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Abstract:  

In order to strictly prove the hypotheses and conjectures in Riemann's 1859 paper on the Number of 

prime Numbers not Greater than x from a purely mathematical point of view, and strictly prove the 

correctness of the generalized hypotheses and conjectures, this paper proves the conjugation of the 

zeros of the Riemann ζ(s) function by using Euler's formula. By using the conjugacy of the zeros of 

Riemann ζ(s) function, it is obtained that the nontrivial zeros of Riemann ζ(s) function must satisfy 

s=
 

 
+ti(t∈R and t≠0) and s=

 

 
-ti(t∈R and t≠0). The symmetry of zeros of Riemannian Riemannian ζ(s) 

function is a necessary condition for the non-trivial zeros of Riemannian Riemannian ζ(s) function to 

be located on the critical boundary, so it is equivalent to prove that the zeros of Riemannian ξ(t) 

function must be non-zero real numbers, Riemannian conjecture is completely correct. 
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I. Introduction 

The Riemann hypothesis and the Riemann conjecture is an important and famous mathematical 

problem left by Riemann in his 1859 paper "On the Number of primes not greater than x", which is of 

great significance to the study of the distribution of prime numbers and is known as the greatest 

unsolved mystery in mathematics. After years of hard work, I solved this problem and rigorously 

proved that both the Riemann conjecture and the generalized Riemann conjecture are completely 

correct. The Polignac conjecture, the twin prime conjecture, and Goldbach's conjecture are also 

completely correct. It would be nice if you understood Riemann's conjecture thoroughly from the 

outset of his paper "On Prime Numbers not Greater than x" and were completely convinced of the 

logical reasoning behind it. You need to do this before you read my paper. The following is about the 

first half of Riemann's paper "On the Number of primes not Greater than x", which I have explained 

and derived, which is the premise and basis for your understanding of Riemann's conjecture.In 1859, 

Riemann was admitted to the Berlin Academy of Sciences as a corresponding member, and in order to 

express his gratitude for the honor, he thought it would be best to use the permission he received 

immediately to inform the Berlin Academy of a study on the density of the distribution of prime 

numbers, a subject in which Gauss and Dirichlet had long been interested. It does not seem entirely 

unworthy of a report of this nature. 

Riemann used Euler's discovery of the following equation as his starting point: 

  
 

     

 

   

   
 

  

 

   

 

                                     (1) 
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Where p on the left side of the equation takes all prime numbers, n on the right side takes all 

natural numbers, and the function of the complex variable s represented by the two series above 

(when they converge) is denoted by (s). That is, to define a function of complex variables: 

                          ζ     
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    。 

The two series above converge only if the real part of s is greater than 1,is also say when 

Re(s)>1,      
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+... , It's 

called a harmonic series, and it diverges.If Re(s)<1,   
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  +... , it's more 

divergent.Because if Re(s)<1,then 
 

   
 

 
 

 

   
 

 
 

 

   
 

 
 

 

   
 

 
 ... , . But if s is a negative 

number, for example s= -1,then it does not satisfy the condition that Re(s)>1. So you need to find 

an expression for (s) function a that is always valid for any s. In modern mathematical language, 

that is, to carry out an analytical extension of a complex function ζ   , and the best way to analyze 

the extension is to find a more extensive and effective representation of the function such as an 

integral representation or an appropriate function representation.Therefore, we want to define a 

new function, this new function also (s) to represent, this new function of the independent 

variable s is not only full Re(s)>1, but also satisfy Re(s)≤1(s≠1), and the function image is 

smooth, every point on the function image can find its tangent slope, that is, the function 

everywhere can find the derivative. However, it is no longer called the Euler zeta() function, but 

the Riemann zeta() function. Riemann used the integral to express the function (s). In this paper, 

I have added another complex variable to express the Riemann function (s). 

Because (s)  (s  1)  s(s) , where (s) is the factorial function , (s) is the Euler gamma 

function,(s)=      

 
   dx, Let the variable x   (n∈   ) in the integral symbol,then 

         

 
    d     =       

 

 
        =        

 

 
    =(s)= (s-1),so 
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That's exactly what Riemann says in his paper, he says he's going to use 
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Since n is all positive integers, we need to assign   to      and 
 

  on both sides of the equation, 

so                                        
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The common ratio q satisfies 0<q=    |<=1(0<=x   )，
     

   
     
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and  
 

  
 
    

 

                
 ζ   ，so according  

(2) 
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,can get      ζ   = 
      

    
 

 

 
, this is exactly what Riemann found in his paper. 

Now consider the following integral 

 
         

    
 

 

 

 

According to modern mathematical notation, the integral should be denoted as  
         

    

 

 
, or 

considering that the complex number is generally represented by z, the integral should be denoted 

as  
         

    

 

 
 , Its integral path proceeds from +∞ to +∞ on the forward boundary 

of a region containing the value 0 but not any other singularities of the integrable 

function, where the integral path C is shown in Figure 1 below. 

 

Figure 1 

To obtain the value of this integral, we assume that there is a complex number of arbitrarily small 

moduli δ , and that the moduli  δ  of δ ,  δ |→0,Because               ,and ln(- )= 

ln( )+                     ,    
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The definition of trigonometric functions of complex variables is given by Euler's formula 

 

(3) 

sin(z)=
        

  
， if z=  ，then sin(  )=

          

  
.so     -     =2isin(  ), i=

          

        
 .so 
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，if δ  is a real number and the 

absolute value |δ | of δ , |δ | →0, 

then 
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=2isin(  ) 
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  ∈   。We got      ζ     

      

    
  ∈    

 

 
         

so 2sin(  )      ζ      
      

    
 

 

 
. Where we agree that in the many-valued function 

       , the value of ln(x) is real for negative x, thus obtaining 2sin(  )      ζ    

  
          

    
 

 

 
  ∈   .This equation now gives the value of the function  ζ    for any 

complex variable s, and shows that it is single-valued analytic, and takes a finite value 

for all finite s except 1, and zero when s is equal to a negative even number.The right side 

of the above equation is an integral function, so the left side is also an integral function,(s 1)  

(s),and the first-order poles of (s) at s  0,1,2,3,... cancels out sin(s)'s zero. When the real 

part of s is negative, the above integral can be performed not along the region positively 

surrounding the given value, but along the region negatively containing all the remaining complex 

values.See Figure 2 below, where the radius of the great circle C 'approaches infinity and thus 

contains all poles of the integrand, i.e. , all zeros of the denominator     , nπi (n is an integer), 

and the following calculation applies Cauchy's residue theorem. 

 

Figure 2 

Since the value of the integral is infinitesimal for modular infinite complex numbers, and in this 

(4) 
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Since the value of the integral is infinitesimal for modular infinite complex numbers, and in this 

region the integrand has a singularity only if x is equal to an integral multiple of 2i , the integral 

is equal to the sum of the integrals negatively around these values, but the integral around the 

value n2i  ∈     is equal to                 ∈    .The residue of the integrand at 

n2 i(   ) is equal to 

 
       

             = 
       

         =          (   ). 

So we get 

2sin(πs)      ζ(s)=          ((      +    ) [1] (Formula 3), 

It reveals a relationship between ζ(s) and ζ(1-s), using known properties of the function (s), that 

is, using the coelements formula of the gamma function (s) and Legendre's formula. It can also 

be expressed as: 

Γ(
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 ζ(s) is invariant under the transformation s→1-s. 

based on euler's    =                ∈     can get     
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) +isin(

  

 
) =0-i= -i ,  
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)+isin(

 

 
)=0+i=i ,       

then 
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   i(cos

   

 
+isin

   

 
)-i(cos
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)=icos(

  

 
)-icos(

  

 
)+sin(

  

 
)+sin(

  

 
) 

=2sin(
  

 
) (Formula 4). 

According to the property of Π(s-1)=Γ(s) of the gamma function,and  

      
   =ζ(1-s)   ∈                                       ∈          ), 

Substitute the above (Formula 4) into the above (Formula 3), will get  

2sin(πs)Γ(s)ζ(s)=                
  

 
 (Formula 5), 

according to the double Angle formula sin(πs)=2Sin(
  

 
)cos(

  

 
), we Will get  

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s∈C and s  ) (Formula 6), 

Substituting s→1-s, that is taking s as 1-s into Formula 6, we will get 

ζ(s)=      sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  ) (Formula 7), 

This is the functional equation for ζ(s)   ∈           . To rewrite it in a symmetric form, use 

the residual formula of the gamma function 

Γ(Z)Γ(1-Z)= 
 

       
 (Formula 8)  

(5) 

and Legendre's formula Γ(
 

 
)Γ(

 

 
+

 

 
)=     

 

 Γ(Z) (Formula 9) , 

Take z= 
 

 
 in (Formula 8) and substitute it to get 
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sin(
  

 
)= 

 

  
 

 
      

 

 
 
 (Formula 10) , 

In (Formula 9), let z=1-s and substitute it in to get 

Γ(1-s)=     
 

 Γ(
   

 
)Γ(1- 

 

 
) (Formula 11) 

By substituting (Formula 10) and (Formula 11) into (Formula 7), can get 

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s∈C and s  ), 

also 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s, 

And that's exactly what Riemann said in his paper.That is to say: 

Γ(
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 ζ(s) is invariant under the transformation s→1-s , 

also 

  
 

 
     

 

 ζ(s)=   
   

 
     

   

 
 ζ(1-s) s∈C and s  ), 

or  

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s)  ∈           (Formula 2), 

Then ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  )(Formula 7) . 

This property of the function induces me to introduce (
 

 
1) instead of (s 1) into the general 

term of the series  
 

  
 
    , from which we obtain the function a very convenient expression 

forζ(s), which we actually have 
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To derive the above equation, let's look at (
 

 
1)=( 
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   dx，in  
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1)=(s)=  

 

 
   

 
   dx, replace x      as follows, then 
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(6) 

 

So, if we call         
   =    , get immediately 
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dx. 

According to the Jacobi theta function 
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    =      +2         

   =1+2(                         ), 

Easy to see              
    

      

 
 . 

The transformation formula of theta function is derived as follows:  
 

 
 =       . 

Let the first class of complete elliptic integrals k,k' is called modulus and complement of Jacobi 

elliptic functions or elliptic integrals, respectively. 

k = k(k)= 
  

            

 

 
 

 , 

k'= k(k') = 
  

              

 

 
 

 , 

let   k'/ k ,then get 

 
  

 
 =   =1+2(                         ), 

The modulo k and the complement k' are interchangeable 

 
    

 
 =  

 


 =1+2(                             ), 

Compare the two formulas to obtain   
 


 =      . It was first obtained by Cauchy using Fourier 

analysis, and later proved by Jacobi using elliptic functions. 

We have again 
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Let's look at the last part of the equation, if s→1-s, then 
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        is invariant under the transformation s→1-s. 

Riemann then derived the function equation for      again, which is simpler than the previous 

derivation using the circum-channel integral and residue theorems. 

If we introduce auxiliary function function  (s)=   
 

 
     

 

      . 

This can be succinctly written as  (s)  (1 s), But it is more convenient to add the factor s(s 1) 

to  (s), which is what Riemann does next, i.e. (To keep with Riemann's notation, the number  

 

(7) 

factor 
 

 
 is introduced):     = 

 

 
s(s 1)   

 

 
     

 

   
 

 
     . 

Because factor (s 1) cancels out the pole of (s) at s1, factor s cancels out the pole of (
 

 
) at s 

 0, and (s)'s trivial zeros -2, -4, -6,...,and the rest of the poles of (
 

 
) cancel out, so (s) is an 
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integral function and is zero only at the nonnormal zero points of (s). Note that since sub s(s 1) 

obviously does not change under s 1 s, there is a function equation (s)  (1 s). 

Now suppose s=
 

 
+ti  ∈           ，  

 

 
 (s 1)  

 

      =(t), thus get  

(t) =
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Or 

(t) = 4 
   

 
        

  

 

 
  

 

     
 

 
    )   . 

The function   
 

 
 (s1)  

 

      =(t) defined by Riemann is essentially the same as the function 

(s)= 
 

 
s(s 1)  

 

 
     

 

    
 

 
     commonly used today. Because  

  
 

 
 =  
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  

 

 
 ,so  

 

 
 (s1)  
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  

 

 
 (s1)  

 

      =
 

 
s(s 1)  

 

    
 

 
     =(s)。

The only difference is that Riemann takes t as the independent variable, while (s), which is now 

commonly used, still takes s as the independent variable, and s and t differ by a linear 

transformation: s=
 

 
+ti, that's a 90 degree rotation plus a translation of 

 

 
.In this way, the line 

Re(s) 
 

 
  in the complex plane of s corresponds to the real axis in the t plane, and the zero of the 

zeta function on the critical line Re(s) 
 

 
 corresponds to the real root of the function (t).Note 

that in Riemann's notation, the functional equation (s)  (1 s) becomes (t)  (t), that is, 

(t) is an even function, so its power series expansion is only an even power, and the zeros are 

symmetrically distributed with respect to t  0. 

In addition, it is also clear from the above two integral representations that (t) is an even 

function, since     
 

 
      is an even function of t. 

For all finite t, function (t)=
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)      

 

 
  

 

     
 

 
      dx or function (t) = 

4 
   

 
        

  

 

 
  

 

     
 

 
    )   is finite in value, 

And can be expanded to a power of    as a rapidly convergent series, because for an s value 

with a real part greater than 1, the value of                    is also finite.It is same 

true for the logarithm of the other factors of (t), so the function (t) can take zero only if the 

imaginary part of t lies between
 

 
 and 

 

 
i. That is, A can take a zero value only if the real part of  

s lies between 0 and 1. The number of roots of the real part of the equation (t) between 0 and T 

 (8) 

is approximately equal to N(T)= 
 

  
ln

 

  
 

 

  
       ，approximately to (

 

  
ln

 

  
 

 

  
)(this 

result of Riemann's estimate of the number of zeros was not strictly proved until 1859 by 

Mangoldt).This is because the value of the integral         (after omitting small quantities of 

order 
 

 
                         (Tln

 

  
  )i. The value of this integral is equal to the number 
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of roots of the equation in this region multiplied by 2πi(this is the application of the amplitude 

Angle principle).In fact, Riemann found that the number of real roots in this region is 

approximately equal to this number, and it is highly likely that all the roots are real. Riemann 

naturally hoped for a rigorous proof of this, but after some hasty and unsuccessful initial 

attempts, Riemann temporarily set aside the search for proof because it was not necessary for 

the purposes of Riemann's subsequent studies. What Riemann wrote down is the famous 

Riemann conjecture, the most famous conjecture in mathematics! 

According to Riemann's hypothesis in the paper : s=
 

 
+ti  ∈             then the Riemann 

conjecture is equivalent to that for ζ(s)=0, its complex roots s (except for negative even numbers) 

must all be complex numbers satisfying only s=
 

 
+ti  ∈           , and they all lie on the 

critical boundary of the vertical real number axis satisfying Re(s) 
 

 
. These complex roots s 

(except negative even numbers) are called nontrivial zeros of Riemannn       ∈          

             functions. 

Let's call the prime counting function       ∈    , the name of this function has nothing to do 

with PI. According to the prime number theorem,     
 

   
  ∈    .The number of primes less 

than or equal to 1 is 1, the number of primes other than 1 is 0,so        The primes less than or 

equal to 2 are 1 and 2, the number of primes other than 1 is 1,so       ,                 

                                                                         so         The 

primes less than or equal to 4 are 1, 2, 3, and the number of primes other than 1 is 2,so       . 

The primes less than or equal to 5 are 1, 2, 3,5, and the number of primes other than 1 is 3,so 

      .So       ，      ，       ，       ， … , and so on. If we get a simple 

expression to calculate the prime number counting function, it will lead to amazing results, which 

will have great significance for the theory and application of mathematical distribution and the 

development of the mathematical discipline. 

Riemann improved the prime counting function, and the prime counting function Riemann 

obtained was called       ∈      The relationship between       ∈     and      

 

   
  ∈     is as follows: 

      
    

 

 
      

 

        
 

 
   

 

   
 

 
   

 

   
 

 
   

 

   
 

 
 ( 

 

 )-…  ∈     ∈     ,  

The relationship between       ∈     and       ∈           is as follows: 

 

(9) 

 

 
ln    =           

 
dx , 

μ(n) is called the Mobius function. 

The Mobius function μ(n) has only three values, which are 0 and plus or minus 1, if n is 
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ok Divisible by the square of any prime number, that is, an exponent of one or more 

prime factors other than 1 in the prime factorization of n. If the power is raised to the 

second or higher power, then μ(n)=0. If n is not divisible by the square of any prime 

number, that is to say, the exponent of any prime factor other than 1 in the prime 

factorization of n has the degree 1, then let's count the number of prime factors. If there 

are an even number of prime factors, then μ(n)= 1. If the number of prime factors is 

odd, then μ(n)=-1. This also includes the case of n=1, since 1 has no prime factors other 

than 1, then the number of prime factors of 1 other than 1 is 0, and 0 counts as an even 

number, so μ(1)=1. In the above expansion, as n  ∈     increases, 
 

 
  ∈     becomes 

smaller and smaller,  
 

   ∈     also gets smaller and smaller, The n  ∈          

      term is going to get smaller and smaller. It shows that the largest contribution to 

the value of π(x) is the first term J(x). 

Now let's look at the following formula from Riemann: 

       (x)-        
 + 

  

           
    

  

 
  ∈    ,  

among，Li(x)= 
  

   

 

 
  ∈    , 

J(x) is called a step function, it equals zero where x equals zero, that is, J(0)=0, and then 

as the value of x increases, every time it passes through a prime number (such as 

2,3,5,...). The value of J(x) increases by 1. Every time it square a prime number (4,9,25), 

the value of J(x) increases by 
 

 
. Every time it pass through the third square of a prime  

 

(10) 

number (such as 8,9,25,...) The value of J(x) increases by 1/3. Every time it pass 4 squares 

of a prime number (say, 16,81,256,625,...) , the value of J(x) increases by 1/4. And so 

on,every time it passes a prime number to     ∈   ，                         , 
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the value of J(x) increases 
 

 
  ∈             .You can think of it as that every time it 

passes a prime number to     ∈   ，                         , J(x) increases 

 

 
  ∈                                                                                     

         If you look at the right-hand side of the equation, the first term is called the 

logarithmic integral function        
  

   

 

 
  ∈    , When x is sufficiently large, 

      
 

   
  ∈    ,            

 

   
  ∈                            .Let's look at the 

second item   (  )  ∈   ， ∈   ，ρ                                                 

         is called the nontrivial zero of the        ∈                       function 

by Riemann. ρ                 ρ  σ     σ ∈    ∈     On the real number line, the 

Riemann       ∈                      ∈     function has no zeros except for 

negative even numbers, So   is definitely not a real number other than a negative even 

number, so     ∈    ∈                       ∈      is definitely not a real 

number other than a negative even numberas also. So how do we compute   (  )  ∈

R+ ，  ∈                    n∈Z+? Just extend the domain resolution of 

Li(x)= 
  

   

 

 
  ∈     to all complex numbers except divided by 1.Riemann proved that 

the non-trivial zero ρ  of the Riemann      ∈                      ∈    function 

must satisfy 0≤Re(ρ)≤1. The vertical strip of width 1 on the complex plane is called the 

critical strip. and the line perpendicular to the real number axis satisfying Re(s) 

 

 
  ∈                        ∈     is called the critical boundary, that is, the center  

 

(11) 

line of the critical band. Riemann guessed that the non-trivial zeros of the 

Riemann       ∈                      ∈     function all lie on the critical boundary, 

which is a very surprising conclusion. 
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If the real part of the nontrivial zero of the Riemann       ∈                      ∈

Z+ function takes random values between 0 and 1, then the probability that it reaches 

exactly 
 

 
 should equal 0, which Riemann thought was 100%. If the Riemann conjecture 

is strictly true, then the occurrence of prime numbers or the distribution of prime 

numbers is not random at all, but occurs in a definite way, and there must be a deep 

reason behind this. The proof of the prime number theorem is an intermediate product 

in the process of studying Riemann conjecture. In 1896, Hadamar and De la Vabsan 

proved that the nontrivial zero ρ of the Riemannn       ∈                      ∈

Z+ function has no zero when Re(ρ)=0 and Re(ρ)=1, thus easily proving the prime 

number theorem     
 

   
  ∈    . 

The prime number theorem     
 

   
  ∈    holds, showing that for the prime counting 

function π(x), the largest part of its value comes from the logarithmic integral function 

Li(x)= 
  

   

 

 
  ∈     while the minor part of its value comes from   (  )   ∈   ， ∈

                     n∈Z+,since the calculation of xlnx ∈Z+ is simple, but for the 

accurate calculation of the prime counting function π (x), the calculation of the 

non-trivial zero ρ  of the Riemann       ∈                      ∈      function is 

very important, and the strict proof of the Riemann conjecture is very important. In 

1921, the British mathematician Hardy proved that the Riemann       ∈         

1 and s      ∈Z+ function has infinitely many nontrivial zeros on the critical  

 

(12) 

boundary. But this conclusion is actually quite different from the Riemann conjecture, 

because the fact that there are infinitely many nontrivial zeros on the critical boundary 

does not mean that all zeros are on the critical boundary. Just as a line segment has an 
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infinite number of points, but a line segment has an infinite number of lines, the 

percentage of Hardy's proof is almost zero compared to the number of all nontrivial 

zeros. It wasn't until 1942 that mathematicians pushed this percentage significantly 

higher than zero. That year, the Norwegian mathematician Selberg proved that the 

percentage was greater than zero, but did not give a specific value. In 1974, the 

American mathematician Liesen proved that at least 34% of nontrivial zeros lie on the 

critical boundary. In 1980, Chinese mathematicians Lou Shituo and Yao Qi proved that 

35% of nontrivial zeros lie on the critical boundary. In 1989, the American 

mathematician Conrey proved that 40% of nontrivial zeros are located on the critical 

boundary. The calculation of the nontrivial zeros of the Riemann ζ (s)  ∈         

             ∈      function is more complicated. Graham calculated the first 15 

nontrivial zeros of the Riemann ζ(s) function, and after 25 years, another 138 nontrivial 

zeros were calculated. Since then, the calculation of the nontrivial zeros of the Riemann 

ζ(s) function has stalled because of the clumsy methods and the lack of computers to 

assist it. After the calculation was halted for seven years, the deadlock was broken, and 

German mathematician Siegel found in Riemann's manuscript that Riemann was far 

ahead of the time 70 years of clever algorithm, so that the calculation of non-trivial zero 

points was suddenly bright. In honor of Siegel, this algorithm formula is also known as 

the Riemann-Siegel formula, and Siegel himself won the Fields Medal for it. 

 

(13) 

A mathematician's manuscript is worth far more than an antique. Since then, the 

non-trivial zeros of the Riemann ζ(s) function have been computed much faster. Hardy's 

students pushed the calculation of the non-trivial zeros of the Riemann ζ(s) function to 
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1041, the father of artificial intelligence Alan Turing pushed the calculation of the 

non-trivial zeros of the Riemann ζ(s) function to 11,041, and later with the application of 

computers, the calculation of the non-trivial zeros of the Riemann-ζ(s) function from 3.5 

million to 300 million, 1.5 billion. 850 billion, and now 10 trillion, These nontrivial zeros 

are located on what Riemann calls the critical boundary. But the ten trillion zeros on the 

critical boundary is nothing compared to an infinite number of zeros on the critical 

boundary, and no matter how large the number of zeros on the critical boundary is 

calculated, it is not enough to prove that the Riemann conjecture is correct. The 

correctness of the Riemann conjecture requires rigorous theoretical proof. People guess 

that the non-trivial zero of Riemann       ∈                      ∈      function 

is symmetric with respect to the real number axis based on the ten trillion zeros located 

on the critical boundary, but the guess is still a guess, which needs strict proof, 

otherwise such a guess has no meaning. In the following paper, I give a strict proof of 

this conjecture, and give a strict proof of Riemann conjecture, which is indeed true. 

First of all, there are: 

 

  
 

     )= 
 

   , 

 

this is a formula of Euler, in which n is a natural number and p is a prime number. Euler has 

already proved it, and I will repeat it below. If you are familiar with Euler's formulas and know 

exactly that they are correct, you can omit them. 
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Turn this Euler formula around and get: 

 

       
 

   =  
 

     ) 
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When Euler first proposed this formula, s only represented a positive integer more than 

1. Obviously, both sides of this formula are series. Euler found that there is such a series: 

           
 

  =1+
 

  +
 

  +
 

  +
 

   
 

  +…(equation 1). 

The above equation is multiplied by 
 

   on both sides, 
 

   on the left and 
 

   on the right. 

we can get: 

 
 

  
 

 

  =
 

  +
 

   
 

   + 
 

   + 
 

     + 
 

   +…(equation 2) 

By subtracting the left and right sides of the two equations (equation 1) and (equation 

2), the following results can be obtained:     

   
 

    
 

   =1+ 
 

   + 
 

   + 
 

   + 
 

   
 

    + 
 

    +
 

    +… (equation 3) 

It can be observed that the product term on the left side increases by    
 

    as the left 

term of equation 3 relative to equation 1. When the items on the right side of equation 

1 are multiplied by 
 

  , the items whose denominator is even are eliminated, and the 

remaining items are regarded as the items on the right side of equation 3. 

By multiplying the left and right sides of equation 3 by 
  

    , we can get: 

      
 

  (1- 
 

  ) 
 

   = 
 

   + 
 

   + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    … (equation 4) 

By subtracting the left and right sides of the two equations (equation 3) and (equation 

4), we can get: 
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(  
 

    (1- 
 

  ) 
 

   = 1+
 

   + 
 

   + 
 

    + 
 

    + 
 

    + 
 

    + 
 

    + 
 

     
 

    + 
 

     

 … (equation 5) 

Similarly, multiply the left and right sides of equation 5 by 
 

  ,we can get: 

(
 

  )(   
 

    (1-  
 

   )  
 

   = 
 

   +  
 

    +  
 

    + 
 

    + 
 

    +  
 

    + 
 

    + 
 

      
 

      … 
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(equation 6) 

By subtracting the left and right sides of the two equations (equation 5) and (equation 

6), the following results can be: 

(  
 

  )(  
 

    (1-  
 

   ) 
 

  =1+
 

   +  
 

    +  
 

    + 
 

    + 
 

    +  
 

    + 
 

    + 
 

     
 

     … 

(equation 7) 

Referring to this method, in equation (2k-1) (k is a positive integer),we multiply the items on 

the left by 
 

  
  and the items on the right by 

 

  
 (i is a positive integer).  

   is the nearest prime number of the prime number      in the first item    
 

    
   on the 

left side of equation (2k-1) . The "nearest prime" here refers to the one closest to     .There is 

no other prime between them, and   >    , equation (2k-1) add 
 

  
  to the left. equation (2k-1) 

the right side becomes: item 1 is 
 

  
  , item 2 is 

 

  
  

 

  
  
, item 3 is 

 

  
  

 

    
    item 4 is 

 

  
  

 

    
  , item 5 is  

 

  
  

 

    
  , ... , 

 

  
  

 

      
 ，…，k is a positi ve integer. So go on and add 

them up, where   、   、   、 ，    、    、    、     、 ，        It is an infinite sequence of 

prime numbers arranged in the order of numerical size from small to large, and          

       In this way, we get the expression on the right side of equation (2k-1) and mark the 

whole equation as equation (2k) . By The coefficient of  
 

  
  ∈      on its left side is a 

continuous product of some forms such as     
 

  
  . n is a natural number and p takes all prime 

numbers. In order to write conveniently, the symbol is introduced and the left side is written as:  

 

 

(16) 

 

referring to this method and doing it over and over again, we will eventually get such an 

equation: 

On the right is 1, plus a score:  
 

  
      

  The values of   
  and      are two infinite prime 

numbers, so the value of is zero, which can be omitted. So, the right side is 1.So you can get it: 

    
 

   =
 

    
 

   
 = 

 

   
 

   
 = 
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Riemann extends Euler's definition of positive integer s analytic to complex number, that is, the 

variable s is defined as complex number. And we use a functionζ (s) constructed by Euler himself 

to record the two series on both sides of the above equation： 

   ζ     
 

   = 
 

      . 

Secondly, there is another Euler formula:          +i       ，x is a real number, representing 

the radian of an angle.This formula has been proved by Euler and can be used directly. Let me 

prove it again in my own way:  

If we have a function   (x)=  , we derive   (x)=  (x∈R), " ' " means derivative, then    )’=  , 

the derivative of    is itself. So if we make the independent variable cx(c is constant)of function 

  (x)=  , we will get function   (cx)=   , and derivative of function [  (x)]‘=(   )’= c   ,then 

[   (x)]‘=(   )’=c   ,If the function   (cx)=   ,c=i(i is also constant), then    (ix)=   , then 

[   (ix)]'= [   ]'= i   . Suppose that    (x)=cos(x)+isin(x)=s, then s is a complex number. Now the 

derivative of function    (x) is obtained: [   (x)]‘=[cos(x)+isin(x)]’=[cos(x)]’+[isin(x)]’=-sinx+icosx 

(equation 1),If   (ix)=   =Cosx+iSinx is correct, then suppose that    =Cos(x)+iSin(x) is correct 

based on the above [  (x)]‘=[   ]’=i   ,[  (ix)]'=[   ]'=i   (equation2), replacing    with 

cosx+isinx, then: [   (ix)]‘=[    ]’=i    =i(Cosx+iSinx)=-sinx+icosx(equation 2),By comparing 

(equation 1) and (equation 2), it can be found that the derivatives of   (ix) and   (x) are equal, 

and since both   (ix) and   (x) have no constant terms, the expressions of   (ix) and   (x) 

should be consistent. We found   (ix)=    cosx+isinx=  (x),The expressions of   (ix) and   (x) 

are exactly the same,which shows that the Euler s formula           +i        ∈   is 

correct.o prove           +i        ∈   , a better method is the following, but more 

complex.Everyone First of all, look at the function y =  . If we find the derivative of this function, 

we will get y'= (  )'=   . That is to say, the derivative of y =    is itself. This is a very special 

exponential function.Let y’=
  

  
，when 

  

  
  , then y=  ，when 

  

  
  ,then y=    +x,when 

  

  
       y=      +

 

 
  ,when 

  

  
    +

 

 
  ,then y=      +

 

 
  +

 

 
  ,when 

  

  
       +

 

 
  +

 

 
  ,then y=       +

 

 
  +

 

 
   

 

  
  ,when 

  

  
      

 +
 

 
  +

 

 
   

 

  
  ,then y=      +

 

 
  +

 

 
   

 

  
   

 

   
  ,by analogy, this is a  

(17) 

preliminary proof : y=      +
 

 
  +

 

 
   

 

  
   

 

   
  ,+…，But what about the series 

y=    ∈      in general? What about the series of y =   When x is treated as e and n as x, y 

=   is obtained, which requires the introduction of the concept of power series. 

This is the introduction of the concept of power series:1+x+  +  +  +  +…(x∈R),Every item is a 

power in the form of     ∈    . Let function f(x)= 1+x+  +  +  +  +…(x∈R),Equivalent to 

the sum of the items, if some numbers are used as the coefficients of the items, if these numbers 

are                                 They are derivatives of order 0     (x) of the function f(x) 

=    ∈      the derivatives of order 1     (0) of the function f(x) =    ∈     the derivatives 

of order 2     (0) of the function f(x)=    ∈    ，the derivatives of order 3     (0) of the 
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function f(x) =    ∈      ... ,the derivatives of order n     (0) of the function f(x) =    ∈

    They are:        (0),                                 ….,              , 

              If f(x) =     ∈     is taken as n times derivative, we will 

get:     (0)=n(n-1)(n-2)(n-3)…2 1    so that     (0)=n!，For a paivarticular function f =  , the 

values of all these derivatives at x = 0:     (0)     (0)     (0)     (0)  …       (0)     (0)   …,they 

must be 1, because the derivative of any order of    is itself. But the value of derivatives of 

order           are:     (0)=n(n-1)(n-2)(n-3)…2 1   =n!,therefore  

                               have to divide one by n!, can make: 

    (0)=1,    (0)=1     (0)=1，    (0)=1，…，      (0)=1，    (0)=1，In order to satisfy the 

coefficients of the series expression of function f(x)=    

correctly:                                Namely   =
 

  
=1   =

 

  
   =

 

  
   =

 

  
   =

 

  
   … ,     

=
 

      
 ,   =

 

    
 , … , 

For a particular function f(x) =  , the method here is to multiply the n power of X by the values 

of the derivative functions of the function     ∈     at the independent variable x = 0, and 

then divide by the factorial of n. 

So for a particular function f(x) =  ,   =
 

  
=1   =

 

  
   =

 

  
   =

 

  
   =

 

  
   … , 

    =
 

      
 ,   =

 

    
 , … ,So you can write the series of the function f(x)=    again:   == 

1+x 
 

 
  +

 

 
  +

 

  
  +

 

   
  +…+

 

      
    +

 

  
    +… , 

Let's assume f(x) = cos(x) to find the power series of cos(x). The 0-th derivative of function f (x) = 

cos (x) is     (x)=cos(x)(the 0-th of a function is itself).The 1-th derivative of function f(x)=cos(x) 

is     =-sin(x) the 2-th derivative of function f(x)=cos(x)        (x)=-cos(x)  the 3-th derivative of 

function f(x)=cos(x)          =sin(x)                                                       

          the n-th derivative of function f(x) =cos(x)            =…, If x = 0 is substituted, the 

value of the derivative function of each order at 0 will be obtained. Because the series is derived 

by dividing the value of the derivative function at the independent variable x = 0 by the factorial 

of N and multiplying by the expansion of     ∈    . Therefore, at x = 0, it is easy to get the 

value of each derivative function at x = 0 by assigning the independent variable of each derivative 

function to zero:      (0)(0)=cos(0)=1,    (0)=-sin(0)=0,    (0)=-cos(0)=-1,     (0)=sin(0)=0，

    (0)=cos(0)=1,    (0)=                                 (0)=sin(0)=0,…,according to  

 

(18) 

 

1, 0, - 1, 0, 1, 0, - 1, 0,... In the form of 1,0, -1,0, the cycle section goes on indefinitely. The 

function value of the derivative function of order f = cos (x) at 0 of its independent variable can 

be used to construct the coefficients needed for the power series of cos(x). They are divided by  

the factorial of n, which is the coefficients of the powers of x. Now we can construct the power 

 series of cos(x) by referring to the power series of    above, n is the order of the derivative 

function of order f = cos(x), and is also the n-th power of x. So the power series of cos(x) 

expansion is:It starts with 
       

  
  =

      

  
  =

 

  
  =1 as the zero term,the constant term. 

Next is: 
       

  
  =

       

  
  =

 

  
  = ,The result is zero, which means that there is no 1-th term, 
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or that there is no first order term of x. 

Next is: 
       

  
  =

       

  
  =

  

  
   = 

 

 
  ,which means that there is no 2-th term. 

Next is: 
       

  
  =

      

  
  =

 

  
   =  The result is zero, which means that there is no 3-th term, 

or that there is no 3-th power term of x.  

Next is: 
       

  
  =

      

  
  =

 

  
   which means that there is no 4-th term.  

…，If we go on doing this, we will find that n-order derivative of f(x)=cos(x)，n is a nonnegative 

positive number. Starting from zero, if n is an even number, then the value of     (0) is either + 1 

or - 1, according to 1, - 1, 1, - 1, 1, - 1,... The regular arrangement of, So for the power series 

expansion of cos(x), the sign of the value of the coefficients in front of the even power term of X 

is as follows: +, -, +, -, +, -, -, -,... regularly arranged.The coefficients are:
        

  
=

 

  
 or

        

  
= 

 

  
,If 

n is an odd number, the value of its coefficient is: 
        

  
  ,So for the expansion of power series 

of cos(x), there is no odd term of X. So the power series of the function f(x) = cos(x) is:  

cos(x)=
 

  
  - 

 

  
  + 

 

  
  - 

 

  
  + 

 

  
  - 

 

   
   + …=1- 

 

 
  + 

 

  
  - 

 

  
  + 

 

  
  - 

 

   
   + … 

Let's assume f(x)=sin(x) to find the power series of sin(x). The 0-th derivative of function f(x)=sin(x) 

is      (x)=sin(x)(the 0-th derivative of a function is itself),The 1-th derivative of function 

f(x)=sin(x) is     (x)=cos(x),The 2-th derivative of function f(x)=sin(x)        (x)=-sin(x)  The 3-th 

derivative of function f(x)=sin(x)          (x)=-cos(x)   The 4-th derivative of function f(x) 

=sin(x)         (x)= sin    The n-th derivative of function f(x) =cos(x)         (x)=…, If x = 0 is 

substituted, the value of the derivative function of each order at 0 will be obtained. Because the 

series is derived by dividing the value of the derivative function at the independent variable x = 0 

by the factorial of N and multiplying by the expansion of     ∈    . Therefore, at x = 0, it is 

easy to get the value of each derivative function at x = 0 by assigning the independent variable of 

each derivative function to zero:      (0)=       =0,     (0)=       =1,     (0)= 

-       =0,    (0)=       =-1,    (0)=             (0)=                                (0)=cos(0) = 

-1,… According to 0, 1, -0, -1, 0, 1, 0, -1,... In the form of 0,1, 0,-1, the cycle section goes on 

indefinitely. The function value of the derivative function of order f = sin (x) at 0 of its 

independent variable can be used to construct the coefficients needed for the power series of 

sin(x). They are divided by the factorial of n, which is the coefficients of the powers of x. Now   

(19) 

 

we can construct the power series of sin(x) by referring to the power series of    above, n is the 

order of the derivative function of order f=sin(x), and is also the n-th power of x. So the power 

series of sin(x) expansion is: 

It starts with 
       

  
  = 

      

  
  =

 

  
     as the zero term, the constant term, 

Next is:   
       

  
  = 

      

  
  =

 

  
    , as 1-th term, 

Next is:   
       

  
  = 

       

  
  =

 

  
     ,which means that there is no 2-th term, 

Next is:   
       

  
  = 

       

  
  =

  

  
     

 

  
  ,as 3-th term,  
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Next is:   
       

  
  = 

      

  
  =

 

  
      which means that there is no 4-th term. 

…，If we go on doing this, we will find that n-order derivative of f(x)=sin(x)，n is not a nonnegative 

positive number. Starting from zero, If n is an odd number, then the value of      (0) is either + 1 

or - 1, according to 1, 0, 1, - 1, 1, - 1, - 1, - 1,... Regular arrangement, if n is an even number, then 

the value of     (0) is either + 1 or - 1, according to 0，1，0，-1，0，1，0，-1，…， the regular 

arrangement of, so for the power series expansion of sin(x), the sign of the value of the 

coefficients in front of the odd power term of x is as follows: +, -, +, -, +, -, -, -,... regularly 

arranged.Th e coefficients are: 
        

  
=

 

  
 or 

        

  
= 

 

  
   If n is an even number, the value of 

its coefficient is: 
        

  
   So for the expansion of power series of sin(x), there is no even 

term of x.  So the power series of the function f(x) =sin(x) is:  

sin(x)==
 

  
  - 

 

  
  +

 

  
  - 

 

  
  +

 

  
  -…=  – 

 

  
  +

 

  
  - 

 

  
  +

 

  
  -…, 

Previously obtained 

   1+x+
 

  
  +

 

  
  +

 

  
  +

 

  
  +…+

 

  
  =1+x+

 

 
  +

 

 
  +

 

  
  +

 

   
  +…+

 

  
  (x∈R) 

If we change x to ix, We can get: 

    1+ix+
 

  
     +

 

  
     +

 

  
     +

 

  
     +…+

 

  
     =(1-

 

  
  +

 

  
  -

 

  
  +

 

  
   

 
 

   
    …     

 

  
   

 

 
   

 

  
   

 

  
     (x∈R) 

because cos(x)= (1-
 

  
  +

 

  
  -

 

  
  +

 

  
    

 

   
    …  sin(x)=     

 

  
   

 

 
   

 

  
   

19!x9  , therefore   = cos(x)+isin(x)(x∈R),So this is another Eulerian formula. 

In the formula above, if x equals pi, we will get:    =cos( )+isin( )=-1+0=-1，therefore    +1=0，

It's also called Euler's formula. It puts all the most important things in mathematics, 0, 1, e, i and 

pi, into one formula. It is a special case of Euler formula    = cos(x)+isin(x)(x∈R).when Z∈C,then 

   = cos(Z)+isin(Z)( Z∈C). 

II .ConclusionReasoning  

Femma 1: 

(20) 

      
   =          

 ( ∈    and s  , n∈        n goes through all the                  , 

 ∈        p takes all the prime numbers),this formula was proposed and proved by the Swiss 

mathematician Leonhard Euler in 1737 in a paper entitled "Some Observations on Infinite Series", 

Euler's product formula connects a summation expression for natural numbers with a 

continuative product expression for prime numbers, and contains important information about 

the distribution of prime numbers. This information was finally deciphered by Riemann after a                              

long gap of 122 years, which led to Riemann's famous paper "On the number of primes less than  

a Given Value [1]. In honor of  Riemann, the left end of the Euler product formula was named 

after Riemann, and the notation ζ(s)  ∈            used by Riemann was adopted as the 

Riemann zeta function .  

           =         
 

 
 

 

  
 

  
 
    2.7182818284... , e is a natural constant, I use 
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    for Multiplication, then based on euler's    =cosx+isin(x)(x∈R) and the principle of 

amplitude Angle,get       =                 =cos(2 3)+isin(2 3)=cos(6)+isin(6), 

because    =cos(6)+isin(6),  

so  

      =    ， 

In general,       =      (b∈R，c ∈R) is established,the angle principle is extended to the case 

where the exponent is a real number. 

so when x>0(x∈R),suppose   =x(e=2.7182818284... ,x e is a natural constant,x∈R and x>0, 

y∈R),then  =ln(x)(x>0),based on euler's    = cos(x)+isin(x)(x∈R),will get 

           =        +i        (x∈R and x>0). 

Suppose t∈R and    ,                                        (x∈R and x>0, t∈R and    ) is 

   =      =      =                          . 

Suppose s is any complex number, and Suppose s= +ti( ∈R,t∈R        ,s∈C and s  ),then 

let's find the expression of   (x∈R and x>0, s∈C) , 

You can put s= +ti( ∈R,t∈R ,s∈C,and s  ) and    =      =      =                        

   into         and you will get  

  =        =      =                        =                                 if You put 

s= -ti( ∈R, t∈R        ) and    =      =      =                           into   ,you 

will get  

                                                                            . 

Then  

 ζ     
 

  

 

   

  
 

  

 

   

  
 

     

 

   

   
 

  
 

 

   
 

 

   

       
 

                         

 

   

                                  

 

   

  

                                 

 

   

 

 (21) 

( ∈ C and s  , n∈        n goes through all the                  ),or 

ζ    

  
 

     
 
   )=             

   =               
   =     

 

      
   

   =      
   

     
 

                      
                                       

    

( ∈ C and s  ,  ∈        p goes through all the prime numbers).  

And 
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ζ     
 

  

 

   

  
 

  

 

   

  
 

     

 

   

   
 

  
 

 

    
 

 

   

       
 

                        
  

 

   

                                 

 

   

  

                                 

 

   

 

( ∈ C and s  , n∈        n goes through all the                  ), 

or 

ζ      
 

     
 
   ) =            

    =              
    =    

 

      
   

    = 

         
 

                     
   

 

   

                                    

 

   

  

( ∈ C and s  ,  ∈        p goes through all the prime numbers). 

And 

 ζ       
 

    
 
     

 

       
 
           

 

                          
 
    

                                  
                                       

     

( ∈ C and s  , n∈        n goes through all the                  ), 

Or 

If k∈        

ζ       
 

    
 
     

 

       
 
           

 

                          
 
    

                                  
                                       

     

( ∈ C and s  , k∈  , n∈        n goes through all the                  ), 

and 

ζ        
 

       
 
   ) =              

    =                
          

   

                                 

( ∈ C and s  , ∈    ∈        p goes through all the prime numbers). 

So 

X=   (                        ),  

Y=   (                        ),           

 

(22) 

G=                                  , 

H=                                  , 

X and Y are complex conjugates of each other, that is  

X= , and G and H are complex conjugates of each other, that is  

G= , so ζ   = 
 

         
     ∈               

   
 
              = 

 

       
   

 
   

   
     ∈              so ζ(s)=      ∈             , 
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and  only  when   
 

 
       ζ     =ζ     ∈               

and  only  when   
 

 
  ∈         ζ     =ζ     ∈             ∈     so 

only k=1 then ζ     =ζ    ζ       ∈             ∈    , 

only k=1  ∈      true , and when ζ   =0,  then 

ζ     =ζ      ζ   =ζ   =0  ∈             ∈       

Because 

      ✗         ✗      
✗   

  

 

   

 ✗    
 

  

 

   

 ✗    
 

     

 

   

 ✗     
 

  

 

   
 

 

   

  

✗         
 

                         
 

 
    ✗                                     

    

✗                                   
      ∈            ∈            ∈

                                            ,because ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and 

s  )(Formula 7) .s=-2n(n∈   ) is the trivial zero of the ζ(s)function, so s=-2n(n∈   ) is 

the trivial zero of the Landau-Siegel function L(β, ✗(n))(β∈R,✗(n) ∈R and ✗(n)≠0,n∈    

and n traverses all positive integers).so if β∈R and β    ( ∈     ,then ζ(s)=0. So 

L(β, ✗   )  

 ✗       β                              
   =✗       β 

     = 

 ✗     β  ✗     β  ✗     β  ✗     β     ✗   ∈   β ∈       β        ∈

Z+ ,"×" is the symbol for multiplication, because the real exponential function of the real 

number has a function value greater than zero, so  

       ∈                                                                     

                                                              

          it can be known that if ✗    0( ∈        n traverses all positive integers)     β

∈R and β    ( ∈    , then L(β, ✗   ) 0(β∈R and β     ,  ∈   , ✗   ∈R      n  

(23) 

traverses all positive integers) and L(β,  ) 0(β∈R and β     ,  ∈   ,      n traverses all 

positive integers), so for Riemann ζ(s)( s∈C and s            ∈   ) functions, its 

corresponding landau-siegel function L(β,1)( β ∈R and β     ,   ∈   ,  ✗(n)∈R      n 

traverses all positive integers) of pure real zero does not exist, this means that the Riemann 

ζ(s)(s∈C and s              ∈    ) function does not have a zero of a pure real variable s, 

and the generalized Riemann conjecture L(s, ✗ (n))=0(s∈C and s                ∈
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   ✗(n)∈R      n traverses all positive integers) satisfies s=
 

 
+ti(t∈R,t≠0) is sufficient to prove 

that the twin primes, Polignac's conjecture and Goldbach's conjecture are almost true. And if 

✗    0(  ∈        n traverses all positive integers) or β ∈R and β    (  ∈   ),   

then L(β, ✗   ) 0(β∈R and β     ,  ∈   , ✗   ∈R     n traverses all positive integers) 

and L(β,  ) 0(β∈R and β     ,  ∈   ,      n traverses all positive integers), so for Riemann 

ζ(s)( s∈C and s  ) functions, its corresponding landau-siegel function L(β,1)(β∈R,✗   ∈R ,   ∈

       n traverses all positive integers) of pure real zero exist, this means that the Riemann 

ζ(s)(s∈C and s   ) function have a zero of a pure real variable s, and the generalized Riemann 

conjecture L(s,✗(n))=0(s∈C and s   ✗(n)∈R and   ∈        n traverses all positive integers) 

is sufficient to prove that the twin primes, Polignac's conjecture and Goldbach's conjecture are 

completely true. 

According ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)   ∈                         obtained by 

Riemann,so when ζ (s)=0 then ζ(1-s)=ζ(s)=0(s∈C and s≠1 ).Beacause only when  =
 

 
, the 

next three equations ζ( +ti)=0, ζ(1- -ti)=0, and ζ( -ti)=0 are all true,so only s=
 

 
+ti (t∈R and 

t≠0) is true. 

ζ     
 

  
 
     

 

     
 
      

 

  
 

 

    
 
          

 

                         
 
    

                                  
      

                                 
   =   

 

     
 
   )=             

   =      
   

         =     
 

      
   

   =          
 

                      
   

         
   

                                 ∈             ∈          

                              . 

 

 

(24) 

 

When  =1, then if   
 

 
           

 

 
           0 then ζ     

 

  
 
      

 

     
 
     

   if   
 

 
                

 

 
                              and 

 

 
           ,then  

 

  
  

   
 (k∈                             ) and cos(    )      ∈             , so if 

                                      t 
  

   
(k∈                             ) and                               
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cos(    )   (                p>1), or    , then |t   
  

   
    (k∈          ) and   

cos(    )    ∈             So if   Re(s)=1 and t 
  

   
(k∈          ) and  

     ∈                ζ           
 

 
           

 

 
             

   

  
 

   ∈             .When s=1+ti( ∈           ) then  

            
 

 
           

 

 
             

   

  
    ∈                 when 

Re(s)=1 and p=1(                  ), then          = 

=  
 

     
 
    =                             

   
  

  
 

                              
 
    

=  
 

                              
 
   =

 

 
     ∈             ,then ζ         

    ∈             , diverges ,without zero ,so ζ        ∈             . When  =0, 

then if                          0 then ζ     
 

  
 
      

 

     
 
        if    

                                            ∈    and            ,then   

  

   
(k ∈          ) and cos(     )    , so           t 

  

   
(k ∈          ) and 

cos(     )         ,or    ,then      
  

   
    (k ∈          ) and        

  ∈                ζ                                   
   

  
    ∈          

  . So when Re(s)=0 and p 1,then        =                            
   

  
    

And when  =Re(s)=0 and p=1   then                                     
    

 
 

                              
 
    = 

 

                              
 
   =

 

 
   ,thenζ       

      ∈                diverges  without zero. So ζ          ∈             . It is a 

fact that the non-trivial zeros of the Riemann ζ(s) function (meaning zeros other than negative 

even numbers) exist, Riemann proved that the real part Re(s)   ∈            of the 

nontrivial zero s of the Riemann  (s)  ∈            function must satisfy Re(s)∈[0,1]. It is  

 

(25) 

not easy to calculate the non-trivial zeros of the  (s)  ∈            function by hand, and  

Riemann calculated a dozen of them, all of which have a real part Re(s) equal to 
 

 
, so the 

non-trivial zeros of the Riemann ζ(s)  ∈            function (meaning zeros other than 

negative even numbers) exist.,and the real part Re(s)  ∈            of the nontrivial zero s 

of the Riemann   (s)  ∈            function must satisfy Re(s)∈(0,1).When s=1+ti( ∈

          ), Rs(s)=  =1,thenζ    ζ      =  
 

     
 
   )=            

   =     
   

         =          
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=  

 

   
 

 
            

 

 
          

 
    

   ∈              ∈               ∈                                     ,When  

the independent variable s is extended from a positive integer to a general complex number, in  

the Euler product formula, the numerator of every product fraction factor is 1, and the 

denominator of every product fraction factor is a polynomial related to the natural logarithm 

function.        ∈                                          (1+ti)≠0  ∈           , 

indicating that the number of primes not greater than x is finite. From the analytic extended 

Euler product formula, we can see that for positive integers not greater than x, every increase 

of a prime p will increase a fraction factor related to ln(p) in the Euler product formula, 

indicating that the probability that there is a prime p near x (that is, x=p) is about 
 

     
 , that 

is 
 

     
 . If we use π(x) to represent the number of primes not greater than x, then for a 

positive integer p not greater than x, the probability that it is prime is approximately 
    

 
, 

then 
   

 
 

 

     
 , π(x)  

 

      
 , π(x)  

 

     
  is the expression for the prime number theorem. 

As Riemann said in his paper, n takes all the                  , so n=1,2,3... ,Let's just plug in all 

the                       
 

    
. 

Obviously, 

    =ζ( +ti)=  
 

   =  =[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...]-i[   sin(

tln1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+...]= U-Vi  ∈            ∈           , 

U=[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...] , 

V=[   sin(tln1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+...] , 

then 

 ( )= ( -ti)=  
 

   =  =[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...]+i[   sin(t

ln1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+ ...]= U+Vi  ∈            ∈           , 

U=[    cos(tln1)+    cos(tln2)+    cos(tln3)+    cos(tln4)+...] , 

V=[   sin(tln1)+    sin(tln2)+    sin(tln3)+    sin(tln4)+...] , 

ζ                                    =[     cos(tln1)+     cos(tln2)+     cos(tln3)+ 

(26) 

    cos(tln4)+...]+i[                                                            

+...]  ∈            ∈           ,  

so ζ(s)=    ，so when ζ(s)=0         ∈    ∈            ,then ζ(s)=  ( )=0, it shows that 

the zeros of the Riemann ζ(s) function must be conjugate,according ζ(s)=   (  )=0， if 

s= ，       ∈  ，               ∈           he function  (s)(s∈C and s≠1) has the 

value zero                        
      

    
 

∞
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     ∈                        , so a negative even number can be the zero of Riemann 

ζ(s)(s∈C and s≠1). If    , then s and   are not both real numbers but both imaginary numbers, 

t∈R and t≠0. And according to                
  

 
                 ∈   并且      

(equation 7), if the  (s) = 0 (s ∈ C and s≠1) was established, then ζ(1-s)=ζ(s)=0  ∈          

   must be true p, so the two zeros s and 1-s of Riemann ζ(s)(s∈C and s≠1) must also be 

conjugate. If either of s and 1-s are real numbers other than negative even numbers, since s and 1-s 

are conjugate, then s=1-s, then s=
 

 
, Since      

 

 
 ≠0, and because ζ(

 

 
) diverge, neither s nor 

1-s are zeros of Riemann ζ(s)(s∈C and s≠1) if either is a real number other than a negative even 

number, that is, Riemann ζ(s)(s∈C and s≠1) has no real zeros other than negative even numbers. 

If Re(s)=1, then Re(1-s)=0, then s and 1-s are not conjugate, if Re(s)=0, then Re(1-s)=1, then s and 

1-s are not conjugate either, so Riemann ζ(s)(s∈C and s≠1) has no zeros with real parts of 1 or 0. 

If Re(s)>1, then Re(1-s)<1, then s and 1-s are not conjugate, or Re(s)<0, then Re(1-s)>1, then s 

and 1-s are not conjugate, so the real part of Riemann ζ(s)(s∈C and s≠1) zero s must be 

0<Re(s)<1, that is, Re(s)∈(0,1), which shows that the prime number theorem holds. If s and 1-s 

are both real and imaginary, then s and 1-s are not conjugated, then s and 1-s cannot both be zeros 

of Riemann ζ(s)(s∈C and s≠1), so 1-s and s can only be both imaginary and conjugate, and s 

cannot be pure imaginary, because if s is pure imaginary, then 1-s and s are not conjugated. So ζ

(s)(s∈C and s≠1) has no pure imaginary zero. And if Re(s)≠
 

 
, then Re(s)≠Re(1-s), then 1-s and s 

are not conjugate, so Re(s)≠
 

 
 cannot be true. So only 1-s=  is true, that is, only 1-σ-ti=σ-ti is true, 

so only σ=
 

 
, t∈R and t≠0, so the real part of the non-real zeros of Riemann ζ(s)(s∈C and s≠1)  

(27) 

can only be ∈, that is, only Re(s)=
 

 
 is true, Equivalent to           

 

 
         

 

 
      ∈

          ， ∈                 
 

 
        ∈                  

 

 
        ∈

           , so the Riemann conjecture is true. The symmetry of s and 1-s is not enough to 

ensure that the non-trivial zeros of Riemann ζ(s)(s∈C and s≠1) are all located on the critical 

boundary, and the conjugacy of s and 1-s is the key determinant that the non-trivial zeros of 

Riemann ζ(s)(s∈C and s≠1) are all located on the critical boundary.So only when  =
 

 
 and 

ζ(s)=0   ∈           ,then it must be true that ζ(1-s)=ζ(s)=0   ∈           .ζ(s)   ∈

           and ζ(     ∈            are complex conjugates of each other,that is 
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ζ(s)=       ∈           , if ζ(s)=0  ∈           , then must ζ( )=0  ∈           , and 

so if ζ(s)=0  ∈           , then it must be true that ζ(s)=ζ( )=0  ∈           . 

According to Riemann's paper "On the Number of primes not Greater than x", we can obtain an 

expression ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  ∈              in relation to the Riemann ζ(s) 

  ∈           function, which has long been known to modern mathematicians, and which I  

derive later. According ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  ∈                         obtained 

by Riemann,so when ζ(s)=0 then ζ(1-s)=ζ(s)=0(s∈C and s≠1 ) eacause only when  =
 

 
, the next 

three equations ζ( +ti)=0, ζ(1- -ti)=0, and ζ( -ti)=0 are all true,so only s=
 

 
+ti (t∈R and t≠0) is 

true.And when ζ(s)=0 then according ζ(1-s) ζ(s)and ζ(s)=    =   ∈           ,is also say 

ζ(s)=ζ( )=0 and ζ(1-s)=ζ( ) =0  ∈           ,then only ζ( +ti)=ζ( -ti)=   is true.Since Riemann 

has shown that the Riemann ζ(s)   ∈            function has zero, that is, in 

ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s)   ∈           , ζ(s)=0  ∈                       is true, so 

when ζ(s)=0,In the process of the Riemann hypothesis proved about ζ(s)=ζ( )=0 and ζ(1-s)=ζ( ) 

=0  ∈           , is refers to the ζ(s)  ∈              is a functional numbe. Does 

ζ(s)=ζ( )=0 and ζ(1-s)=ζ( ) =0  ∈            mean the symmetry of the ζ(s)  ∈              

function equation? Does that mean the symmetry of the equation s= =1-s? Not really. In my 

analyst, ζ(s)  ∈            、 ζ(1-s)  ∈              and ζ( )  ∈            function 

expression are both from       
              

 ( ∈   and s  , n∈        n goes 

through all the                  ,  ∈        p goes through all the prime numbers), so 

according to       
              

 ( ∈   and s  , n∈        n goes through all the 

                 ,   ∈        p goes through all the prime numbers),ζ(s)   ∈         

  function of the independent variable s, the relationship between   and 1-s only   
 =3 kinds, 

namely s=   or s=1-s or  =1-s. As follows:according ζ(s)=ζ(1-s)=0   ∈            and  

ζ(s)=ζ( )=0 and ζ(1-s)=ζ( ) =0  ∈           ,then only s=  or s=1-s or  =1-s ,so s∈R and 

s=-2n( ∈   ),     +ti=1-ti ,or  -ti=1- -ti,      ∈              ∈         =
 

 
 and  

(28) 

t=0,or  
 

 
      ∈R     +ti=1-ti ,or  -ti=1- -ti,      ∈              ∈         =

 

 
 and 

t=0,or   
 

 
      ∈R and t  ,so   ∈    or s=

 

 
+0i ,or s=

 

 
+ti  ∈R         ), because 

  
 

 
            ,  (1) is divergent,  (

 

 
) is more divergent,so drop s=1 and 

s=
 

 
.According the equation       

 

 
s(s-1)  

 

 
    

 

       ∈                              , so     =        ∈           , 

because   
 

 
 =   

 

 
  , and    

 

 =    
 

  , and because ζ(s)=       ∈             ， so 
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 (s)=      ∈             .So when ζ(s)=0  ∈              ,then ζ   =ζ           

   ∈            and     =      =    =0  ∈            must be true , so the nontrivial 

zeros of the Riemann ζ(s)  ∈              function and the nontrivial zeros of the Riemann 

      ∈              function are identical, In addition, the previous proof of Riemann ζ(s)(s=

σ+ti,σ∈R,t∈R,t≠0, and s≠1), based on the Landau-Siegel function has no real zeros except 

negative even numbers, so the complex root of Riemann  (s)=0   ∈            satisfies 

s=
 

 
+ti  t ∈ R         ) or s=

 

 
-ti(t ∈ R and t≠ 0). According to the Riemann function 

 
 

 
(s-1)  

 

 ζ(s)=ξ(t)  ∈            ∈            defined by Riemann and he Riemann 

hypothesis s=
 

 
+ti  ∈           , because s 1, and  

 

 
  ,   

 

   , so  
 

 
(s-1)  

 

  o, 

and when ξ(t)=   ∈           , then  
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0  ∈            ∈         

  , and ζ
 

 
+ti)= 

    

 
 

 
      

 
 
 

 =
 

 
 

 
      

 
 
 

=   ∈            ∈           ,so t∈R        . So 

the root t of the equations  
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0  ∈            ∈            and 

4  
   

 
        

  

 

 
  

 

     
 

 
    )   =ξ(t)=0   ∈            ∈            and ξ(t)=

 

 
 -(    

 

 
)       

 

 
  

 

     
 

 
      =0   ∈            ∈           must be real  and   

 .Riemann got  
 

 
(s-1)   

 

 ζ(s)=ξ(t)    ∈            ∈            and  ξ(t)=  
 

 
 – 

(   
 

 
)      

 

 
  

 

     
 

 
         ∈            ∈            in his paper,or  

 
 

 
(s-1)  

 

 ζ(s)=ξ(t)   ∈            ∈            and  

ξ(t)=4 
   

 
        

  

 

 
  

 

     
 

 
    )    ∈            ∈           ,because the root of  

(29) 

ζ(
 

 
+ti)=0  ∈            is the root of  

 

 
(s-1)  

 

 ζ(
 

 
+ti )=ξ(t)=0  ∈            ∈         

   , and because the root of ζ(
 

 
+ti)=0  ∈            is the root of   

 

 
(s-1)  

 

 ζ(
 

 
+ti)= 

4 
   

 
        

  

 

 
  

 

     
 

 
    )  =ξ(t)=0  ∈            ∈            and because the root of  

ζ(
 

 
+ti)=0   ∈            is the root of ξ(t)=

 

 
-(    

 

 
)      

 

 
  

 

     
 

 
      =    ∈

           ∈           , so the roots of equations  
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0  ∈         

   ∈           and 4 
   

 
        

  

 

 
  

 

     
 

 
    )  =ξ(t)=0  ∈            ∈            
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and ξ(t)=
 

 
-(   

 

 
)      

 

 
  

 

     
 

 
      =   ∈            ∈            must all be real 

numbers, and the roots are the same number , because the root of ζ(
 

 
+ti)=0  ∈         

        
 

 
+ti( ∈          ),so when     =   ∈           and ξ(t)=0  ∈           , the 

real part of the root of ξ(t)=0  ∈            must be between 0 and T , and the real roots of 

ξ(t)=0  ∈            has the same number of complex roots of ξ(t)=0  ∈             So 

when     =0  ∈            and ξ(t)=0  ∈           ,the number of roots of ξ(t)=0  ∈

           must be approximately equal to 
 

  
  

 

  
 

 

  
 , all the roots of ξ(t)=0  ∈         

                        the Riemann hypothesis and the Riemann conjecture are perfectly valid. 

Because the number of roots t of   ζ  
 

 
         

 

                             
    

    
 

                           
  

   =0 is the number of roots of  

ξ(t)=
 

 
 -(   

 

 
)      

 

 
  

 

     
 

 
      =0. Because when t=0,       ζ  

 

 
  is divergent, when 

      ∈[0,   ] , the numbers of the root t of  

ζ  
 

 
         

 

                             
    

    
 

                             
   =0 is   

 

  
    so when t∈(0,    , the numbers of 

the root t of ζ  
 

 
         

 

                             
        

 

               
   

             
 
=0 is N=      

 

  
    

 

  
  ). 

Formula 2 

Let's say I have any complex number Z=x+yi(x∈R，y∈R), and I have any complex number 

s= +ui( ∈R，u∈R).We use r(r∈R,andr>0) to represent the module |Z| of complex Z= x+yi  

 

(30) 

(x∈R，y∈R), and φ to represent the argument Am(Z) of complex Z=x+yi(x∈R，y∈R).That is 

|Z|=r, then r=        
 

 ,  

so Z=r(Cos(φ)+iSin(φ)) and φ=|arccos(
 

       
 
 

 )|,and φ∈(-   ], then φ=Am(Z). 

           =     =                       =                         can get 

  =                              =                         (r>0), then 

f(Z,s)=  =(                      =(                                      = 

                                                                        

         ui = r                                                           i  

=                                                               
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=                                                  . 

Beacuse of  

  

eln|Z|+iAm(Z)=eln|Z|eiAm(Z)=eln|Z|(cos(Am(Z))+isin(Am(Z)))=r(cos(Am(Z))+isin(Am(Z

))),so lnZ=ln|Z|+iAm(Z)   <Am(Z)<   . 

Suppose a>0,then   =              
，then   =      

.                                  

Suppose any complex Number Q=                 , and Suppose  

the complex ψ= i, then lnQ=ln|Q|+iAm(Q)（  <Am(Q)<   . 

Because 0<=|       |<=1, 

so 

If   <  <  ,then Am(Q)=         <Am(Q)<  ； 

If   > , then Am(Q)=  -2k   ∈ Z+        <Am(Q)<  ； 

         ,then Am(Q)=  +2k   ∈           <Am(Q)<  . Then 

If Am(Q)=  , then 

                             
                 =            =    .then 

f(Z,s)=  =                                                   

=                                                   

=                   +i                  。Substituting 

r=        
 

  into the above equation gives:  

f(Z,s)=  =           
 

                   
 

       
 

 

+i           
 

                   
 

       
 

If Am(Q)=   -2k   ∈    ,then 

                             
                 =               =       , then 

f(Z,s)=  =                                                   

=                                                   

=                      +i                     . 

(31) 

Substituting r=        
 

  into the above equation gives:  

f(Z,s)=  =              
 

                   
 

       
 

 

+i              
 

                   
 

        
 

 

If Am(Q)=  +2    ∈    , then 

                             
                 =               =         , then 

f(Z,s)=  =                                                   

=                                                   

=                       +i                      . 

Substituting r=        
 

  into the above equation gives:  
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f(Z,s)=  =               
 

                   
 

       
 

 

+i               
 

                   
 

        
 

 

Reasoning 1: 

For any complex number s, when                            s= +ti( ∈R,t∈R        ,s∈C),  

 

then according to Dirichlet η     then the relationship between the Riemannn ζ(s)(s∈C and 

Rs(s)>0 and s≠1) function and the Dirichlet η(s)(s∈C and Rs(s)>0 and s≠1) function is : 

because 

η   = 
 

   
 

  +
 

   
 

  +
 

   
 

  +…  ∈                        ， 

    = 
 

   
 

  +
 

   
 

  +
 

   
 

  +…  ∈                        ，so 

η           
 

   
 

   
 

     =  
 

  (
 

   
 

  +
 

   
 

  +
 

   
 

  +…)=  
 

        ∈

C and Rss>0 and  s 1，then 

η    1 
 

                     ∈                        , then 

η (  )=  
       

  
 
     ∈                         and η (s)=(1-     )       ∈             

0 and s 1,  sis the Riemann Zeta function, η(s) is the Dirichlet η(s) function, 

so           ζ   =
η   

        
=  

 

        
 

       

   
       

        
 
             

   ∈             

          , n∈     ∈     ∈C，n goes through all the positive integers, p goes through all 

the prime numbers). Let's prove that ζ(s) and ζ     are complex conjugations of each other. 

 

(32) 

 
       

  
 
   =[    cos(tln1)     cos(tln2)+    cos(tln3)    cos(tln4)-...]-i[   sin(tln1)     s

in(tln2)+    sin(tln3)      sin(tln4)+...]= U-Vi, 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3)    cos(tln4)-...]+i[   sin(tln1)      

 

sin(tln2)+    sin(tln3)    sin(tln4)+...]= U+Vi, 

 
       

    
 
   =[      cos(tln1)       cos(tln2)+      cos(tln3)     cos(tln4)-...]+i[   sin(tln1)

     sin(tln2)+    sin(tln3)     sin(tln4)+...], 

 
       

    
 
   =[      cos(tln1)       cos(tln2)+      cos(tln3)      cos(tln4)-...]+i[    sin(tln

      sin(tln2)+     sin(tln3)       sin(tln4)+...], 
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  ∈            ∈                                        ∈    , 

        , 

       

        
 = 

    
   

    
   

 
 ,   

          
 =          

        

  ∈            ∈                                    , 

so 

       

        
=

       

        
 ,    

so 

 
       

        
 

       

    
      

       

        
 

       

  
  

   
 , 

 
 
       

        
          

   
       

        
          

 
 ,  

ζ(s)=
 

        
 

       

   
       

        
          

   
 , 

ζ   =
 

        
 

       

    
    

       

        
              ∈            ∈                                  

                                       ∈                                    , 

so 

only ζ(s)=ζ    
  ∈           , [2]so 

    =         =        =                          =                             

    =          =        =                                     =                 

            ,  ∈            ∈            ∈      

then 

       =          =             

                        =                            , 

     =        =                                   

  ∈            ∈            ∈     , 

(33) 

so 

           =1-                            =                                , 

         =1-                           =                                

  ∈            ∈            ∈     , 

 
       

      
   =[     cos(tln1)      cos(tln2)+     cos(tln3)     cos(tln4)-...]+i[    sin(tln1)

      sin(tln2)+     sin(tln3)       sin(tln4)+...] , 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3) 4  cos(tln4)-...]+i[1  sin(tln1)     

sin(tln2)+    sin(tln3) 4  sin(tln4)+...] 

  ∈            ∈            ∈                                         , 

when  =
 

 
,then 
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   = 

       

  
 
      ∈            ∈                                        ∈    , 

            =         ∈            ∈   ), 

and 

             =            ∈            ∈   ), 

              
 =          

   ∈                                             ∈    , 

              
 =           

   ∈            ∈                                      ∈

   , 

and 

       

      
 

       

    
 
    

       

        
 

       

  
 
    , 

       

      
              

  
       

        
          

   

  ∈            ∈            ∈                                         ∈

                                    , 

And 

ζ     =
       

      
              

 , 

ζ   =
       

        
          

  , 

ζ     =
       

      
 

       

    
 
   , 

ζ   =
       

        
 

       

  
 
    

  ∈            ∈                                       ∈

                                      , 

so when  =
 

 
, then only ζ     =ζ     ∈                       . 

 
       

    
 
   =[      cos(tln1)      cos(tln2)+      cos(tln3)     cos(tln4)-...]+i[    sin(tln1)

      sin(tln2)+     sin(tln3)       sin(tln4)+...], 

 

(34) 

 
       

  
 
   =     cos(tln1)    cos(tln2)+    cos(tln3) 4  cos(tln4)-...]+i[1  Sin(tln1)     si

n(tln2)+    sin(tln3) 4  sin(tln4)+...], 

    =         =        =                          =                             

    =          =        =                                     =                 

isin(tlnp)) , 

  ∈            ∈                                     ∈

                                       ∈    , 

Then 

       =          =             

                        =                            , 

     =        =                                  , 

       =                            , 
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  ∈            ∈                                   ∈    , 

so 

           =1-                            =                                , 

       =1-                           =                               

  ∈            ∈                                   ∈    , 

So when  =
 

 
(k∈R) then 

 
       

      
 
   = 

       

  
 
      ∈            ∈    ∈                                         

            =           ∈            ∈    ∈                            , 

and              =          ( s∈C and s≠1,k∈R, p∈   and p is a prime number , 

            
  

 =        
  

    ∈            ∈                                     

 ∈                                        ∈    ,  

and 

 

          
 

       

    
 
    

 

        
 

       

  
 
     

  ∈            ∈                                     ∈

                                       ∈    , 

and 

ζ     =
       

          
              

 , 

ζ   =
       

        
           

  , 

ζ     =
 

          
 

       

    
 
    s∈C and s    ∈R , 

ζ   =
 

        
 

       

  
 
    s∈C and s   , 

  ∈            ∈                                     ∈

                                       ∈    , 

 

(35) 

so when  =
 

 
(k∈R) then only       =     s∈C and s      ∈            ∈   . 

According the equation ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s)  ∈            obtained by  

Riemann,since Riemann has shown that the Riemann ζ(s) function has zero, that is, in  

ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s)   ∈           , ζ(s)=0  ∈            is true.  

When     =0  ∈           , then only       =     =0  ∈           , and  

When     =0  ∈           ,then       =    =   ∈           . And because  

         =   ∈           , then only       =    =0  ∈           , which is        

      ∈            ∈    ,so only k=1 be true. According ζ(s)=ζ(1-s) =0   ∈            and 

ζ(s)=ζ( )=ζ(1- )=0  ∈           ,then s=  or s=1-s or  =1-s ,so s∈R and s=-2n( ∈   ), 

    +ti=1- -ti ,or  -ti=1- -ti,      ∈        =
 

 
 and t=0,or   

 

 
      ∈R and t  , 
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so   ∈  , or s=
 

 
+0i ,or s=

 

 
+ti  ∈R        ), because   

 

 
            , ζ(1) is 

divergent, ζ(
 

 
) is more divergent,so drop them.Beacause only when  =

 

 
,the next three 

equations,       )=   ,         )=0, and    -ti)=    are all true, because   
 

 
  

          ,  (1) is divergent,  (
 

 
) is more divergent, so drop s=1 and s=

 

 
, so only 

s=
 

 
+ti(t∈R        ,s∈C) is true.Since Riemann has shown that the Riemann ζ(s)  ∈

           function has zero, that is, in ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s)   ∈           , 

ζ(s)=0   ∈            is true. According the equation       
 

 
s(s-1)   

 

 
    

 

       ∈

                              , so     =        ∈           , because   
 

 
 =  

 

 
  , 

and    
 

 =    
 

  , and because ζ(s)=     s∈C and s   ，so  (s)=     s∈C and s     So when 

ζ(s)=0   ∈            ,then ξ    =ζ              s ∈ C and s     and     =     

  =    =  s∈C and s    must be true , so the zeros of the Riemann ζ(s) function and the 

nontrivial zeros of the Riemann      s∈C and s    function are identical, so the complex root 

of Riemann  (s)=0 s∈C and s    satisfies s=
 

 
+ti t∈R        ) , according to the Riemann  

function  
 

 
(s-1)  

 

 ζ(s )=ξ(t) s∈C and s    ∈          ) and he Riemann hypothesis  

s=
 

 
+ti  ∈           , because s 1, and  

 

 
 o,   

 

   , so  
 

 
(s-1)  

 

    s∈C and s   , 

and when ξ(t)=   ∈          ), then  
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0 s∈C and s    ∈          ) 

and ζ(
 

 
+ti)=

    

 
 

 
      

 
 
 

 = 
 

 
 

 
      

 
 
 

 =  s∈C and s    ∈          ),so t∈R        . 

 (36) 

 So the root t of the equations 

 
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0 s∈C and s    ∈          ) and  

4 
   

 
        

  

 

 
  

 

     
 

 
    )  =ξ(t)=0 s∈C and s    ∈          )and  

ξ(t)=
 

 
 -(   

 

 
      

 

 
  

 

     
 

 
      =0 s∈C and s    ∈          ) must be real and   

 .If Re(s)=
 

 
  ∈   ,then ζ(k-s)=        Cos(

  

 
)Γ(s)ζ(s) s∈C and s  ) and  

       
 

 
s(s-k)  

 

 
    

 

       ∈            ∈            , so when ζ(s)=   ∈         

   ,then     =              s∈C and s    ∈  )and     =      =    =  s∈C and 

s    ∈  ) must be true , and s=
 

 
+ti  k∈R，t∈R        ) must be true,then  
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(s-k)  

 

 ζ(
 

 
+ti)=ξ(t)=  s∈C and s    ∈            ∈   ), and ζ(

 

 
+ti)=  

    

 
 

 
      

 
 
 

=
 

 
 

 
      

 
 
 

=  s∈C and s    ∈            ∈  ),so t∈R        . So the root  t 

of the equations  
 

 
(s-k)  

 

 ζ(
 

 
+ti)=ξ(t)=0 s∈C and s    ∈            ∈  ) must be real 

and    . But the Riemann ζ(s) s∈C and s  )function only satisfies  

ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s) s∈C and s  )            and      

 

 
s(s-1)  

 

 
    

 

       s∈C 

and s  )，is also say that only ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s) s∈C and s              ) is true , 

so only Re(s)=
 

 
=

 

 
 is true, so only k=1 is true.The Riemann hypothesis and the Riemann 

conjecture must satisfy the properties of the Riemann ζ(s) s∈C and s  ) function and the 

Riemann      s∈C and s  ) function, The properties of the Riemann ζ(s) s∈C and s  ) 

function and the Riemann      s∈C and s  ) function are fundamental, the Riemann 

hypothesis and the Riemann conjecture must be correct to reflect the properties of the Riemann 

ζ(s) s∈C and s  ) function and the Riemann      s∈C and s  ) function, that is, the roots of 

the Riemann  (t) t∈C and t  )function can only be real, that is, Re(s) can only be equal to 
 

 
 , 

and Im Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the 

Riemann conjecture must be correct. 

For any complex number s, when        is any real number, including      >        

           ≤             then  

                         ζ(s)=      sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  )(Formula 7). Suppose  

s=  +ti( ∈R,t∈R        ,s∈C),let's prove that ζ(s) s∈C and s  ) and ζ( ) s∈C and s  ) are 

complex conjugations of each other and get the equation ζ(s)=      sin(
  

 
)Γ(1-s)ζ(1-s) s∈C 

and s  )(Formula 7). 

Reasoning 2: 

(37) 

The reasoning in Riemann's paper goes like:  

2sin(πs)      ζ(s)=          ((      +    ) [1] (Formula 3), 

based on euler's    =                ∈    can get     

    
 

 
 =cos(

  

 
) +isin(

  

 
) =0-i= -i ,  

   
 

 
 =cos(

 

 
)+isin(

 

 
)=0+i=i ,       

then 

                        +         =          
 

 
           

 

 
  =  

i    
 

 
  -i   

 

 
   i(cos

   

 
+isin

   

 
)-i(cos

  

 
+isin

  

 
)=icos(

  

 
)-icos(

  

 
)+sin(

  

 
)+sin(

  

 
) 

=2sin(
  

 
) (Formula 4). 
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According to the property of Π(s-1)=Γ(s) of the gamma function,and  

      
   =ζ(1-s)   ∈                                       ∈          ), 

Substitute the above (Formula 4) into the above (Formula 3), will get  

2sin(πs)Γ(s)ζ(s)=                
  

 
 (Formula 5), 

If I substitute it into (Formula5), according to the double Angle formula sin(πs)=2Sin(
  

 
)cos(

  

 
), 

we Will get ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s∈C and s  ) (Formula 6), 

because    
   

          Γ(
   

 
)    ,so when ζ(s)=0   ∈           , then ζ(1-s)=0   ∈

          , 

Substituting s→1-s, that is taking s as 1-s into Formula 6, we will get 

ζ(s)=      sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  )(Formula 7), 

This is the functional equation for ζ(s)   ∈           . To rewrite it in a symmetric form, use 

the residual formula of the gamma function [3] 

Γ(Z)Γ(1-Z)= 
 

       
 (Formula 8)  

and Legendre's formula  

Γ(
 

 
)Γ(

 

 
+

 

 
)=     

 

 Γ(Z) (Formula 9) , 

Take z= 
 

 
 in (Formula 8) and substitute it to get 

sin(
  

 
)= 

 

  
 

 
      

 

 
 
 (Formula 10) , 

In (Formula 9), let z=1-s and substitute it in to get 

Γ(1-s)=     
 

 Γ(
   

 
)Γ(1- 

 

 
) (Formula 11) 

By substituting (Formula 10) and (Formula 11) into (Formula 7), we get 

 

(38) 

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s∈C and s  ), 

also 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s, 

And that's exactly what Riemann said in his paper. 

That is to say: 

Γ(
 

 
)  

 

 ζ(s) is invariant under the transformation s→1-s , 

also 

  
 

 
     

 

 ζ(s)=   
   

 
     

   

 
 ζ(1-s) s∈C and s  ), 

or  

  
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s)  ∈           (Formula 2), 
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Then ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  ) , 

under the transformation s→1-s ,will get 

ζ(1-s)=        Cos(
  

 
)Γ(s)ζ(s) s∈C and s  ) (Formula 1). Then ζ(1-s)=

    

          
  

 
       

 s∈C 

and s  ),          =0，then if ζ(1-s)=
    

          
  

 
       

 s∈C and s  ) is going to make  

sense, then the denominator       sin(
  

 
)Γ(1-s) ≠0, Clearly indicates     (s∈C and 

s  ),       (s∈C and s  ), Γ(1-s)   (s∈C and s  ), so sin(
  

 
) can not equal to zero, so 

sin(
  

 
)   (s∈C and s  ), so s   ( ∈   )，and s  . So when     =0，then        

    =      0 s∈C and s                     ， ∈    . 

Because 

     ✗    =✗   ζ(s)  ∈            ∈                                                 and  

      ✗    =✗   ζ(1-s) s∈C and s  ,  ∈                                               )， 

and according to ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  )(Formula 7), So 

only     ✗    =      Sin(
  

 
)Γ(1-s)      ✗      ∈            ∈                 . 

According to the property that Gamma function Γ(s) and exponential function are nonzero, is also 

that Γ(
   

 
)         

   

   , according to   
 

   
 

 
 ζ(s)=  

   

 Γ(
   

 
)ζ(1-s) s∈C and s  ) 

(Formula 2), 

Mathematicians have shown that the real part of the complex independent variable s of the 

Riemann      s∈C and s  )function will have zero only if 0<Re(s)<1 and Im(s)  , so we agree  

(39) 

on               =
η   

        
=

 

        
 

       

   
       

        
 
             

   ∈         

                            , n∈  ∈     ∈  ∈     ∈ C，n goes through all the 

positive integers , p goes through all the prime numbers). 

According the equation ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s) s∈C and s  ) obtained by Riemann,since 

Riemann has shown that the Riemann ζ(s) s∈C and s  ) function has zero, that is, in 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  s∈C and s  ), so ζ(s)=0 s∈C and s  ) is true, and so we agree on 

ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)   ∈                                     ,n ∈     ∈

    ∈C，n goes through all the positive integers, p goes through all the prime numbers).  

According to the property that Gamma function Γ(s) and exponential function are nonzero, is also 
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that Γ(
   

 
)         

   

   , 

So when ζ(s)=0 s∈C and s  ), then ζ(1-s)=0 s∈C and s  ), also must ζ(s)=ζ(1-s)=0 s∈C and 

s  ). 

           =         
 

 
 

 

  
 

    
 
    2.7182818284...,  

and because sin(Z)=
        

  
, Suppose Z=s=  +ti ( ∈R,t∈R        ), then  

sin(s)=
        

  
 = 

                  

  
, 

sin( )=
        

  
 = 

                  

  
, 

according   =        =      =                        =                                 

then 

  =       =     =                                         

   =        =                                                          , 

            =                                                            ,                                                                                                                                                                                                                                                                                                                                               

    =         =                                                             , 

              =                                                           , 

  =       =     =                       =                         , 

  =       =      =                         =                         , 

    =         =       =                         =                           , 

    =         =        =                          =                           , 

So 

  =  ,     =     , 

and 

        

  
 =

        

  
 , 

So 

(40) 

sin(s)=       , 

and 

sin(
  

 
)=    

  

 
   . 

And the gamma function on the complex field is defined as: 

Γ(s)=       

 
   dt, 

Among Re(s)>0,this definition can be extended by the analytical continuation principle to the 

entire field of complex numbers, except for non-positive integers, 

So 

Γ(s)=     ,  

and  

Γ(1-s)=        .When ζ(1-  )=       =0=ζ(s)=ζ(1-s)=0  s ∈ C and s   ), and according 
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ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  ), then only ζ(s)=    =0 s∈C and s  ),is also say 

ζ(s)=ζ( )=ζ(1- )=0 s∈C and s  ). so only ζ( +ti)=ζ( -ti)=0 is true.According the equation 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  ∈           obtained by Riemann,since Riemann has 

shown that the Riemann ζ(s)  ∈            function has zero, that is, in  

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  ∈                      , ζ(s)=0  ∈            is true, 

so when ζ(s)=0  ∈           , then only ζ(s)=ζ(1-s)=0  ∈            is true.in the 

process of the Riemann hypothesis proved about ζ(s)=ζ(1-s)= ζ( )=0, is refers to the ζ(s) is a 

functional number? It's not. Does ζ(s)=ζ(1-s)=ζ( )  ∈            mean the symmetry of 

the ζ(s) function equation? Does that mean the symmetry of the equation s= =1-s? Not really. 

In my analyst, ζ(s)、ζ(1-s) and ζ( ) function expression is the same, are       
   (n∈        n 

traves all positive integer,  ∈          ), so according  

to         ∈                                       ∈             
   ,ζ(s)   ∈         

   function of the independent variable s, the relationship between   and 1-s only   
 =3 

kinds, namely s=  or s=1-s or  =1-s. As follows:  

According ζ(s)=ζ(1-s)=0  ∈            and ζ(s)=ζ( )=ζ(1-s)=0  ∈           ,then only 

s=  or s=1-s or  =1-s ,so s∈R,     +ti=1- -ti ,or  -ti=1- -ti,      ∈              ∈

        =
 

 
and t=0,or   

 

 
      ∈R and t  ,so  ∈    or s=

 

 
+oi ,or s=

 

 
+ti  ∈R       

 ),because   
 

 
            ,  (1) is divergent,  (

 

 
) is more divergent,so drop 

them.Beacause only when  =
 

 
 ,the next three equations,       )=  ,         )=  , and 

   -ti)=0 are all true, because   
 

 
            ,  (1) is divergent,  

 

 
) is more  

 

(41) 

divergent,so only s=
 

  
+ti(t∈R        ) is true, or say only s=

 

 
+ti  t∈R        ,s∈C) is 

true.Since Riemann has shown that the Riemann ζ(s)  ∈           function has zero, 

that is, in ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  ∈                      , ζ(s)=0  ∈         

 ) is true.  

According the equation      
 

 
s(s-1)  

 

 
    

 

       ∈                               , so 

    =        ∈           , because   
 

 
 =  

 

 
 , and    

 

 =   
 

  , and because ζ(s)=      ∈

          ， so  (s)=       ∈            So when ζ(s)=0   ∈            ,then 

ξ   =ζ              ∈           and     =      =    =0  ∈            must 

be true , so the zeros of the Riemann ζ(s) function and the nontrivial zeros of the Riemann 

      ∈            function are identical, so the complex root of Riemann  (s)=   ∈

           satisfies s=
 

 
+ti t∈R         )or s=

 

 
-ti t∈R         ).According to the 
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Riemann function  
 

 
(s-1)  

 

 ζ(s)=ξ(t   ∈            ∈            and he Riemann 

hypothesis s=
 

 
+ti t∈C         , because s 1, and  

 

 
 o,   

 

   , so  
 

 
(s-1)  

 

  o, 

and when ξ(t)=0, then  
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0, and  

ζ(
 

 
+ti)=  

    

 
 

 
      

 
 
 

 =
 

 
 

 
      

 
 
 

= ，so t∈R         . So the root t of the equations 

 
 

 
(s-1)  

 

 ζ(
 

 
+ti)=ξ(t)=0 and 4 

   
 
        

  

 

 
  

 

     
 

 
    )  =ξ(t)=0   ∈           and  

ξ(t)=
 

 
 -(   

 

 
)      

 

 
  

 

     
 

 
      =0  ∈            must be real  and    . If 

Re(s)= 
 

 
  ∈   ,then ζ(k-s)=        cos(

  

 
)Γ(s)ζ(s)  ∈            ∈    and        

 

 
s(s-k)  

 

 
    

 

       ∈            ∈           , so when ζ(s)=0  ∈          ,then 

    =               ∈            ∈   and     =      =    =0  ∈         

   ∈    must be true , and s=
 

 
+ti  k∈R,t∈R       ) must be true, then  

 
 

 
(s-k)  

 

 ζ(
 

 
+ti)=ξ(t)=0 k∈R,t∈R          ∈  ), and  

ζ(
 

 
+ti)=

    

 
 

 
      

 
 
 

=
 

 
 

 
      

 
 
 

=  k∈R,t∈R          ∈          ),so t∈R        . So 

the root  of the equations  
 

 
(s-k)  

 

 ζ(
 

 
+ti)=ξ(t)=0 k∈R,t∈R          ∈          ) 

must be real  and    . But the Riemann ζ(s) function only satisfies  

 

 

(42) 

ζ(1-s)=         cos(
  

 
)Γ(s)ζ(s)(   ∈          ) and      

 

 
s(s-1)   

 

 
    

 

       ∈

         )，is also say that only ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  ∈          ) (Formula 7) 

is true , so only Re(s)=
 

 
=

 

 
  ∈    is true, so only k=1 is true.The Riemann hypothesis and 

the Riemann conjecture must satisfy the properties of the Riemann ζ(s)  ∈            

function and the Riemann       ∈            function, The properties of the Riemann 

ζ(s)   ∈            function and the Riemann       ∈            function are 

fundamental, the Riemann hypothesis and the Riemann conjecture must be correct to reflect 

the properties of the Riemann ζ(s)  ∈            function and the Riemann      ∈

           function, that is, the roots of the Riemann  (t)  ∈            function can 

only be real, that is, Re(s) can only be equal to 
 

 
, and Im(s) must be real, and Im(s) is not 

equal to zero.So the Riemann hypothesis and the Riemann conjecture must be correct. 

Riemann found in his paper that 

                
 

 
     

 

              
  

 
 

 

 
  dx+   

 

 
  

  

 
 

   

 dx + 
 

 
   

   

 
 

 
 - 

 

 
  )dx 
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= 
 

      
 +       

  

 
( 

 

 
  +  

   

 )dx  ∈          ) s∈C and s  ), Because 
 

      
 and 

      
  

 
( 

 

 
  +  

   

 )dx are all invariant under the transformation s→1-s If I introduce the 

auxiliary function     =  
 

 
     

 

        ∈           ,So I can just write it as  

ψ(s)=ψ(1-s). But it would be more convenient to add the factor       to ψ(s) and introduce 

the coefficient 
 

 
 , which is exactly what Riemann did,                  

     
 

 
s(s-1)  

 

 
    

 

     (s∈          ).Because the factor (s-1) cancels out the first pole of 

     at s=1, And the factor s cancels out the pole of   
 

 
  at s=0, and s  is equal to -2, -4, 

-6,...,the rest of the poles of   
 

 
  cancel out . So     is an integral function.And the factor 

       obviously doesn't change under the transformation s    ,so we also have the 

function     =           ∈          ), base on ζ(1-s)=       – cos(
  

 
)Γ(s)ζ(s)(   ∈

                        At the same time, according to ζ(1-s)=    π – cos(
π 

 
)Γ(s)ζ(s)  ∈

         ), if ζ(s)=0  s∈C and s  ),then must ζ(1-s)=0  s∈C and s  ), is that to say 

ζ(s)=ζ(1-s)=0 s∈C and s  ). According to Riemann's hypothesis s=
 

 
+ti(t∈C,       ), s and t 

differ by a linear transformation . It's a 90 degree rotation plus a translation of 
 

  
. So line Re(s)= 

 

 
 

in the s plane corresponds to the real number line in the t plane,the zero of Riemann       ∈ 

 

(43) 

 

         ) on the critical line Re(s)= 
 

 
 corresponds to the real root of ξ(t)(t∈C        ). In 

Riemann function        ∈          ), the function equation     =        ∈         

  becomes equation     =       ∈            is an even function, an even function is a 

symmetric function, it’s zeros are distributed symmetrically with respect to t=0 .The 

function        ∈            designed by Riemann and Riemann's hypothesis    
 

 
 

    ∈            ∈            and     =         ∈           are equivalent to 

    =       ∈           .So the function       ∈            is also an even function.The 

zero points on the graph of an even function       ∈            with respect to the 

coordinates of its argument on the real number line equal to some value are symmetrically 

distributed on the line perpendicular to the real number line of the complex 

plane.          =   ∈           ，is also that     =     =   ∈            the zeros of 

      ∈           are symmetrically distributed with respect to t equals  .         =   ∈

          ,is also that     =      =   ∈           ,the zeros of       ∈            

are symmetrically distributed with respect to point (
 

 
,0i) on a line perpendicular to the real 
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number line of the complex plane.So when     =      =   ∈           , s and 1-s are pair 

of zeros of the function       ∈            symmetrically distributed in the complex plane 

with respect to point (
 

 
,  i) on a line perpendicular to the real number line of the complex 

plane.When ζ(s)=0 s∈C and s  ), then ζ(1-s)=0 s∈C and s  ) , is aslo that ζ(s)=ζ(1-s)=0  ∈

          . We find ζ(s)=ζ(1-s)=0  ∈            and     =      =   ∈            

are just the name of the function is idifferent,the independent variable s is equal to 

 

 
+ti(t∈C,s∈C),that means that the zero arguments of function ζ(s)  ∈            and function 

      ∈            are exactly the same,so the zeros of the ζ(s)  ∈            function in 

the complex plane also correspond to the symmetric distribution of point (
 

 
,  i) on a line 

perpendicular to the real number line in the complex plane,                        ∈

           s and 1-s are pair of zeros of the function       ∈            symmetrically 

distributed in the complex plane with respect to point (
 

 
,  i) on a line perpendicular to the real 

number line of the complex plane.We got     = ( )(s= +ti,  ∈  ,  ∈R        ) before,When 

t in Riemann's hypothesis  

s=
 

 
+ti(t ∈ C,s ∈ C         ) is a complex number, and s=

 

 
+ti=  +ti , then s in 

    =  ( )(s= +ti,   ∈  ,  ∈R         ) is consistent with s in Riemann's hypothesis 

s=
 

 
+ti(t∈C,s∈C        ).If     = ( )=0(s= +ti, ∈  ,  ∈R        ),Since s and   are a 

pair of conjugate complex numbers,So s and   must be a pair of zeros of the function       ∈

           in the complex plane with respect to point   ,0i) on a line perpendicular to the 

real number line.s is a symmetric zero of  1-s, and a symmetric zero of  . By the definition of  

(44) 

complex numbers, how can a symmetric zero of the same function       ∈            of the 

same zero independent variable s on a line perpendicular to the real number axis of the complex 

plane be both a symmetric zero of 1-s on a line perpendicular to the real number axis of the 

complex plane with respect to point (
 

 
,  i) and a symmetric zero of   on a line perpendicular to 

the real number axis of the complex plane with respect to point       ? Unless   and 
 

 
 are 

the same value,                
 

 
, and only 1-s=  is true, and 1-s=s is wrong.Otherwise it's 

impossible,this is determined by the uniqueness of the zero of the function       ∈         

   on the line passing through that point perpendicular to the real number axis of the complex 

plane with respect to the vertical foot symmetric distribution of the zero of the line and the real 

number axis of the complex plane,only one line can be drawn perpendicular from the zero 

independent variable s of the function       ∈            to the real number line of the 

complex plane, the vertical line has only one point of intersection with the real number axis of 

the complex plane. In the same complex plane, the same zero point of the function       ∈

           on the line passing through that point perpendicular to the real number line of the 

complex plane there will be only one zero point about the vertical foot symmetric distribution of 

the line and the real number line of the complex plane.Because     = ( )(s= +ti, ∈  , 
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 ∈R        ), then if       )=0,             )=0, and              =       =0 s∈C and 

s  ), then   1- -ti)=0, and              =      =0  ∈           , then   1- -ti)=0. The 

next three equations,       )=0,       )=0, and   1- -ti)=0, are all true, so only 1- =  is 

    ,only s=
 

 
+ti t∈R        ) is true.Since the harmonic series  (   diverges, it has been 

proved by the late medieval French scholar Orem (1323-1382).The Riemann hypothesis and the 

Riemann conjecture must satisfy the properties of the Riemann ζ(s)  ∈            function  

and the Riemann ξ(s)  ∈            function, The properties of the Riemann ζ(s) s∈C and 

s  ) function and the Riemann      s∈C and s  ) function are fundamental, the Riemann 

hypothesis and the Riemann conjecture must be correct to reflect the properties of the Riemann 

ζ(s) s∈C and s  ) function and the Riemann      s∈C and s  ) function, that is, the roots of 

the Riemann  (t) t∈C and t  ) function must only be real, that is, Re(s) can only be equal to 
 

 
, 

and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the 

Riemann conjecture must be correct. Riemann got  
 

 
(s-1)   

 

 ζ(s)=ξ(t)  t ∈ R         , 

s∈C        ),and ξ(t)=
 

 
 -(   

 

 
)     

 

 
  

 

     
 

 
        (t∈R        ,s∈C        ) in  

his paper, or  
 

 
(s-1)  

 

 ζ(s)=ξ(t)(t∈R        ,s∈C        ）and 

ξ(t)=4 
   

 
        

  

 

 
  

 

     
 

 
    )    ∈            ∈          ）[1].Because  

ζ(
 

 
+ti)=0(t∈R        ), so the roots of equations   

 

 
(s-1)  

 

  ζ(
 

 
+ti )=ξ(t)=  (t∈R       

 ,s∈C        ) and 4 
   

 
        

  

 

 
  

 

     
 

 
    )  =ξ(t)=  (t∈R        ,s∈C        ) and  

(45) 

ξ(t)=
 

 
 -(    

 

 
)       

 

 
  

 

     
 

 
      =0(t∈ R         ,s ∈ C         ) must all be real 

numbers. When     =    ∈            and ξ(t)=   ∈           , the real part of the 

equation ξ(t)=0(t∈C) must be real between   and T. Because the real part of the equation ξ(t)=0 

has the number of complex roots between   and T approximately equal to 
 

  
  

 

  
 

 

  

 [1] ,This 

result of Riemann's estimate of the number of zeros was rigorously proved by Mangoldt in 1895. 

Then,when     =  s∈C and s  ) and ξ(t)=0 t ∈          ), the number of real roots of the 

real part of the equation ξ(t)=0 t ∈          ) between 0 and T must be approximately equal 

to 
 

  
  

 

  
 

 

  

[1] ,so when the Riemann      s∈C and s  )function has nontrivial zeroes, then 

the Riemann hypothesis and the Riemann conjecture are perfectly valid.According to the 

2sin(   )             
      

    

 

 
 Riemann got in his paper and the 

ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)(  ∈          ), We know that the Riemann  (s)(s∈C and s 1) 

function is a two-to-one mapping, or even a many-to-one mapping deterministic universal 

function, or a one-to-two mapping, or even a one-to- many mapping deterministic universal 

function. If we consider the Riemann  (s)(s∈C and   1) function as a general complex number 
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whose domain includes real numbers, then s=-2n(n is a positive integer) is the only class of real 

zeros of the Riemann  (s)(s∈C and s 1) function at the root, If we consider the Riemann ζ(s)(s∈C 

and s 1) function as a general complex number whose domain does not include real numbers, 

then s=
 

 
+ti(t∈R and t 0) is the only class of complex zeros of the Riemann  (s)(s∈C and s 1) 

function at the root, so the zero real root of the Landau-Siegel function L( ,1)( ∈R) does not  

exist. 

Definition: Assuming that a(n) is a uniproduct function, then the Dirichlet series 

          
     ∈            ∈                                                 is equal 

to the Euler product  

    ，     ∈            ∈                                              .Where the 

product is applied to all prime numbers p, it can be expressed as: 1+       +         +...，this 

can be seen as a formal generating function, where the existence of a formal Euler product 

expansion and a(n) being a product function are mutually sufficient and necessary conditions. 

When a(n) is a completely integrative function, an important special case is obtained,where 

   ，    ∈            ∈                                              is a geometric 

series, and 

      =
 

         
  ∈            ∈                                             .When 

    =1,it is the Riemann zeta function, and more generally the Dirichlet feature.  

Euler's product formula: for any complex number s,                            
    

            ∈            ∈                                              ∈ 

                                                            

                        ζ          
   =          

 ( ∈                      , 

(46) 

n∈     ∈     ∈C，n goes through all the          numbers, p goes through all the prime 

numbers). 

Riemann zeta function expression: 

ζ(s)=1/  +1/  +1/  +...+1/   (m tends to infinity, and m is always even). 

(1)Multiply both sides of the expression by (1/  ), 

(1/  )ζ(s)=1/  (1/  )+1/  (1/  )+1/  (1/  )+...+1/        =1/  +1/  +1/  +...+1/      

This is given by (1) - (2) 

ζ(s)-(1/  )ζ(s)=1/  +1/  +1/  +...+1/  -[1/  +1/  +1/  +...+1/     ] 

The derivation of Euler product formula is as follows: 

ζ(s)-(1/  )ζ(s)=1/  +1/  +1/  +...+1/      . 

Generalized Euler product formula: 

Suppose f(n) is a functionthat satisfies f(  )f(  )=f(    ) and           
    (   and    are 

both natural numbers), then      
 =                          . 

Proof: 

The proof of Euler product formula is very simple, the only caution is to deal with infinite series 

and infinite products, can not arbitrarily use the properties of finite series and finite products. 

What I prove below is a more general result, and the Euler product formula will appear as a 

special case of this result. 
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   ，so                        absolute convergence.Consider the 

part of p<N in the continued product (finite product),Since the series is absolutely convergent 

and the product has only finite terms, the same associative and distributive laws can be used as 

ordinary finite summations and products. 

Using the product property of f(n), we can obtain: 

                            =      
 .The right end of the summation is performed on all  

natural numbers with only prime factors below N (each such natural number occurs only once in 

the summation, because the prime factorization of the natural numbers is unique).Since all 

natural numbers that are themselves below N obviously contain only prime factors below N, So 

Σ 'f(n) =         
   + R(N),Where R(N) is the result of summing all natural numbers that are 

greater than or equal to N but contain only prime factors below N.From this we get:        

f(p)+f(p2)+f(p3)+...]=n<   f(n) + R(N).For the generalized Euler product formula to hold, it is 

only necessary to prove           =0,and this is obvious,because |R(N)| 

≤           
   ,             

    sign of 

                
   =0,thus           =0.Beacuse                      .=  

    +     +     +...=          , so the generalized Euler product formula can also be written 

as: 

                  
 .In the generalized Euler product formula, take     =   ,Then 

obviously            
   corresponds to the condition Rs(s)>1 in the Euler product formula, 

and the generalized Euler product formula is reduced to the Euler product formula. 

From the above proof, we can see that the key to the Euler product formula is the basic property 

that every natural number has a unique prime factorization, that is, the so-called fundamental 

theorem of arithmetic. 

For any complex number s, ✗(n) is the Dirichlet characteristic and satisfies the following 

properties: 

 

(47) 

1: There exists a positive integer q such that ✗(n+q)=✗(n); 

2: when n and q are not mutual prime,✗(n)=0; 

3: ✗(a) ✗(b)=✗(ab) for any integer a and b; 

Reasoning 3: 

If                 then 

L(s, ✗(n))= 
✗   

  
 
    n∈     ∈     ∈C and s  ，n goes through all the          numbers, p 

goes through all the prime numbers, ✗(n)∈R  

     ✗      ,         =✗    ),   ，  =
 

          . 

Next we prove the generalized Riemann conjecture when the Dirichlet eigen function✗(n) is any 

real number that is not equal to zero,  
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η (s)= 
       

  
 
     ∈                       and (η s)=(1-    )       ∈             

                                     =
η   

        
=

 

        
 

       

   
       

        
 
        

        ∈                      ，n∈        n goes through all the  

                   ∈       p goes through all the prime numbers), so 

GRH(s, ✗   )=L(s, ✗   )=  
✗   

  
 
              

               
 

            n ∈

    ∈    s∈C and s  ，n goes through all the                  , p goes through all the prime 

numbers, ✗(n)∈R       ✗      ,         =✗    ),   ，  =
 

          .  

       =         

                        =                                 ∈            ∈

           , 

           =1-                                =   

                                     ∈            ∈            , 

       =         

                        =                                 ∈         

   ∈            , 

           =1-                                    ∈            ∈             , 

because 

            =            ∈            ∈                              , 

so 

             =                ∈            ∈                             , 

(48) 

so 

              
 =              

        

  ∈            ∈                                               . 

becuse L(s,✗   )=          
                  

   ∈           and  

    ✗    =          
                  

   ∈           , 

  ∈            ∈                                                  ∈

                                             . For the Generalized Riemann function 

L(s,✗   )= 
✗   

             
       

 

         
 
    

 ✗(n) ∈ R       ✗     ,          = ✗    ),    ，  =
 

         ,  ∈            ∈

                                                 ∈

                                              .so     ✗    =    ✗     

  ∈            ∈                                                 . 
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        =              =             =                   

isin(lnp)) t=a(p)p   (costlnp isin(tlnp)   ∈           ∈            

  ∈            ∈             ∈                                              , 

        =              =            =                

                             =                                 ∈            ∈

           ∈                                                

then 

           =          

                        =                                   ∈         

   ∈            ∈                                                

               =1-                                =   

                                      

  ∈            ∈            ∈                                               , 

           =1-                                =   

                                      ∈            ∈            ∈

                                               

When  =
 

 
 , then  

                =              ∈             

                 =            
  

  ∈           , 

so 

                  
 =                 ∈            ,becuse       ✗    =      

               and      ✗    =              
 , n∈     ∈    s∈C and s  ，n goes  

 

(49) 

through all the positive integers, p goes through all the prime numbers, ✗ 

(n)∈R      ✗      ,         =✗    ),   ，  =
 

         . 

so 

Only 

      ✗    =    ✗      ∈            ∈                                             , 

and 

           ✗    =    ✗      ∈            

  ∈            ∈                                             , 

Because     ✗    =✗   ζ(s)   ∈C and   ，n∈        n goes through all the  

                  , and       ✗    =✗   ζ(1-s)  ∈C and   ，n∈        n goes through 

all the                   , so When       =
 

 
, it must be true that     ✗    =    ✗      ∈C 
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and   ,n∈        n goes through all the                   ,and it must be true that 

      ✗    =    ✗      ∈C and    ,n∈        n goes through all the  

                  ,Suppose k∈  , 

        =              =             =                               =                    

isintlnp   ∈           ∈          k∈ ), 

        =             =           =                                            = 

                                  ∈            ∈             ∈   , 

then 

           =         

                      
  =     

                             ∈            ∈            ∈    
, 

               =1-                                 =   

                                   ∈            ∈            ∈

                              ∈   
 
, 

           =1-                                =   

                                     ∈            ∈                                  
, 

When  =
 

 
(k∈  ) ,  

then  

                =             ∈            ∈                              ∈   , 

                 =           
  

  ∈            ∈                              ∈   , 

so 

                  
 =              

   ∈             ∈C and  

  ,  ∈    ∈                                              ∈    , 

 

(50) 

becuse       ✗    =                
  

   ∈                                  ∈

  , 

and      ✗    =              ∈            ∈ 

                                         ∈                                             , 

for the generalized Riemann function     ✗      ∈C and   ,n∈        n goes through all the 

                 ,  ∈                                             ✗(n)∈R     ✗    

 ,          =✗   ),   ，  = 
 

           . 

so 

Only       ✗    =    ✗     

 s∈C and s    ∈                                              ∈  ), 

and 

Only       ✗    =    ✗    , 



The proof of the Riemann conjecture 

 s∈C and s  ) s∈C and s  , ∈                                              ∈  ), 

And because Only       ✗    =     ✗     

 s∈C and s  , ∈                                             ,so only k=1 be true. 

 

      ✗         ✗      
✗   

  

 

   

 
✗   η   

        
 

✗   

        
 

       

  

 

   

 
✗   

        
 

       

     

 

   

 
       

        
 ✗    

 

  

 

   
 

 

   

  

       

        
 ✗        

 

                          

 

   

 
       

        
 ✗                                   

 

   

 
       

        
 ✗                                 
 

   

  

  ∈            ∈            ∈                                             , 

 

 

(51) 

 

      ✗         ✗      
✗   

  

 

   

 
✗   η   

        
 

✗   

        
 

       

  

 

   

 
✗   

        
 

       

     

 

   

 
       

        
 ✗    

 

  

 

    

 

   

 

 
 

        
  ✗   

 

  

 

                          
 

 

   

 
 

        
  ✗                                 

 

   

  

 

        
  ✗                                 

 

 

   

 

  ∈            ∈            ∈                                           
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        ✗           ✗      
✗   

  

 

   

 
✗   η     

      
 

✗   

      
 

       

       

 

   

 
       

      
 ✗    

 

    

 

    
 

 

   

 
       

      
  ✗                                  

 

   

  

  ∈            ∈            ∈                                           

Suppose 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

V=[✗      Sin(tln1)  ✗      sin(tln2)+ ✗      sin(tln3) ✗      sin(tln4)+...] , 

then  

    ✗    =    ✗     s∈C and s    ∈                                           ). 

And n goes through all the          numbers, so n=1,2,3,... ,let's just plug in, so  

    ✗    =   
✗   

  
 
   =[  ✗      cos(tln1)   ✗      cos(tln2)+  ✗      cos(tln3)

 ✗       cos(tln4)+...]-i[ ✗      sin(tln1)   ✗      sin(tln2)+  ✗      sin(tln3)

  ✗      sin(tln4)+...]= U-Vi  

( ∈            ∈                                            ）,  

 

(52) 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

V=[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3) ✗      sin(tln4)+...] , 

Then 

    ✗    =  
✗   

  
 
   =[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3)    cos(tl

n4)+...]+i[✗      sin(tln1) ✗      sin(tln2)+  ✗      sin(tln3) ✗       sin(tln4)+  ...]= 

U+Vi,( ∈            ∈                                            ）, 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

V=[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3)  ✗      sin(tln4)+...] , 

    ✗    and     ✗     are complex conjugates of each other,that is     ✗    =    ✗     
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( ∈            ∈                                            ）, 

When  =
 

 
,  then 

    ✗    =      ✗    = U-Vi 

( ∈            ∈                                            ）, 

U=[ ✗      cos(tln1) ✗      cos(tln2)+ ✗      cos(tln3) ✗       cos(tln4)+...], 

V=[✗      sin(tln1) ✗      sin(tln2)+ ✗      sin(tln3)  ✗      sin(tln4)+...] . 

and When  =
 

 
, then only       ✗    =    ✗     

( ∈            ∈                                            ）, 

        ✗           ✗     
✗   η     

          
 

✗   

          
 

       

       
 
    

       

          
 ✗    

 

    

 

     
 
    

       

          
  ✗                                  ∈             ∈            ∈ 

   

   ∈                                              , 

W=[ ✗       cos(tln1) ✗       cos(tln2)+ ✗       cos(tln3) ✗        cos(tln4)+...] 

U=[✗       sin(tln1) ✗       sin(tln2)+ ✗       sin(tln3)  ✗       sin(tln4)+...] . 

 

(53) 

When  =
 

 
(k∈  ), then 

Only       ✗    =    ✗         . 

( ∈            ∈    ∈                                            ） ,but the Riemann 

ζ(s) function only satisfies ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  s∈C and s  ), so          =0 s∈C 

and s  ), then only       =     =  s∈C and s  ),             =0, then only       = 

    =  s∈C and s  ), which is       =            s∈C and s  ),so only k=1 be true.so 

only Re(s)=
 

 
=

 

 
  ∈   .So Only       ✗         ✗     s∈C and s    ∈   ) is true, so 

only k=1 is true.According the equation ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)  s ∈ C and s 

 )obtained by Riemann,since Riemann has shown that the Riemann ζ(s) s∈C and s  ) 

function has zero, that is, in ζ(1-s)=        cos(
  

 
)Γ(s)ζ(s)( ∈          ), ζ(s)=0 s∈C and 
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s  ) is true. So only when  =
 

 
 and ζ(s)=0 s∈C and s  ) and ✗    0( ∈   ) , then 

    ✗    =✗   ζ(s)=0 s∈C and s    ∈                               s         ) is true. 

Because     ✗    =✗   ζ(s) s∈C and s    ∈                                         ) and  

      ✗    = ✗   ζ(1-s)  s ∈ C and s     ∈                                         ), so 

When   =
 

 
, it must be true that     ✗    =     ✗     s ∈ C and 

s    ∈                                        ), and it must be true that  

      ✗    =    ✗     s∈C and s    ∈                                         ).  

According       =ζ(s)=0 s∈C and s  ) and ζ(s)=ζ( )=ζ(1- )=0 s∈C and s  ), so 

    ✗    =      ✗    =0 s∈C and s  ,  ∈                                         ) and 

    ✗    =    ✗    =      ✗    =0 s∈C and s    ∈                                  

         ),then s=   or s=1-s or  =1-s ,so s ∈ R,     +ti=1-  -ti,or  -  i=1-  -ti,      ∈

      =
 

 
 and  =0, or   

 

 
      ∈R and    , so s∈  , or s=

 

 
+ i ,or s=

 

 
+ i  ∈R       

 ),           
 

 
                                

 

 
                            

          So only   
 

 
      ∈             ∈                    

 

 
      ∈

            ∈           And beacause only when  =
 

 
 ,the next three equations,  

(54) 

       ✗    =0  t ∈ R and t     ∈                                         ),       

   ✗    =0  t ∈ R and t     ∈                                         ),and 

       ✗    =0  t∈CR and t  ,   ∈                                      ) are all true. 

And because   
 

 
 ✗    >    ∈                                            so only 

s=
 

 
+ti( ∈R        ) is true.The Generalized Riemann hypothesis and the Generalized Riemann 

conjecture must satisfy the properties of the     ✗    s∈C and  

s     ∈                                         ) function, The properties of the 

    ✗     s∈C and s    ∈                      positive integers)function are fundamental, 

the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct to 

reflect the properties of the     ✗     s∈C and  
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s    ∈                                         ) function , that is, the roots of the 

    ✗    =0  s ∈ C and s     ∈                        positive integers) can only be 

s=
 

 
+ti(t∈R        ), that is, Re(s) must only be equal to 

  

 
 , and Im(s) must be real, and Im(s) is  

not equal to zero.So the Generalized Riemann hypothesis and the Generalized Riemann 

conjecture must be correct. 

According       ✗    =     ✗    =0 s∈C and s    ∈                        positive 

integers),so the zeros of the     ✗     s∈C and s    ∈                        positive  

integers) function in the complex plane also correspond to the symmetric distribution of point  

 

 (
 

 
,0i) on a line perpendicular to the real number line in the complex plane,            

  ✗          ✗        ∈            ∈                                          s  

and 1-s are pair of zeros of the function     ✗     s∈C and s    ∈                        

                  ) symmetrically distributed in the complex plane with respect to point (
 

 
,0i) 

on a line perpendicular to the real number line of the complex plane. 

We got     ✗     =    ✗    (s= +ti, ∈  ,  ∈R   ∈                        positive integers) 

before,When t in Generalized Riemann's hypothesis s=
 

 
+ti(t∈C        ) is a  

 

(55) 

complex number, and s=
 

 
+ti= +ti , then s in     ✗    =    ✗    (s= +ti,  ∈  ,  ∈R       

 ) is consistent with s in Generalized Riemann's hypothesis s=
 

 
+ti(t∈C         ), so 

only   
 

 
.When     ✗     =    ✗    =  (s= +ti, ∈  ,  ∈R          ∈          

                              ),since s and   are a pair of conjugate complex numbers, so s and 

  must be a pair of zeros of the Generalized function     ✗     s ∈ C and 

s     ∈                   all                  ) in the complex plane with respect to 

point  ,0i) on a line perpendicular to the real number line.s is a symmetric zero of 1-s, and a 

symmetric zero of  . By the definition of complex numbers, how can a symmetric zero of the 

same Generalized Riemann function     ✗     s ∈ C and s     ∈                        

                 ) of the same zero independent variable s on a line perpendicular to the real 

number axis of the complex plane be both a symmetric zero of 1-s on a line perpendicular to the 

real number axis of the complex plane with respect to point (
 

 
,0i) and a symmetric zero of   on 
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a line perpendicular to the real number axis of the complex plane with respect to point ( ,  i)? 

Unless   and 
 

 
 are the same value,                 

 

 
, and only 1-s=   is true, only 

s=
 

 
+ti t∈R        ,s∈C) or s=

 

 
-ti t∈R        ,s∈C)  is true. Otherwise it's impossible,this is 

determined by the uniqueness of the zero of Generalized Riemann function     ✗     s∈C and  

s     ∈                                       ) on the line passing through that point 

perpendicular to the real number axis of the complex plane with respect to the vertical foot 

symmetric distribution of the zero of the line and the real number axis of the complex plane,Only 

one line can be drawn perpendicular from the zero independent variable s of Generalized  

Riemann function     ✗     s∈C and s    ∈                                      )on the 

real number line of  the complex plane, the vertical line has only one point of intersection with  

 

the real number axis of the complex plane. In the same complex plane, the same zero point of 

Generalized Riemann function     ✗     s∈C and s    ∈                                 

        )on the line passing through that point perpendicular to the real number line of the 

complex plane there will be only one zero point about the vertical foot symmetric distribution of 

the line and the real number line of the complex plane,so I have proved the generalized Riemann 

conjecture when the Dirichlet eigen function✗(n) n∈        n traverse all positive numbers) is 

any real number that is not equal to zero,Since the nontrivial zeros of the Riemannian function 

     s∈C and s  ) and the generalized Riemannian function     ✗    s∈C and s    
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 ∈                                        ) are both on the critical line perpendicular to the 

real number line of Re(s)=
 

 
 and Im(s)  , these nontrivial zeros are general complex numbers of 

Re(s)=
 

 
 and Im(s)  ,so I have proved the generalized Riemann conjecture when the Dirichlet 

eigen function✗(n)(  ∈                                          ) is any real number that is not 

equal to zero.  

The Generalized Riemann hypothesis and the Generalized Riemann conjecture must satisfy the 

properties of the     ✗     s∈C and s    ∈                                         ) function, 

The properties of the     ✗      s∈C and s    ∈                                       ) 

function are fundamental, the Generalized Riemann hypothesis and the Generalized Riemann 

conjecture must be correct to reflect the properties of the     ✗      ∈            ∈

                                          function, that is, the roots of the     ✗    =  s∈C 
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and s    ∈                                         ) can only be s=
 

 
+ti(t∈C,s∈C        )or 

s=
 

 
-ti(t∈C,s∈C        ), that is, Re(s) can only be equal to 

 

 
, and Im(s) must be real, and Im(s) 

is not equal to zero. 

         ✗        n∈     ∈     ∈C and s    n goes through all the positive integers, p goes 

through all the prime numbers ,✗   ∈ R     ✗      ,          =✗  ),    ，  =
 

           , 

then the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct, 

and   
 

 
     ∈            ∈   . 

Reasoning 4:  

For any complex number s,     ✗(n) is the Dirichlet characteristic and satisfies the following  

properties: 

1: There exists a positive integer q such that ✗(n+q)=✗     ∈    ; 

2: when n and q are not mutual prime,✗(n)=0  ∈    ;  

3: ✗(a)✗(b)=✗(ab)   ∈     ∈    for any integer a and b; Suppose q=2k  ∈    , 

if n and n+q are all prime number, and    ✗                                             and 

✗ n q  ✗ n  0 n                                             ,because n(n traverses  
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all prime numbers) and q=2k  ∈     are not mutual prime,      ✗(n) 0   ∈        n       

                                                                  ✗(a). ✗(b)=  ✗ (ab)   ∈

    ∈                                                                     then the  

threeproperties described by the Dirichlet  

eigenfunction ✗(n)  ∈                                       . above fit the definition of the 

Polignac conjecture, the Polignac conjecture states that for all natural numbers k, there are 

infinitely many pairs of prime numbers (p,p+2k)  ∈    . In 1849, the French mathematician A. 

Polignac proposed the conjecture.When k=1, the Polygnac conjecture is equivalent to the twin 

prime conjecture.In other words,          ✗         ∈C，n∈        n traverses all prime 

numbers, ✗(n)∈R,  

         = ✗   ),    ，  =
 

          , and generalized Riemann hypothesis and the 

generalized Riemann conjecture are true, then the Polygnac conjecture must be completely true, 
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and if the Polignac conjecture must be true, then the twin prime conjecture and Goldbach's 

conjecture must be true.I proved that the generalized Riemannian hypothesis and the 

generalized Riemannian conjecture are true, so           ✗        ∈C，n∈        n 

traverses all prime numbers,     ✗      ,    ，  =
 

                 
 

 
     ∈         

   ,I also proved that the Polignac conjecture,twin prime conjecture must be true and Goldbach 

conjecture are completely or almost true.The Generalized Riemann hypothesis and the Riemann 

conjecture are perfectly valid, so the Polygnac conjecture and the twin prime conjecture and 

Goldbach's conjecture must satisfy the properties of the Generalized Riemann ζ(s)  ∈         

   function and the Riemann ζ(s)  ∈            function, so the Polignac conjecture,twin 

prime conjecture must be true and Goldbach conjecture is completely true.Riemann hypothesis  

and the Riemann conjecture are completely correct and the Generalized Riemann hypothesis and 

the Generalized Riemann conjecture are completely correct and the Polignac conjecture,twin 

prime conjecture must be tue and Goldbach conjecture are almost or completely true.  

Reasoning 5: 

In order to explain why the zero of the Landau-Siegel function exists under special conditions,we  

need to start with the Riemann conjecture. I have solved the Riemann conjecture for the Dirichlet  

feature ✗(n) 1( ∈        n traverses all                  ) and the generalized Riemann 

conjecture for the Dirichlet feature ✗(n)≠0( ∈        n traverses all                  ), I 

propose a special form of Dirichlet L(s,✗(p))(s∈C and    ,✗(p) ∈R and ✗(p) 0,  ∈        p 

traverses all odd primes,including 1) function problem. Let me first explain to you what 

Landau-Siegel zero conjecture is. As you may know, the Landau-Siegel zero point problem, named 

after Landau and his student Siegel, boils down to solving whether there are abnormal real zeros  

(58) 

in the Dirichlet L function. So let's look again at what the Dirichlet L function is. Look at the abve 

proof process,which is the expression of Dirichlet L(s,✗(n))(s∈C and s  ,  ∈        n 

traverses all                   ) 

L(s,✗(n))= 
✗   

  
 
    ( ∈            ∈                                            ）. 

I shall first introduce the Dirichlet L(s,✗(n))(s∈C        ,  ∈        n traverses all positive 

integers) function and explain its relation to the Riemannn ζ(s)(s∈C        )          ✗(n)(  ∈

       n traverses all positive integers) is a characteristic value of a Dirichlet function, which is all 

real numbers, and ✗(n)(  ∈        n traverses all positive integers) is a real function. The 

L(s,✗(n))(s∈C        ,✗(n) ∈R, n∈        n traverse all positivel numbers) function can be 

analytically extended as a meromorphic function over the entire complex plane. John Peter 

Dirichlet proved that L(1,✗(n))≠ (s∈C and s  ,✗(n)∈R and✗(n)≠0, n∈       n traverse all 
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positivel numbers) for all✗(n)( n∈       n traverse all positivel numbers), and thus proved 

Dirichlet's theorem. In number theory, Dirichlet's theorem states that for any positive integers 

a,d, there are infinitely many forms of prime numbers, such as a+nd, where n is a positive integer, 

i.e., in the arithmetic sequence a+d,a+2d,a+3d,... There are an infinite number of prime 

numbers-there are an infinite number of prime modules d as well as a . If ✗(n)(  ∈        n 

traverses all positive integers) is the main feature, then L(s,✗(n))(s∈C and s  ,✗(n)∈R, 

n∈       n traverses all positive integers) has a unipolar point at s=1. Dirichlet defined the  

properties of the characteristic function✗(n)( n∈                                      ) in the 

Dirichlet function L(s,✗(n))(s∈C and s  ,✗(n) ∈R, n∈       n traverses all positive integers) : 

1: There is a positive integer q such that ✗(n+q)=✗(n)( n∈       n traverses all positive  

integers); 

2: when n(n∈       n traverses all natural numbers) and q are non-mutual primes,✗(n) 0(n∈

       n traverses all positive integers); 

3: For any integer a and b, ✗(a).✗(b)=✗(ab)(a is a positive integer, b is a positive integer); 

From the expression of the Dirichlet function L(s,✗(n))(s∈C and s  ,X(n)∈R, n∈       n takes 

all positive integers), it is easy to see that when the Dirichlet characteristic real 

function✗(n)=1(s∈C and s  , n∈       n takes all positive integers), Then the Dirichlet  
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L(s,1)(s∈C and s  ,✗(n)∈R, n∈       n traverses all positive integers) becomes the Riemann 

ζ(s)( s∈C and s  ) function, so the Riemann ζ(s)(s∈C and s  ) function is a special function of 

the Dirichlet function L(s,✗(n))(s∈C and s  ,✗(n) ∈R, n∈       n traverse all positivel 

numbers), when the characteristic real function ✗(n)(n∈       n traverse all positivel numbers) 

is equal to 1, Also called a trivial characteristic function of the Dirichlet function L(s,✗(n))(s∈C 

and s  ,✗(n) ∈R，n∈       n traverse all positivel numbers). When the eigenreal 

functions✗(n)≠1(n∈        n traverse all positivel numbers), they are called nontrivial 

eigenfunctions of the Dirichlet function L(s,✗(n))(s∈C and s   ✗(n)∈R，n∈       n traverse all 

positivel integers). When the independent variable s in the expression of the Dirichlet function 

L(s,✗(n))(s∈C and s   ✗(n)∈R, n∈       n traverse all positive inteegers) is a real number β, 
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then for all eigenfunction values ✗(n)(n∈       n traverses all positive integers), L(β,✗(n))(β

∈R,✗(n) ∈R, n∈       n traverses all                  ) is called the Landau-Siegel function. 

Visible landau-siegel function L(β, )(β∈R and β    ,  ∈   ,✗(n)∈R,     n traverses all 

                 ) is dirichlet function L(s,✗(n)) (s∈C and s            , ∈    ✗(n) ∈R，

    n traverses all                  ) of a special function, landau-siegel guess is landau 

and siegel they guess L(β, )(β∈R and β     ,  ∈   ,✗(n)∈R,     n traverses all  

                 ) is not zero, So Landau and Siegel's conjecture that L(β, )≠0(β∈R and β

     ,  ∈   ,✗(n)∈R, n∈       n traverses all                  ) is easy to understand, 

right? Well, now that you know what the Landau and Siegel null conjecture is all about, let's 

continue to see how I'm going to solve the Landau and Siegel null conjecture. Look at the 

abve proof process: 

      ✗         ✗      
✗   

  

 

   

 
✗   η   

        
 

✗   

        
 

       

  

 

   

 
✗   

        
 

       

     

 

   

 
       

        
 ✗    
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 ✗        

 

                          

 

   

 
       

        
 ✗                                   

 

   

 
       

        
 ✗                                 
 

   

  

  ∈            ∈            ∈                                             ,because 

ζ(s)=      Sin(
  

 
)Γ(1-s)ζ(1-s) s∈C and s  )(Formula 7) ,so if β∈R and β    ( ∈     ,then 

ζ(s)=0.So  

L(β, ✗   )  

 
       

      β 

 ✗      β                              
   =

       

      β 

  ✗     β 
     = 
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  β

 

 ✗     β  ✗     β  ✗     β  ✗     β    ,     is the symbol for 

multiplication, because the real exponential function of the real number has a function value 

greater than zero, so  

       ∈                                                                     

                                                              

             
 

    
  β 

  , it can be known that if ✗    0( ∈        n traverses all 

positive integers),      β∈R and β    ( ∈     , then L(β, ✗   ) 0(β∈R and β     ,  ∈

  ,  ✗   ∈R     n traverses all positive integers) and L(β,   ) 0(β∈R and β     ,   ∈

  ,      n traverses all positive integers), so for Riemann ζ(s)( s∈C and s        

      ∈   ) functions, its corresponding landau-siegel function L(β,1)(β∈R and β     ,  ∈

  , ✗(n)∈R      n traverses all positive integers) of pure real zero does not exist, this means that 

the Riemann ζ(s)(s∈C and s               ∈    ) function does not have a zero of a 

pure real variable s, and the generalized Riemann conjecture L(s,✗(n))=0(s∈C and s         

      ∈    ✗(n)∈R     n traverses all positive integers) satisfies s=
 

 
+ti(t∈R,t≠0) is sufficient 

to prove that the twin primes, Polignac's conjecture and Goldbach's conjecture are almost true. 

And if ✗    0( ∈        n traverses all positive integers) or β∈R and β    ( ∈

  ), then L(β, ✗   ) 0(β∈R and β     ,  ∈   , ✗   ∈R     n traverses all positive  

(61) 

integers) and L(β,  ) 0(β∈R and β     ,  ∈   ,      n traverses all positive integers), so for 

Riemann ζ(s)( s∈C and s  ) functions, its corresponding landau-siegel function L(β,1)(β

∈R,✗   ∈R ,   ∈        n traverses all positive integers) of pure real zero exist, this means that 

the Riemann ζ(s)(s∈C and s   ) function have a zero of a pure real variable s, and the 

generalized Riemann conjecture L(s,✗(n))=0(s∈C and s   ✗(n)∈R and   ∈        n traverses 

all positive integers) is sufficient to prove that the twin primes, Polignac's conjecture and 

Goldbach's conjecture are completely true. 

when ✗(n) 1( ∈        n traverses all positive integers) and ✗(n) 0( ∈        n traverses 

all positive integers), because the real exponential function of the real number has a function value 

greater than zero, so        ∈                                                      

                                                               

                           
 

        
     it can be known that when ✗(n) 1(n∈
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       n traverse all positivel numbers), then L(β,1) 0(β∈R and β     ,  ∈   ,✗(n)∈R and 

 ∈        n traverses all positive integers) so for Riemann ζ(s)(s∈C and s  ) functions, its 

corresponding landau -siegel function L(β,1)(β∈R, ✗(n)∈R and ✗(n)  0,  ∈        n traverses 

all positive integers) of pure real zero does not exist, this means that the generalized Riemann 

L(β,✗(n))(β∈Rβ,✗(n)∈R and  ∈        n traverses all positive integers) function does not have 

a zero of a pure real variable s, and the generalized Riemann conjecture L(s, ✗(n))=0(s∈C and 

s    ✗(n)∈R and ✗(n)  1 and  ∈        n traverses all positive integers) satisfies 

s=
 

 
+ti(t∈R,t≠0) is sufficient to prove that the twin primes, Polignac's conjecture, Goldbach's 

conjecture are almost true. 

When ✗    1 ( ∈        n traverses all positive integers) and ✗    0 ( ∈        n 

traverses all positive integers), because the real exponential function of the real number has a 

function value greater than zero, so  

       ∈                                                                     

                                                             

             
 

        
     it can be known that when ✗    1( ∈       n traverses all  

positive integers) and ✗    0(  ∈       n traverses all positive integers), 

then L(β, ✗   ) 0(β∈R and β    ,  ∈   , ✗   ∈R and✗    1 and ✗    0     n  

(62) 

traverses all positive integers) ,so for generalized Riemann L(s,✗   ) (s∈C and s         

     ∈        n traverses all positive integers) functions, its corresponding landau-siegel  

function L(β,✗   )(β∈R and β    ,   ∈   ,  ✗   ∈R     ✗    1 and ✗    0,   ∈

       n traverses all positive integers) of pure real zero does not exist, this means that the 

generalized Riemann L(s,✗   )(s∈C and s              ∈        n traverses all positive 

integers) function does not have a zero of a pure real variable s. and the generalized Riemann 

conjecture L(s,  ✗(n))=0(s∈C and s               ∈    ✗(n)∈R and ✗(n)  1 and 

✗(n)≠0     n traverses all positive integers) satisfies s=
 

 
+ti(t∈R,t≠0) is sufficient to prove that the 

twin primes, Polignac's conjecture, Goldbach's conjecture are all almost true. 

When ✗    0 ( ∈        n traverses all positive integers), because the real exponential function of 

the real number has a function value greater than zero, so 

       ∈                                                ✗        ✗      
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   ✗        ✗         ✗        ✗          ✗              ✗      

         
 

        
     it can be known that when ✗    0 ( ∈        n traverses all positive 

integers), then L(β, ✗   ) 0(β∈R and β     ,  ∈   , ✗   ∈R and ✗    1,  ∈        n 

traverses all positive integers) and L(β,  ) 0(β∈R and β     ,  ∈   ,     n traverses all 

positive integers), so for generalized Riemann L(s,✗   )( s∈C and s              ∈        n 

traverses all positive integers) functions, its corresponding landau-siegel function L(β,0)(β∈R and 

β     ,  ∈   ,✗(n)∈R and ✗    0     n traverses all positive integers) of pure real zero exists, 

This means that the generalized Riemann L(s,✗   )( s∈C and s             ∈      ∈

       n traverses all positive integers) function has a zero of a pure real variable s, that means the 

twin prime conjecture, Goldbach's conjecture, Polignac's conjecture are completely true. 

When  ✗(p) 0( ∈        p traverses all odd primes, including 1), then L(s,✗(p))=0(s∈C and 

s             ∈    ✗(p) ∈R and ✗(p) 0,  ∈        p traverses all odd primes, including 1) 

was established. At the same time L(s  ✗(p))( s∈C and s             ∈    ✗(p)∈R and 

✗(p) 0,  ∈        p traverses all odd primes, including 1) the corresponding landau-siegel function  
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L(β,0)(β∈R and β     ,  ∈   , ✗(p)∈R and ✗(p) 0,  ∈        p traverses all odd primes, 

including 1) expression as shown as follows: 

L(β,✗(p))= 
       

        
 ✗                                    

    

       

        
  ✗        

   =
       

        
 ✗      -✗      +✗      -✗      +✗     β + … 

 ✗         (  ∈R,  ∈         p traverses all primes, including 1),     is the symbol 

for multiplication. 

When✗(p) 0( ∈        p traverses all odd primes, including 1), then L(s,✗(p)) 0(s∈C and 

s              ∈   ,✗(n) ∈R and ✗(p) 0, p trav erses all odd primes, including 1) was 

established. At the same time L(s,✗(p))(s∈C and s              ∈    ✗(p) ∈R and✗(p) 0, 

 ∈         p traverses all primes, including 1) the corresponding landau-siegel function 

L(β,0)=0(β∈R and β     ,  ∈   ,✗(p)∈R and ✗(p) 0, p∈    and p traverses all primes, 
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including 1), this means that the generalized Riemann L(s,✗   )( s∈C and s              ∈

       n traverses all positive integers) function has a zero of a pure real variable s, that means the 

twin prime conjecture, Goldbach's conjecture, Polignac's conjecture are all completely true. 

Now I summarize the Dirichlet function L(s,✗(n))(s∈C and s              ∈   , ✗(n) ∈R, 

    n traverses all positive integers) as follows: 

1: When ✗(n) 1( ∈                      ∈        n traverses all positive integers), the 

generalized 

Riemannian hypothesis and the generalized Riemannian conjecture degenerate to the ordinary 

Riemannian hypothesis and the ordinary Riemannian conjecture, whose nontrivial zeros s satisfy 

s=
 

 
+ti(t∈R and t≠0), and ordinary Riemann ζ(s)=L(s, ✗(n))(s∈C and s              ∈

  ,  ✗(n)∈R and ✗(n) 1,  ∈        n traverses all positive integers) the corresponding 

Landau-siegel function L(β,1)≠0(β∈R,and β     ,   ∈   ,   ✗(n)∈R and ✗(n) 1      n 

traverses all positive integers), ordinary Riemann hypothesis and ordinary Riemann hypothesis all 

hold, and for Riemann ζ(s)(s∈C and s              ∈   ) function, its corresponding 

Landau-Siegel function L(β,1)(β∈R and β     ,  ∈   , ✗(n)∈R and ✗(n) 1,  ∈        n 

traverses all positive integers) does not exist pure real zero, which also shows that Riemann 

ζ(s)(s∈C and s              ∈   ) function does not exist zero when variable s is a pure real 

zero. 
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2: When  ✗(n)  0(  ∈        n traverses all positive odd numbers,including 1), then✗ 

(p) 0( ∈        p traverses all odd primes, including 1), a special Dirichlet function L(s, ✗ 

(p))(s∈C and s              ∈   , ✗(p)∈R and ✗(p) 0,  ∈        p traverses all odd 

primes, including 1) has zero, and when zero is obtained, the independent variable s is any 

complex number. This special dirichlet function L(s,  ✗(p))(s∈C and s              ∈

  , ✗(p)∈R and ✗(p) 0,  ∈        p traverses all odd prime, including 1) the corresponding 

Landau-siegel function L(β,0)=0(β∈R and β     ,  ∈   , ✗(p)∈R and ✗(p) 0,  ∈        p 

traverses all odd prime, including 1) holds, so for this particular Dirichlet function 

L(s, ✗(p))=0(s∈C and s              ∈   , ✗(p)∈R and ✗(p) 0,  ∈        p traverses 

all odd primes, including 1) holds.The existence of a pure real zero of the corresponding 

Landau-Siegel function L(β,0)(β∈R and β     ,  ∈   , ✗(p)∈R and ✗(p) 0,  ∈        p 

traverses all odd prime numbers, including 1) shows that the twin prime numbers, Polignac 
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conjecture and Goldbach conjecture are all completely true.  

3: When ✗(n)≠1 and ✗(n)≠0( ∈        n traverses all positive integers), Dirichlet function L(s, ✗ 

(n))(s∈C and s              ∈    ✗(n)∈ and ✗(n)≠0 and ✗(n)≠1,  ∈        n traverses all 

positive integers) has zero, it's nontrivial zero meet s=
 

 
+ti(t∈R and t≠0). For dirichlet function 

L(s,✗(n))(s∈C and s             ∈    ✗(n)∈R and   ✗(n)≠0,  ∈        n traverses all 

positive integes),  it's corresponding Landau-siegel function L(β,  ✗(n))(β∈R and β     ,   ∈

  , ✗(n)∈R and ✗(n)≠0 and ✗(n)≠1,  ∈        n traverses all positive integers) of pure real zero 

does not exist, In other words,  it shows that the Dirichlet function L(s,✗(n))(s∈C and s        

     ∈    , ✗(n)∈R and ✗(n)≠0 and ✗(n)≠1,  ∈        n traverses all positive integers) does not 

exist for the zero of a pure real variable s, so if ✗(n)≠0 and ✗(n)≠1 ( ∈        n traverses all 

positive integers), then both the generalized Riemannian hypothesis and the generalized Riemannian 

conjecture hold and the Generalized Riemann L(s,✗(n))(s∈C and s  ,           ∈    ✗(n)∈R 

and ✗(n)≠0 and ✗(n)≠1,  ∈        n traverses all positive intege) function of nontrivial zero s also  

 

(65) 

meet s=
 

 
+ti(t∈R and t≠0).Now we know that merely proving that the nontrivial zero s of the 

Riemann conjecture L(s,1)=0(s∈C and s             ∈    ✗(n)∈R and ✗(n) 1,  ∈        

n traverses all positive integers) and the generalized Riemann conjecture L(s,✗(n))=0(s∈C and 

s             ∈    ✗(n)∈R and ✗(n)≠1 and ✗(n)≠0    n traverses all positive integers) 

satisfies s=
 

 
+ti(t∈R,t≠0) is sufficient to prove that the twin primes, Polignac's conjecture, Goldbach's 

conjecture are all almost true. 

 

III. Conclusion 

 

After the Riemann hypothesis and the Riemann conjecture and the Generalized Riemann 

hypothesis and the Generalized Riemann conjecture are proved to be completely valid, the 

research on the distribution of prime numbers and other studies related to the Riemann hypothesis 

and the Riemann conjecture will play a driving role. Readers can do a lot in this respect. 

 

IV.Thanks 

Thank you for reading this paper. 
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