeats, the mass and energy distributions
eventually stabilize at G(k) = 0, with no net force acting on them [5].

Unlike traditional renormalization approaches that attempt to absorb divergences via counterterms, this
method circumvents the issue by nullifying the gravitational coupling at high energies, thus providing a resolution
to the divergence problem across all energy scales. This effect arises because there exists a scale at which negative
gravitational self-energy equals positive mass-energy.

Furthermore, in the low-energy (infrared) regime where Rm ≫ Rgp−GR ≈ 1.16(
GNMfr

c2 ), we find G(k) ≈ GN .
In this domain, gravitational interactions behave classically, and gravitational self-energy is negligible. Although
divergences formally persist, they are well-controlled within the effective field theory (EFT) framework and do
not affect physical observables.

Thus, by treating mass M as the equivalent mass Meff and deriving the scale-dependent coupling G(k),
we introduce a self-consistent mechanism that suppresses ultraviolet divergences dynamically, without invok-
ing additional fields or symmetry principles. This approach provides a viable resolution to the gravitational
divergence problem and aligns naturally with both general relativity and renormalization group flow.

Einstein-Hilbert action is

S =

∫
dx4

√
−g

16πG(k)
R (72)

4.6. The physical origin of the cut-off energy at the Planck scale
In quantum field theory (QFT), the cut-off energy Λ or cut-off momentum is introduced to address the

infinite divergence problem inherent in loop integrals, a cornerstone of the renormalization process [18]. However,
this cut-off has traditionally been viewed as a mathematical convenience, with its physical origin or justification
remaining poorly understood [18].

This work proposes that Λ represents a physical boundary determined by the scale where the sum of positive
mass-energy and negative gravitational self-energy equals zero, preventing negative energy states at the Planck
scale. This mechanism, rooted in the negative gravitational self-energy of positive mass or energy, provides a
physical explanation for the Planck-scale cut-off.

4.6.1. G(k) = 0 and Planck scale

At Rm = Rgp−GR ≈ 1.16(
GNMfr

c2 ), the running coupling constant G(k) = 0,

For a mass Mfr ∼ MP =
√

h̄c
GN

, the characteristic radius is:

Rgp−GR ≈ 1.16(
GNMP

c2
) = 1.16

√
h̄GN

c3
= 1.16lP (73)

At Rm = Rgp−GR, G(k) = 0, marking the Planck scale where divergences vanish.
If Rm < Rgp−GR, then G(k) < 0, which means that the system is in a negative mass state. Therefore,

the Planck scale acts as a boundary energy where an object is converted to a negative energy state by the
gravitational self-energy of the object. In a theoretical analysis, a negative mass state may be allowed, although
the system can temporarily enter a negative mass state, the mass distribution expands again because there is
a repulsive gravitational effect between the negative masses. Thus, the Planck scale (lP ) serves as a boundary
preventing negative energy states driven by gravitational self-energy.

4.6.2. Uncertainty principle and total energy with gravitational self-energy
To elucidate the interplay between quantum fluctuations and gravitational effects, we apply the energy-time

uncertainty principle (∆E∆t ≥ h̄
2 ) to the total energy of a system, incorporating gravitational self-energy.

The energy-time uncertainty principle provides:

∆E∆t ≥ h̄

2
(74)
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At the Planck time, ∆t = tP , energy fluctuation is:

∆E ≥ h̄

2tP
=

1

2
MP c

2 (75)

During Planck time, let’s suppose that quantum fluctuations of 5
6MP mass have occurred. Since all mass

or energy is combinations of infinitesimal masses or energies, positive mass or positive energy has a negative
gravitational self-energy. The total energy of the system, including the gravitational self-energy, is

ET =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
= Mc2 − 3

5

GM2

R
(76)

Here, the factor 3
5 arises from the gravitational self-energy of a uniform mass distribution. Substituting

5
6MP and R = ctP

2 (where c∆t represents the diameter of the energy distribution, constrained by the speed of
light (or the speed of gravitational transfer). Thus, ∆x = 2R = c∆t.

When calculated using the Newtonian mechanical binding energy equation, (tP ,
5
6MP )

ET = Mc2 − 3

5

GM2

R
≃ 5

6
MP c

2 − 3

5

G( 56MP )
2

ctP
2

=
5

6
MP c

2 − 5

6
MP c

2 = 0 (77)

This demonstrates that at the Planck scale, the negative gravitational self-energy balances
(or can be offset) the positive mass-energy, defining a cut-off energy Λ ∼ MP c

2. For energies
E > Λ, the system enters a negative energy state (ET < 0), which is generally prohibited due to
the repulsive gravitational effects of negative mass states. Repulsive gravity prevents further collapse,
dynamically enforcing the Planck scale as a minimal length.

[Quantum Fluctuations at Different Mass Scales]

We evaluate ∆t, R, and ET for three representative masses: the Planck mass (MP =
√

h̄c
G ≈ 2.17×10−8kg),

the proton mass (Mproton ≈ 1.67× 10−27kg), and the electron mass (Melectron ≈ 9.10× 10−31kg).

1) Planck mass & Planck time
If Rm = c∆t

2 = ctP
2 = 1

2 lP

ET ≈ MP c
2 − 3GNMP

2

5( 12 lP )

(
1 +

15

14

GNMP

( 12 lP )c
2

)
= MP c

2 − 3.77MP c
2 = −2.77MP c

2 (78)

If Rm = lP

ET ≈ MP c
2 − 3GNMP

2

5(lP )

(
1 +

15

14

GNMP

(lP )c2

)
≈ MP c

2 − 1.24MP c
2 = −0.24MP c

2 (79)

This negative ET indicates that Rm(= 1
2 lP ) < Rgp−GR(= 1.16lP ), where Rgp−GR ∼ lp is the critical radius

at which ET = 0. Increasing ∆t ∼ tp, Rm → Rgp−GR, and ET → 0, suggesting that the Planck scale is where
gravitational self-energy can balance the mass-energy, supporting a physical cut-off at Λ ∼ MP c

2.

2) Proton Mass
For M = Mproton, ∆E ≈ 938MeV , and ∆t ≈ 3.5× 10−25s ∼ 6.5× 1018tP , Rm ≈ 5.254× 10−17m ∼ 1018lp
The total energy is

ET ≈ Mprotonc
2 − 3

5

GM2
proton

Rm
≈ Mprotonc

2 (80)

Here, Rm ≫ Rgp ≈ 7.450× 10−55m, and the gravitational self-energy (∼ 10−48J) is negligible compared to
Mprotonc

2 ≈ 1.504× 10−10J .

3) Electron Mass
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For M = Melectron, ∆E ≈ 0.511MeV , and ∆t ≈ 6.439× 10−22s ∼ 1022tp, Rm ≈ 9.652× 10−14m ∼ 1021lp

ET ≈ Melectronc
2 − 3

5

GM2
electron

Rm
≈ Melectronc

2 (81)

Here, Rm ≫ Rgp ≈ 4.058×10−58m, and the gravitational self-energy (∼ 10−58J)) is negligible compared to
Melectronc

2 ≈ 8.187× 10−14J . For protons and electrons, since the gravitational self-energy is negligibly small
compared to the mass energy, the gravitational self-energy calculations obtained from Newtonian mechanics are
sufficient.

[Physical Implications]
The Planck scale exhibits a unique characteristic: only for M ∼ MP , t ∼ tp, and R ∼ lp does the

gravitational self-energy (Ugp−GR) approach the mass-energy, enabling ET ≈ 0. This balance (or offset) suggests
that the QFT cut-off Λ ∼ MP c

2 acts as a physical boundary where quantum and gravitational effects converge.
In contrast, for proton or electron masses, Rm ≫ Rgp−GR, rendering gravitational effects negligible and aligning
with QED/QCD cut-offs (Λ ∼ GeV ).

4.6.3. Generalization and Exceptions
The mechanism of balancing (or offset) positive mass-energy with negative gravitational self-energy applies

primarily to systems dominated by gravitational effects, such as gravitational effective field theories or quantum
gravity scenarios [11]. In non-gravitational theories like QED or ϕ4, where binding energies are positive (e.g.,
electrostatic self-energy, Ues > 0), cut-offs are unrelated to the Planck scale and are determined by other physical
scales. Thus, a Planck scale cut-off emerges only when quantum gravitational effects are significant.

While negative energy states are generally avoided in localized systems, different situations exist on cos-
mological scales. The observable universe is estimated to have a negative total energy, potentially due to
mechanisms like cosmic inflation or dark energy [14] [19]. In the universe, as time progresses, surrounding
matter and energy also become involved in gravitational interactions. In such scenarios, positive mass-energy
scales proportionally to M , whereas negative gravitational potential energy scales as −M2/R. Consequently,
a mechanism exists whereby the absolute value of gravitational potential energy increases more rapidly than
mass-energy [14]. As a result, negative mass states may persist unresolved for extended periods.

4.6.4. In gravitational problems, the physical meaning of cut-off energy
The cut-off energy Λ ∼ MP c

2 is not merely a mathematical artifact but a physical boundary driven by the
balance (or offset) between positive mass-energy and negative gravitational self-energy. This mechanism offers a
novel perspective on the Planck scale as the natural cut-off in gravitational systems, addressing the long-standing
question of the physical origin of QFT cut-offs and providing a unified understanding of quantum-gravitational
interactions.

5. Conclusion

In this study, we have demonstrated that incorporating gravitational binding energy into the effective mass
Meff allows us to derive a running gravitational coupling constant G(k) that naturally addresses fundamental
issues in gravitational physics.

At the critical radius Rm = Rgp−GR ≈ 1.16
(

GNMfr

c2

)
≈ 0.58RS , G(k) vanishes, effectively eliminating

gravitational interaction and providing a mechanism to resolve divergences at high energy scales without the
need for quantum corrections.

For radii smaller than this critical value (Rm < Rgp−GR), G(k) becomes negative, inducing a repulsive
gravitational force or antigravity, which prevents the formation of singularities in black holes. This framework
not only solves the singularity problem but also offers a unified explanation for gravitational divergences across
all energy scales, suggesting that gravity can self-renormalize through its intrinsic binding energy effects.
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Furthermore, at the Planck scale, the balance between positive mass-energy and negative gravitational
self-energy establishes a physical cut-off (Λ ∼ MP c

2), providing a novel perspective on the origin of quantum
field theory cut-offs. These findings challenge conventional approaches to quantum gravity and open new
avenues for exploring the interplay between gravitational self-energy and cosmological phenomena, such as
cosmic acceleration, potentially linking dark energy to fundamental gravitational mechanisms.

The concept of effective mass (Meff ), which inherently includes binding energy, is a core principle embedded
within both Newtonian mechanics and general relativity. From a differential calculus perspective, any entity
possessing spatial extent is an aggregation of infinitesimal elements. A point mass is merely a theoretical
idealization; virtually all massive entities are, in fact, bound states of constituent micro-masses. Consequently,
any entity with mass or energy inherently possesses gravitational self-energy (binding energy) due to its own
existence. This gravitational self-energy is exclusively a function of its mass (or energy) and its distribution
radius, Rm. Furthermore, this gravitational self-energy becomes critically important at the Planck scale. Thus,
it is imperative for the advancement of quantum gravity that alternative models also integrate, at the very least,
the concept of gravitational binding energy or self-energy into their theoretical framework.

[ Important problems related to gravity in the fields of physics and astronomy ]
1) Black hole singularity problem
2) Dark energy problem
3) Problem with the cause and mechanism of inflation
4) Gravitational divergence problem and gravity renormalization problem

The mainstream recognizes all four problems as different problems, and therefore presents as-hoc hypotheses
for each of them. But these four problems may actually be different aspects of one problem. That is, problems
that can be explained by the existence of repulsion or antigravity in the gravitational problem.

The singularity problem, inflation problem, divergence problem, and dark energy seem to be on different
scales, right? So it seems like multiple sources are needed?

The only thing we need is a mechanism that creates repulsion or anti-gravity in the problem of gravity.
And, this anti-gravity effect can be achieved by gravitational binding energy or gravitational self-energy with a
negative value.

For a simple analysis, let’s assume a spherical uniform distribution, and look at the gravitational potential
energy or gravitational self-energy.

Ugp = −3

5

GM2

R
(82)

The total energy, including the gravitational potential energy or gravitational self-energy, is

ET =
∑
i

mic
2 +

∑
i<j

−Gmimj

rij
=Mc2 − 3

5

GM2

R
(83)

When the energy distribution radius R is very small and the mass M is large, the negative gravitational
potential energy term can be larger than the positive mass energy. This applies to the singularity problem [5],
inflation problem [19] [20], and divergence problem.( [5] & this paper).

The negative gravitational potential energy term can be larger than the positive mass energy when M is
very large. It applies to the dark energy problem, which accelerates the expansion of the universe [15] [16].
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