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Abstract

We summarize major historical currents in the study of signals, and offer an
alternative perspective that is centered around the meaning of signals, a topic left
unanswered by Shannon since the 1948. Despite the seeming variety of number
systems, we suspect that the geometry often found in the eigen-spectrum of
numerical signal system is independent of the local dynamics and exists rather
out there. The implication then is that same geometry can be implemented
by different numerical representations, this is well-known through the principle
of computational equivalence. A less obvious implication is whether different
geometry could underlie the same numerical pattern. We discuss examples in
which this discrepancy of underlying geometry could come in to curious effect.
And we provide a mathematical description of ectropic process wherein some
hidden algebra could come into effect in the creation of efficacy and mathematical
probability.

Introduction

Nothing has changed for about a century. What progress has been made after
Godel’s bombshell? There is a stagnation in our understanding of words. To this
today we look at the word in the same gloomy picture made out by Wittgenstein: the
words are like a muddy edifice hanging in the air, where symbols get dragged out of
symbols in an illogical and confusing way. This idea of words as a pile of warm and
buzzing confusion seems to be a major inconvenience of humanity and an undesired
effect of the enlightenment project, rather than an advantageous feature. There are
two alternative view points as to how to understand word systems function; one of
them with much precedent, the other without.

Word centric view: some words that pass as signals may admit more information
than that is locally decomposable or measurable.

Model centric view: things can be decompose into kolmogorov programs, and such
that one program is in effect no different than another, i.e. computationally equivalent
description systems.

The model centric view represents the philosophy that also underlies contemperoary
measure theory and axiomatic probabilities [8], the scheme in which we can totally
deconstruct the system of words into primitive components and thats the end of it.
This is the Shannon or Kolmogorvan approach where the treatment of information is
local only; a study of communications in which the primary concern is not meaning,
but the efficacy of channels [11].
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The other approach has remained hitherto rather unknown: the idea that words
that pass as signals can have meanings outside of the locally well-analyzed axiomatic
signal channel system. That beyond the immediately backdrop of its communication
context, a word may travel well above its locality and take effect in a downstream
context that is not known in immediacy.

A closer examination of the problems revolving around the understanding of words
reveals a problem of numerics. For we can always assign numbers to words, as is down
in modern studies of communication. The problem then arises: can we really be sure
that 1 equals to 1, in the backdrop that we cannot really distinguish 1 from 0; as it
was found in Godel’s theorem: a machine that produces truths can produce untruths.

In what follows, we show that given two seemingly equivalent schemes of represen-
tation of signals, one may encode different algebraic structures in the decimal points of
the communication system in a way that allows one to have computationally equivalent
non-equivalent representations.

We discuss this phenomenon in the context of quantumn two slit experiement
and characterize its ectropic effects. Finally, connections are made with mathematical
conjectures concerning operator algebra and with properties of transcendental numbers
expressible as irreducible polynomials.

Mathematical Signal Systems

We provide the mathematical principle underlying signal systems using the real
numbers [4]. As we will show, the technical use of real numbers is not a constraint,
similar systems using the p-adic numbers or complex numbers could capture the same
geometrical information. The main point of signal analysis using dynamic network is
the separation of pattern from local dynamics.

Cognitive Network

A cognitive network is a directed graph G “ pV,Eq, where:

• V is the set of agents.

• E is the set of directed edges representing interactions between agents.

Each agent v P V has:

• A state fv P Fv, where Fv is the state space of agent v.

• A signal xe P X for each edge e P E, where X is the signal space.

Propagation Dynamics

A complex network is modeled as a directed graph G “ pV,Eq, where V is the set of
agents and E is the set of directed edges. Each agent v P V has incoming edges T pvq

and outgoing edges F pvq.
The state of each agent is determined by its input signals, and the propagation

dynamics govern the spread of information:

xFv “ fvpxTvq
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where xTv are the signals received by agent v, and xFv are the signals it transmits.
The propagation dynamics describe how signals spread across the network. Let
xE P X |E| be the vector of all signals. The propagation dynamics are governed by a
flow Γt:

Γt : FV ˆ X |E|
Ñ X |E|,

where FV “
ś

vPV Fv is the joint state space of all agents. The propagation
dynamics converge to a fixed point zE “ ppfV q, which represents the aggregate of
macro-level information. The fixed point satisfies:

zFv “ fvpzTvq @v P V,

where zFv is the output signal of agent v. zTv is the input signal to agent v.

Pattern Dynamics

The pattern dynamics describe how agents adjust their states over time to form
patterns. The pattern dynamics are governed by a flow ψt

V :

ψt
V : FV Ñ FV .

Each agent v adjusts its state fv to maximize a utility function qv, which depends
on its input and output signals:

ψt
vpfvq “ arg max

f 1
vPFv

tqvpzTv, f
1
vpzTvqq : dvpfv, f

1
vq ď Ltu ,

where:

• dv is a metric on Fv.

• L is a Lipschitz constant that limits the rate of change of fv.

Patterns emerge through feedback loops in the network. A feedback loop is a
closed walk C “ pVC , ECq in the graph G, where:

• Agents in VC reinforce each other’s signals through positive feedback.

• The signals along the loop stabilize, forming a pattern.

A pattern is coherent if every part of the pattern depends on the rest, and it is
stable if the aggregate signals zEC

are Lyapunov stable.
On longer timescales, agent states evolve through pattern dynamics:

dfv
dt

“ ψvpfv, xTvq

where ψv describes the continuous evolution of agent function fv, subject to the
Lipschitz constraint:

dvpfv, ψ
t
vpfvqq ď L|t|

Patterns emerge as stable structures in the signal space. A pattern is a stable
feedback loop, meaning the signals remain at a fixed point:
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Figure 1: A directed graph. As an example of the notation, Tb “ tpa, bq, pd, bqu and
Fb “ tpb, cq, pb, dqu.

zE “ ppfV q, where p : FV Ñ X |E|

ensuring that for any agent v,

zFv “ fvpzTvq.

The key to cognition in this framework is the separation of pattern from local
dynamics achieved via the separation of timescales:

• Fast Timescale (Propagation Dynamics): Signals propagate and converge to a
fixed point zE “ ppfV q.

• Slow Timescale (Pattern Dynamics): Agents adjust their states fV based on the
aggregate zE, forming patterns.

The separation is maintained by ensuring that the propagation dynamics converge
faster than the pattern dynamics evolve.

Metrical Interpretation and The Geometry of Patterns

The quality of being a signal system imply a notion of metric, namely that some
signals are closer to each other than others. This equivalence is not hard to spell out,
simply consider the equivalence between neural networks and signal systems [4], and
see neural networks are a product of ultra-metrics [7]. The metrical interpretation
leads us to a discussion of the geometry and its connection to patterns: what kind of
patterns can be instantiated in signal systems and what are the corresponding degrees
of computability of these patterns? It was shown in [12, 13] that riemannian metrics
can be endowed with arbitary degrees of computability. That:

There are ‘pits’ or ‘basins’ in the graph of diameter with depth of the
magnitude roughly equal to the ‘halting function’ [i.e., settling function]
for A2 and spaced at intervals growing slightly faster than their depth.
These are merely bumps in the basins of the (spaced much further apart)
much deeper basins that correspond to A1. And even these huge basins
are merely bumps in the basins corresponding to A0. And so on.
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It is also worth mentioning Gromov’s theorem on the correspondance between the
complexity of word problem and existence of infinitely contractible geodesics that
correspond to the degree of the unsolvability of the fundamental word problem [12].

Effect of Ectropy

To what extent can more complex mathematical description of the same thing can
actualize in reality? In this section we show the possibility of emergence of physi-
cal effect due to alternative construal of probabilities implied by the signal system.
In the following two examples we see that alternative construal of statements yield
observational measurement effects that are ”physically” impossible.

The mathematical effect of construal on realization of probabilities. [8]

Setup of the Two-Slit Experiment

A source emits quantum particles (e.g., photons or electrons) that pass through two
slits, e1 and e2, and then hit a screen S 1. The experiment consists of two scenarios:

• Both slits open: An interference pattern appears on the screen.

• One slit closed: No interference pattern is observed.

Let Ψ represent the quantum state when both slits are open. The probability
distribution of the particles hitting the screen S 1 is given by PΨpXq, where X is a
region on the screen.

When only slit e1 is open, the quantum state is e1, and the probability distribution
is Pe1pXq. Similarly, when only slit e2 is open, the state is e2, and the distribution is
Pe2pXq.

If particles behaved classically, the probability distribution when both slits are open
would be the sum of the probabilities when each slit is open individually:

PΨpXq “ P pe1qPe1pXq ` P pe2qPe2pXq, (1)

where P pe1q and P pe2q are the probabilities that a particle passes through slit e1 or
e2.

However, in quantum mechanics, the probability distribution includes an interfer-
ence term due to the wave-like nature of quantum particles:

PΨpXq “ |ψ1pXq ` ψ2pXq|
2

“ |ψ1pXq|
2

` |ψ2pXq|
2

` 2Repψ1pXqψ˚
2 pXqq, (2)

where ψ1pXq and ψ2pXq are the wavefunctions for particles passing through slits e1
and e2, respectively. The term 2Repψ1pXqψ˚

2 pXqq is responsible for the observed in-
terference pattern.

The paradox arises when attempting to interpret the experiment using classical
conditional probabilities. If we assume that particles pass through one slit or the
other, we expect classical probability addition, which does not hold.

The key issue is that the quantum states e1 and e2 are not independent. The
interference term indicates that particles exist in a superposition of states. Measuring
which slit a particle passes through destroys the interference pattern.
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In quantum mechanics, the conditional probabilities P pe1|Xq and P pe2|Xq (the
probability that a particle passed through slit e1 or e2 given that it hit region X)
cannot be defined in the classical sense, as the particles do not have a definite path
until measured.

The paradox is resolved by recognizing that quantum particles do not have definite
paths until measured. The wavefunction Ψ describes a superposition of states, leading
to the interference pattern.

Classical conditional probabilities break down in the quantum regime because par-
ticles do not behave like classical objects with well-defined trajectories. Instead, they
exhibit wave-particle duality and obey quantum mechanics.

Interpretation of Two-Slit Experiment

When interpreted as a signal system the two-slit experiment highlights the necessity of
superposition and wavefunctions in explaining interference patterns. This means that
oddities that exist in quantumn two slit type experiments is a result of the necessity
to account for multiple possible construals, otherwise known as different parts of the
unrealized wave function. The interference pattern cannot be explained by assuming
that particles pass through one slit or the other in a classical sense. Instead, it requires
quantum superposition, reinforcing the fundamental principles of quantum mechanics.
Modern varieties of the quantumn two-slit experiment reflect this effect of differential
construal of probability of the measured signal [1]. As long as there is added complexity
in the construal of the probability, one can expect effects of unrealized reality on the
measurement outcome.

Classical Hermeneutics

The connection to classical study of hermaneutics is straightforward. The act of inter-
pretation of text is to draw out the connection to potential motives to the manifestation
of text. which is in effect psychoanalytic. In the setting of particles, we experimen-
tally posit two motives (entry points) and measure the effect of outcome of the particle
motion. and we see that, depending on the postulated motive, the opening of the slit,
the particle behaves in a wave like or particle like way. Same may happen in the case
of the analysis of the manifestation of words. For example, if Alice interprets a piece
of text after it has been written through the lens of the oedipal complex, then surely
alice is to find the opulence of the oedipal motive all over text. However, if Alice
were to postulate some other hidden motive, say oedipal 2, then upon examination of
the same text, Alice will be again sure to find the effect of the postulated motive all
over the place again, intervening with the original postulated oedipal in a wave-like
manner.

Modern Experimental manifestations

If we interpret the manifestation and material realization of ectropy is due to an artifact
in the differential construal of information, that seemingly impossible alternatives can
be realized by way of construal, how real is this effect, and how can it possibly be
measured?
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To what extent is this effect of ectropy due to differential information construal
real in real life? and where does the differential information come from?

Less is More

Hertwig and Todd [6] did a study and found an interesting effect of some symbols
emitting more information than they could accounted for, and they relegated this effect
to the efficacy of heuristical logic. In actuality, some symbols propagate ”further” and
others ”shorter”, this is simply an effect of some symbols admitting more possibility
of local elaborations. Some symbols admit more readily elaborable possible construals
in different local contexts.

Ectropy in Large Nets

Here we examine the efficacy of large nets in creating information through differen-
tial construal of the wave-function in signal systems [10]. One sees in this context
that the by construing states in a way that is more than the computational mini-
mal, one could induce more applicability of construal in downstream signal processes.
The overall effect manifests itself in faster leanring and more accuracy compared to
a straightforwardly trained neural network. This is not an isolated phenomenon and
has been noticed in connection with graphical neural networks [9], wherein the degree
of computability of a well-trained net that includes transcendental geometry could be
transferred through fine tuning to another net used for a different purpose.

Conclusions

We propose a word-centric interpretation of signals. This perspective of words is
supported by quantumn experiemnts as well as recent results from large language
models. We explain the effect of differential construal of information and how that
could create ectropic effects in downstream processes. We propose that a measure of
ectropy that is simply the difference in entropy between two alternative construals J(x)
= xlogx - ylogy. This is an analogue of the measure of reality of quantumn events as
found in [2].

Appendix: Polynomials, Transcendence, and General Ramanu-
jan Theorem

Here we make connections between properties of signals being passed in signal systems
to polynomial expressions and transcendental numbers.

I wish to make the argument that the existence of transcendental numbers neces-
sitates the existence of non-sofic Lie-like groups. Consider the Mahler approach to
transcendental numbers. One could classify numbers into four separate classes.

Mahler’s Classification and Relationship to Polynomial Expressions

Mahler’s classification divides all complex numbers into four distinct categories—A-
numbers, S-numbers, U-numbers, and T-numbers—based on their approximation by
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algebraic numbers. This classification is defined using the function ωpξq, which mea-
sures how well a complex number ξ can be approximated by algebraic numbers.

For a given transcendental number ξ, consider polynomials of the form:

P pxq “ anx
n

` an´1x
n´1

` ¨ ¨ ¨ ` a0

where ai P Z. The classification is based on how well ξ is approximated by the
roots of such polynomials.

A-numbers (Algebraic Numbers)

• If ωpξq “ 0, the number ξ is an A-number.

• This implies that ξ is algebraic, meaning it satisfies a polynomial equation with
integer coefficients.

• These numbers are simply algebraic, meaning they are exactly roots of some
polynomial with integer coefficients.

S-numbers (Singular Transcendental Numbers)

• If 0 ă ωpξq ă 8, the number ξ is an S-number.

• S-numbers can be approximated exceptionally well by algebraic numbers but
remain transcendental.

• Their approximation is governed by specific bounds on the algebraic degree and
the size of the coefficients of the approximating polynomials.

• These numbers satisfy polynomial equations with integer coefficients but do not
admit particularly strong approximations by algebraic numbers of small degree.
There exist sequences of polynomials with controlled coefficients whose roots
approach ξ, but not excessively well.

U-numbers (Ultratranscendental Numbers)

• If ωpξq “ 8 and there exists a positive integer N such that ωpξ,Nq ‰ 8, then
ξ is a U-number.

• U-numbers lie in an intermediate category. Their approximation is less regular
than S-numbers, but they can still be approximated within certain constraints.

• U-numbers often have a degree m, indicating how well they can be approximated
by algebraic numbers of degree at most m.

• For these numbers, there exist infinitely many polynomials with small integer
coefficients that vanish at ξ up to an extremely small error. This means that
for each small ε ą 0, there exists a polynomial P pxq of relatively small degree n
such that:

|P pξq| ă e´n1`ε

for some sequence of polynomials with rapidly shrinking errors. This is an indi-
cator of an unusually strong approximation by algebraic numbers.
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T-numbers (Totally Transcendental Numbers)

• If ωpξq “ 8 and ωpξ,Nq “ 8 for all N , then ξ is a T-number.

• T-numbers are the hardest to approximate using algebraic numbers. For these
numbers, no degree of approximation is achievable within finite bounds.

• Numbers like e and π are examples of T-numbers.

• These numbers are the hardest to approximate algebraically. Unlike U-numbers,
there are no sequences of polynomials with small coefficients that approximate
ξ particularly well. In other words, for a T-number, the polynomials that ap-
proximate it have relatively large coefficients and do not provide good rational
approximations.

Connection to Polynomial Expressions

The classification is fundamentally related to the nature of polynomials P pxq P Zrxs

that have ξ as an approximate root. Specifically, Mahler’s classification is determined
by the behavior of such polynomials in terms of their degrees and coefficients.

This leads us to the world of polynomials, and what is possible therein. We know
that certain class of polynomials are called periods, and can be made to correspond
to transcendental numbers, and the well known transcendental π can be expressed
in Feynman integral terms. Feynman integrals are particle paths traveling within an
Hamiltonian system that is expressible in terms of high dimensional Euclidean space
or its complex equivalent high dimensional Hilbert space.

We know that the behavior of groups can be matricized and converted to groups
[5]. This also reminds us of Pestov mentioned that sofic groups are groups that admit
matrix models. The existence of transcendental numbers imply then that there are
indeed dynamics that manifest at a nonsofic way. In the sense that these expressions
are not compltely reducible to finite expressions of numbers.

Another way of looking at this is the following. We know that the matrix algebra
in neural networks can be decomposed into prime components from the generalized
ramanujan conjecture. We can also see that the well known identity of Euler:

ź

p prime

ˆ

1 ´
1

p2

˙´1

“
π2

6

We thus see that in the polynimal arithmetic of the neural network, prime compo-
nents can be arithmetically easily connected to express transcendental like patterns.

The provided equations discuss the distribution of primes and almost primes in the
context of certain polynomial values. Here is the explanation of these equations in rela-
tion to the Generalized Ramanujan Conjecture (GRC)[3]: The GRC underpins
the theoretical framework for studying the distribution of primes and almost primes
in polynomial values. By providing rigorous spectral gap bounds and controlling error
terms, the GRC ensures the validity of prime number theorme analogue in generalized
contexts, such as higher-degree polynomials and sequences with additional algebraic
structure.
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Figure 2: A network for c1x
2
1 ` c2x2xm`1 ` ¨ ¨ ¨ ` cn´1x2xm´1 ` x2m

Distribution of Primes

|tp P P : p ď tu| „
t

log t
, as t Ñ 8.

This is the Prime Number Theorem, which describes the asymptotic density of
prime numbers less than or equal to t. It quantifies how primes become less frequent
as t increases.

Prime Number Theorem Analogue for Polynomials

|tx P Z : fpxq P Pr, |x| ď tu| ě const. ¨
t

log t
.

Here:

• fpxq is an irreducible polynomial with integral coefficients and a positive leading
term.

• Pr represents the set of numbers with at most r prime factors (also known as
r-almost primes).

• This inequality states that for any such fpxq, there exists a positive lower bound
for the count of r-almost primes generated by fpxq, which is proportional to t

log t
.

The difficulty lies in proving the infinitude of primes (or almost primes) in the values
of fpxq for higher-degree polynomials, as their structure is more complex than that of
linear polynomials.
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