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Abstract 

This paper presents a fundamental revision of the theoretical framework of special relativity 

by abandoning both the Lorentz transformations and the concept of time dilation. By 

critically analyzing symmetry issues in relativistic effects, this study argues that time is a 

universally invariant quantity, remaining unaffected by the relative motion between 

reference frames. By re-evaluating the core principles of relativity, the study rederives the 

mass-energy equivalence formula without invoking time dilation or Lorentz transformations. 

This novel approach resolves long-standing paradoxes in relativity, such as the twin paradox, 

and opens new possibilities for theoretical and experimental research in fundamental 

physics. 

 

Introduction 

Since its inception in 1905, Einstein's special relativity has served as a cornerstone of modern 

physics. At its core lies the Lorentz transformations, which describe the relationship between 

spatial and temporal measurements across different inertial reference frames. These 

transformations led to key predictions, such as time dilation, length contraction, and the 

invariance of the speed of light, all of which have been extensively validated by experiments. 

 

Upon closer examination, significant issues with the traditional framework become evident. 

The concept of time dilation, which implies that time passes at different rates in different 

reference frames, conflicts with the inherent symmetry of relativistic effects and leads to 

paradoxes, such as the twin paradox. Such inconsistencies indicate that time dilation might 

not represent a fundamental aspect of nature. 

 

This paper proposes a radical departure from traditional special relativity by abandoning 

time dilation and the Lorentz transformations altogether. Instead, a new framework is 

introduced in which time remains an invariant quantity across all reference frames, and 

spacetime transformations are redefined while preserving the constancy of the speed of 

light. Using this refined approach, this paper derives the mass-energy equivalence formula 

by indirectly introducing time dilation, providing a more consistent explanation of relativistic 

phenomena. The proposed model not only resolves conceptual paradoxes but also lays a 

solid foundation for future research into the dynamics of spacetime and the fundamental 

nature of time and energy. 

 

The Problems of Time Dilation 

The theory of relativity, introduced by Albert Einstein in 1905, has been a cornerstone of 
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modern physics. Central to this theory are the Lorentz transformations, which 

mathematically describe how measurements of time and space change for observers in 

different inertial frames of reference. These transformations have led to the well-known 

phenomena of time dilation, both of which have been extensively studied and 

experimentally validated. 

 

However, the formulas of time dilation and derived from the original theory of relativity are 

not satisfactory to some extent. Here are two illustrative examples are provided to highlight 

these aspects. 

 

Consider a train traveling at relativistic speed, with a carriage of height h and a mirror 

mounted on its ceiling. Consider a scenario where a beam of light is emitted vertically within 

the carriage along the mirror, and the time it takes for the light to reach the floor of the 

train after the first reflection is denoted as Δ𝜏. Now with the subgrade as the reference 

frame ( 𝐾′ reference frame), the path of the train is Δ𝑥, and the time it takes for the light 

to reach the floor of the train is denoted as Δ𝑡. Since the speed of light does not change, 

the Pythagorean theorem leads to Δ𝑡 =
Δ𝜏

√1−𝛽²
, where 𝛽 = 𝑣/𝑐. This is how Einstein derived 

his formula for the time dilation. He interpreted the phenomenon that the path of light 

relative to the roadbed becomes longer than that of light relative to the car to mean that 

the time passing by the roadbed is not the same as the time passing by the train, and the 

time relationship is the above expression. 

 

A Train Story 

                  

 

 

 

 

Lights on Trains: Simultaneity is Relative？ 

 

Alternatively, if the path of light is considered vertical relative to the roadbed, then the path 

of light is longer relative to the train. When we use the Pythagorean theorem to link this 

relationship, we get a different expression from the original formula for the time dilation. 

The derivation process is as follows: 

 

The height of the train carriage can be represented as  

  ℎ =
𝑐Δ𝑡

2
 . 

In the K reference frame, the path of the photon can be represented as  

  𝐿 = 𝑐Δ𝜏 . 

The distance traveled by the train can be represented as  

Δ𝑥 = 𝑣Δ𝑡 . 

According to the Pythagorean theorem: 
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ℎ² + (
Δ𝑥

2
)² = (

𝐿

2
)² 

Expanding: 

(
𝑐Δ𝑡

2
)² + (

𝑣Δ𝑡

2
)² = (

𝑐Δ𝜏

2
)² 

Δ𝑡²(𝑐² + 𝑣²) = 𝑐²Δ𝜏² 

Divide both sides by 𝑐². 

Δ𝑡²(1 + 𝛽²) = Δ𝜏² 

Simplifying: 

Δ𝑡 =
Δ𝜏

√1 + 𝛽²
 

The expression should be the same, but why might it be different? Obviously, we also need 

to carry on a new understanding and understanding to the Lorentz transformation. 

 

Assume for the moment that the concept of time dilation is inadequate, and consider the 

following example for further illustration. 

 

Once again, the train scenario will be utilized to illustrate the argument. Suppose there is a 

clock on a train moving with uniform linear motion, and of course, the speed of the train is 

unprecedentedly high. When this clock has passed a certain amount of time, will the clock 

on the platform show a shorter or longer time than the time passed on the train? Indeed, 

this is the enhanced version of the Twin Paradox. In fact, physicists are not satisfied with the 

traditional explanation of the Twin Paradox, which has been a point of controversy in special 

relativity for a long time. For the above question, it is clear that we can no longer use general 

relativity to provide an explanation. Therefore, we are forced to rethink the relationship 

between speed and time dilation. 

 

The Paradox of Seasonal Changes and Time Dilation 

Although time dilation in special relativity is recognized in mainstream physics and has been 

confirmed by certain experiments, recent experimental data, especially seasonal variations 

in nuclear decay rates, show inconsistencies with the time dilation effect of special relativity. 

This compels us to reconsider the validity of time dilation in special relativity, or whether the 

experimental phenomena supporting special relativity are indeed caused by it. Do they truly 

prove special relativity? This article explores whether these seasonal variations, based on 

several well-known experimental data, could challenge or modify the hypothesis of time 

dilation in special relativity. 

 

According to the predictions of special relativity, the passage of time is constant in any 

reference frame unless influenced by external acceleration. Therefore, the decay rate should 

be unrelated to seasonal changes. However, several experiments have found significant 

seasonal fluctuations in nuclear decay rates, which contradict the stability predicted by 

special relativity. Below are some related experiments and their data. 
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Livermore Experiment (1990) 

In the Livermore experiment conducted in the United States, the seasonal variation in 

nuclear decay rates was recorded as follows: 

 

Season Percentage Change in 

Nuclear Decay Rates (%) 

Notes 

Spring +0.15% The nuclear decay rate 

slightly increases in spring 

Summer -0.10% The nuclear decay rate 

slightly decreases in 

summer 

Autumn -0.05% The nuclear decay rate is 

relatively stable, 

approaching the baseline 

value 

Winter +0.20% The nuclear decay rate 

slightly increases in winter 

 

The experiment found that decay rates fluctuated across the four seasons, with a slight 

increase in decay rates particularly observed during winter and spring. According to special 

relativity, time should remain constant across different seasons, thus such seasonal variations 

cannot be explained within the framework of special relativity. 

 

Berlin Experiment (2006) 

The Berlin experiment further investigated the seasonal variations in β-decay rates. The 

experimental results are as follows: 

 

Season Percentage Change in 

Nuclear Decay Rates (%) 

Notes 

Spring +0.12% The beta decay rate slightly 

increases 

Summer -0.18% The decay rate in summer 

decreases more noticeably 

Autumn +0.08% The variation is minimal, 

approaching the baseline 

value 

Winter +0.05% The decay rate slightly 

increases in winter 

 

The experiment observed a significant decline in decay rates during the summer, with an 

overall trend of fluctuation across different seasons. According to the theory of special 

relativity, decay rates should remain consistent across different seasons unless the decay 

process is influenced by other factors, such as temperature or acceleration. Therefore, these 
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seasonal variations do not align with the time dilation hypothesis of special relativity. 

 

Alabama Experiment (2007) 

The nuclear decay experiment conducted in Alabama also discovered similar seasonal 

variations. The specific data are as follows: 

 

Season Percentage Change in 

Nuclear Decay Rates (%) 

Notes 

Spring -0.10% The nuclear decay rate 

slightly decreases 

Summer -0.25% The nuclear decay rate 

significantly decreases in 

summer 

Autumn +0.05% The nuclear decay rate 

slightly rebounds 

Winter +0.15% The nuclear decay rate 

increases in winter 

 

In this experiment, there was a significant decline in decay rates during the summer, while 

an increase was observed in the winter. These seasonal differences once again conflict with 

the assumptions of special relativity, as one should not observe any season-based time 

dilation differences within a stable reference frame. 

 

The Russian Kursk Experiment (2011) 

The Kursk Experiment further demonstrated the relationship between nuclear decay rates 

and seasonal changes, with the following data: 

 

Season Percentage Change in 

Nuclear Decay Rates (%) 

Notes 

Spring -0.02% Minimal variation, near the 

baseline 

Summer -0.30% A significantly lower decay 

rate observed in summer 

Autumn +0.10% A modest rebound in the 

decay rate 

Winter +0.05% A slight increase in the 

decay rate in winter 

 

The Kursk Experiment also observed similar seasonal variations, particularly noting that the 

decay rate in summer was significantly lower than in other seasons. This phenomenon 

further challenges the time dilation effect in the theory of special relativity. 

 

From the experimental data mentioned above, it can be seen that the variation in nuclear 

decay rates across different seasons contradicts the time dilation effect in the theory of 
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special relativity. Special relativity requires that, in the absence of external acceleration and 

gravitational influences, the passage of time for an object should be constant. However, the 

results of these experiments indicate that decay rates fluctuate with seasonal changes. The 

existence of such seasonal variations suggests that our current understanding of time 

dilation might have some unknown deviations or factors that existing theories do not fully 

encompass. 

 

Although seasonal changes might be related to environmental factors such as temperature, 

humidity, cosmic rays, etc., these external factors are usually insufficient to explain all the 

variations. Thus, these experiments present a potential challenge to the concept of time 

dilation, indicating the need for further in-depth exploration and revision within the current 

framework of physical theories. 

 

In summary, the data on the seasonal variation of nuclear decay rates demonstrates 

phenomena that are inconsistent with the time dilation effect of special relativity. Although 

these experiments require further validation, they offer a new perspective for re-examining 

the universality of time dilation in special relativity. 

 

Re-evaluating the Time Dilation 

Time dilation, as a key prediction of Einstein's special relativity, has been widely supported 

by various experiments. Observations such as the extended lifetime of atmospheric muons, 

atomic clock discrepancies during high-speed flights, frequency shifts in fast-moving 

particles, and the time corrections required in GPS systems are often cited as direct evidence. 

However, a closer analysis of these experiments suggests that alternative interpretations 

could also explain the results without relying on the traditional notion of time dilation. 

 

The extended lifetime of atmospheric muons is frequently interpreted as evidence of time 

dilation, allowing these short-lived particles to reach the Earth's surface. Yet, this 

phenomenon might instead be explained by changes in the quantum field interactions 

affecting particle decay rates. High-energy motion could alter the stability of these particles, 

leading to extended lifetimes without requiring a change in the fundamental flow of time. 

This view shifts the focus from spacetime transformations to the dynamic interactions of 

particles and fields. 

 

Similarly, the Hafele-Keating experiment, which observed time differences between atomic 

clocks flown on airplanes and those on the ground, has been presented as confirmation of 

time dilation. However, alternative explanations suggest that the observed discrepancies 

may primarily arise from gravitational effects described by general relativity or 

environmental influences such as magnetic field fluctuations. Moreover, the technological 

limitations of the 1970s raise questions about whether these results can definitively confirm 

special relativity's predictions. 

 

In the case of the Ives-Stilwell experiment, frequency shifts observed in the spectra of fast-
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moving particles are often attributed to time dilation. Nevertheless, these shifts might be 

due to disturbances in the medium or the fields surrounding the particles. This interpretation 

challenges the assumption that Lorentz transformations alone can fully account for the 

observations, suggesting that other physical effects may be at play. 

 

GPS satellites, which require relativistic corrections to maintain accuracy, are another 

frequently cited example of time dilation in action. However, these corrections might be 

better understood as engineering adjustments rather than direct evidence of special 

relativity. Various factors, including orbital perturbations, atmospheric interference, and 

calibration errors, play significant roles in explaining the time discrepancies observed in GPS 

systems. 

 

To reinterpret these experimental results, an alternative framework is proposed. This 

framework introduces the concept of “observational time” to distinguish between physical 

changes and measurement artifacts. It also emphasizes the importance of localized 

quantum field interactions, which could influence decay rates or frequencies without 

involving changes in time itself. Furthermore, the framework calls for developing new 

models that retain the invariance of the speed of light while revising the spacetime 

transformation equations to better align with experimental data. 

 

While special relativity remains a cornerstone of modern physics, the conventional 

interpretation of time dilation warrants further scrutiny. Alternative models that incorporate 

quantum interactions and localized effects offer promising avenues for explaining 

experimental observations. Future research should focus on refining these models and 

designing experiments to test competing theories, paving the way for a deeper 

understanding of the nature of time and motion. 

 

Lorentz's initial derivation of the time relation between different reference frames is very 

similar to Einstein's formula for time dilation derived from the Pythagorean theorem. In fact, 

there are differences between them. But modern physics explains it by saying that 𝑥′ in the 

Lorentz transformation is zero because the event happened in the same place. However, 

this is a loose interpretation because 𝑥′ represents the exact location of the photons in the 

𝐾′ reference frame (events take time to occur, and 𝑥′ cannot be equal to zero). Instead of 

directly replacing the position of the photon with the position of the event, we have to 

expand the 𝑥′ into the form of 𝑐𝑡′. 

 

Then the question arises, why is there a difference in the form of their time transformation? 

To answer this question, we must start from the essence of the Lorentz transformation. In 

the Lorentz transformation, in order to maintain its symmetry, a constant γ is multiplied 

based on the Galilean transformation. However, in the subsequent analysis, we can 

astonishingly find that the symmetry of the Lorentz transformation will be broken. Given this, 

the answer to this question becomes evident. 

 

It is fundamentally inconsistent with current understanding to accept that time can exist in 
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a superposition state, otherwise it would split two different events, and a large number of 

experiments to verify time bias are based on the principles of general relativity. If the time 

dilation is correct, then there must be a paradox. In other words, in current human cognition, 

when an object is moving in a uniform straight line, the elapsed time is the same as the 

elapsed time in the selected reference frame. 

 

Photons Cannot Follow Vector Addition Law 

In Maxwell's classical theory of electromagnetism, light is represented by continuous 

electromagnetic waves. In such a theory, if two waves meet, one obtains the resultant 

electric field �⃗� 𝑟𝑒𝑠𝑢𝑙𝑡(𝑟 , 𝑡) by summing vectorially: 

 

�⃗� 𝑟𝑒𝑠𝑢𝑙𝑡(𝑟 , 𝑡) = �⃗� 1(𝑟 , 𝑡) + �⃗� 2(𝑟 , 𝑡) 
 

For classical waves, this linear superposition principle is a cornerstone that accurately 

predicts phenomena like interference and diffraction when large numbers of photons (or 

classical light intensities) are involved. 

 

However, once we consider individual photons, we enter the realm of quantum 

electrodynamics (QED). Quantum theory treats photons not just as localized “particles”, but 

as quantized excitations of the underlying electromagnetic field. These excitations follow the 

rules of quantum mechanics, which differ substantially from classical vector addition when 

we focus on the level of single photons or pairs of photons. A photon's polarization, 

momentum, and other quantum properties follow quantum superposition principles 

(involving complex probability amplitudes), but they cannot be treated as simple classical 

vectors that add or subtract in a purely classical sense.   

 

In quantum electrodynamics, the electromagnetic field in free space can be expanded in 

terms of normal modes. For each mode �⃗�  (wavevector) and polarization 𝜆, we define the 

annihilation operator �̂��⃗� ,𝜆  and the creation operator �̂�
�⃗� ,𝜆

† . The quantized electric field 

operator �⃗� ̂(𝑟 , 𝑡) can be written schematically as: 

�⃗� ̂(𝑟 , 𝑡) = ∑√
ℏω�⃗� 

2𝜖0𝑉
�⃗� ,𝜆

(ϵ�⃗� ,𝜆�̂��⃗� ,𝜆𝑒
𝑖(�⃗� ·𝑟 −ω

�⃗⃗� 
𝑡)

+ 𝜖
�⃗� ,𝜆
∗ �̂�

�⃗� ,𝜆

† 𝑒
−𝑖(�⃗� ·𝑟 −ω

�⃗⃗� 
𝑡)
) 

where ω�⃗� = c|�⃗� | is the angular frequency for the mode �⃗� ,ϵ�⃗� ,𝜆 is the polarization vector, 

𝑉  is a quantization volume (for mathematical convenience), ℏ  is the reduced Planck 

constant, 𝜖0 is the permittivity of free space. 

 

A single-photon state in mode �⃗�  with polarization 𝜆 is created by acting with the creation 
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operator on the electromagnetic vacuum |0⟩: 

|�⃗� , 𝜆⟩ = �̂�
�⃗� ,𝜆

† |0⟩ 

The nature of these states is governed by quantum superposition of probability amplitudes 

rather than direct vector addition of fields.   

 

For a classical field �⃗� (𝑟 , 𝑡), superposition is direct: two electric fields �⃗� 1 and �⃗� 2 simply sum. 

In quantum mechanics, however, the amplitudes for detecting a photon in one 

configuration versus another will interfere. The observable intensities or detection rates arise 

from the modulus square of the sum of probability amplitudes. Symbolically, if 𝜓1 and 𝜓2 

are probability amplitudes, then the detection probability is 

 

 |𝜓1 + 𝜓2|
2 = |𝜓1|

2 + |𝜓2|
2 + 2𝑅𝑒{𝜓1

∗𝜓2}, 

 

not simply a vector sum of classical fields. When dealing with single photons, the concept 

of “the photon's electric field” is not a classical vector quantity that can be added to another 

photon's field. Instead, one must track quantum states in Hilbert space. 

 

In order to make the above conclusion more convincing, we give a mathematical argument. 

 

A single photon in a well-defined mode |�⃗� 1, 𝜆1⟩ is orthogonal to a photon in a different 

mode |�⃗� 2, 𝜆2⟩, provided �⃗� 1 ≠ �⃗� 2 or 𝜆1 ≠ 𝜆2. This is expressed as 

⟨�⃗� 2, 𝜆2|�⃗� 1, 𝜆1⟩ = 𝛿�⃗� 1,�⃗� 2
𝛿𝜆1,𝜆2

. 

There is no classical counterpart to this strict orthogonality at the single-photon level. 

Classically, one can always add field vectors, but in the quantum regime, photons in different 

modes are distinct Fock states that do not simply “add up” into a new single-photon state. 

 

When two photons collide in certain nonlinear processes (e.g., parametric down-

conversion), energy-momentum conservation is enforced at the quantum level. One cannot 

combine two single photons into “one photon with vector sum of momenta” in ordinary 

linear optics. Only in extreme cases—such as high-intensity fields interacting in nonlinear 

media—do processes like two-photon absorption or sum-frequency generation occur, and 

even then, the description involves multi-photon quantum states, not a single classical wave 

that is the sum of individual photons' vectors. 

 

Although the polarization of a single photon can be described in a two-dimensional 

complex vector space (e.g., horizontal |𝐻⟩  and vertical |𝑉⟩ ), the resulting states like 

𝛼|𝐻⟩ + 𝛽|𝐻⟩ are quantum superpositions in Hilbert space. These superpositions obey the 

rules of quantum mechanics — particularly, the measurement outcomes depend on 

probability amplitudes. While we call polarization states “vectors”, they are vectors in a 
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quantum state space, and detection probabilities are governed by amplitudes squared, not 

by classical addition of electric field vectors from two different photons. 

 

At the same time, existing experiments can support this view. Classic Young's double-slit 

experiments performed at the single-photon level show that each photon appears to go 

through the experimental setup “individually”, yet still yields an interference pattern over 

time. The interference arises from the photon's probability amplitude traveling through both 

slits. A classical vector-sum picture of electric fields can predict the ensemble interference 

pattern, but it cannot explain why you see discrete photon detections building up the 

pattern one detection event at a time without attributing wave-like properties to the single 

photon's amplitude, which is not a simple classical field vector. 

 

In the HOM experiment, two indistinguishable single photons arrive at a 50:50 beam splitter, 

one in each input port. Classically, one might expect each photon to have a 50% chance of 

emerging in either output port, leading to partial “coincidence” detections. Instead, photons 

bunch together and exit together in the same output port (with no simultaneous detection 

in both outputs), a purely quantum effect explained by the destructive interference of 

probability amplitudes. This phenomenon directly contradicts the notion of independent 

classical field vectors combining at a beam splitter. 

 

Experiments showing single-photon sources (for instance, from quantum dots or certain 

atomic transitions) demonstrate photon anti-bunching: the probability of detecting two 

photons in a very short time window is lower than that expected for a classical random 

source. Classical wave descriptions usually fail to predict strict anti-bunching without 

introducing additional ad hoc assumptions, whereas quantum field theory naturally 

describes it via the fermionic-like behavior of creation/annihilation operators (more 

precisely, bosonic operators with certain constraints when you track single photons). 

 

Certain nonlinear processes, such as spontaneous parametric down-conversion (SPDC) in 

nonlinear crystals, generate pairs of photons (signal and idler) with strong quantum 

correlations (entanglement). These correlations violate classical constraints (e.g., Bell's 

inequalities), thereby demonstrating that photons must be described by entangled quantum 

states, not classical fields added vectorially. 

 

Classical electromagnetism remains essential in describing the aggregate or macroscopic 

behavior of electromagnetic fields, where the field vectors indeed sum linearly. However, at 

the single-photon (or few-photon) quantum level, photons: 

1. Occupy discrete quantum states (Fock states) that do not combine into single-photon 

states by simple vector addition.   

2. Have detection probabilities governed by quantum amplitudes, not by linear addition 

of classical field vectors.   

3. Exhibit interference and correlation effects (e.g., Hong–Ou–Mandel interference, anti-

bunching) that defy purely classical descriptions.   
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Therefore, while the underlying fields may still follow Maxwell's equations and hence 

superimpose in a classical sense, the physical detection events and the quantum states of 

photons do not obey a naive vector addition law. 

 

The Path Invariance of the Photon 

In traditional special relativity, the displacement of the photon changes with the change of 

the reference system, which is the origin of the Lorentz transformation. However, this may 

be a wrong conclusion. I'm going to demonstrate step by step in mathematical form why 

it's wrong. 

 

Let 𝑀 be a four-dimensional manifold equipped with a nondegenerate metric (one may 

simply assume a smooth manifold with sufficient regularity to take derivatives and define 

the required integrals, but need not invoke any specific “relativistic” structure). Label local 

coordinates on 𝑀 by {𝑥0, 𝑥1, 𝑥2, 𝑥3} without assigning any special role to one of them as 

“time”. Let 𝐴 be a 1-form on 𝑀, whose components in local coordinates are 𝐴𝜇(𝑥). We 

define the curvature 2-form (or field strength)  

 𝐹 = 𝑑𝐴, 

that is, if 𝐴 = 𝐴𝜇𝑑𝑥𝜇, then 

  𝐹 = 𝜕𝜇𝐴𝜈𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 =
1

2
𝐹𝜇𝜈𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 , 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 . 

In standard electromagnetism, one typically interprets 𝐴0  as the “scalar potential” and 

𝐴𝑖(𝑖 = 1,2,3)  as the “vector potential”, while 𝐹𝜇𝜈  encodes electric and magnetic field 

components, but we do not assign any special status to one coordinate as time. Define the 

Hodge star operator ∗ associated to the metric on 𝑀. Then ∗ 𝐹 is again a 2-form. A 

natural action functional for the free electromagnetic field is given by the integral 

𝑆[𝐴] = ∫ 𝛼𝐹 ∧∗ 𝐹
𝑀

, 

where 𝛼 is a constant factor depending on the chosen system of units (for instance, in 

certain normalizations one can set 𝛼 =  −
1

4𝜇0

 , but the exact constant is irrelevant to the 

invariance argument). The wedge product 𝐹 ∧∗ 𝐹 is a scalar-valued 4-form, so it can be 

integrated naturally over the entire four-dimensional manifold 𝑀 without singling out any 

particular coordinate as “time”.   

 

A gauge transformation is defined by choosing a real function χ(𝑥) on 𝑀 and sending  

  𝐴 → 𝐴′ = 𝐴 + 𝑑𝜒 . 

In local coordinates, this amounts to 𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇𝜒. One now observes that 

 𝐹′ = 𝑑𝐴′ = 𝑑(𝐴 + 𝑑𝜒) = 𝑑𝐴 + 𝑑(𝑑𝜒), 

and 𝑑(𝑑𝜒) = 0 since the exterior derivative of an exact form is identically zero. Thus 

 𝐹′ = 𝑑𝐴′ = 𝑑𝐴 = 𝐹, 

meaning the 2-form field strength is gauge invariant. Consequently, both 𝐹 ∧∗ 𝐹  and 

hence the entire integrand of 𝑆[𝐴] remain unchanged when 𝐴 is replaced by 𝐴′ = 𝐴 +
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𝑑𝜒. Hence 

 𝑆[𝐴′] = ∫ 𝛼𝐹′ ∧∗ 𝐹′
𝑀

= ∫ 𝛼𝐹 ∧∗ 𝐹
𝑀

= 𝑆[𝐴]. 

 

This shows that the action functional 𝑆[𝐴] is strictly invariant under the specified gauge 

transformation, with no reference to a designated time coordinate or to changes of 

reference frames. 

 

Below is a single continuous text in English, followed by its Chinese translation. No explicit 

reference is made to Lorentz transformations or any other relativistic coordinate 

transformations. We avoid using “time” as a parameter. We assume that the photon's action 

is invariant under any change of inertial reference frame, and we do not prove that 

invariance itself but treat it as the fundamental premise. Our goal is to demonstrate, using 

quantum-mechanical path integrals and detailed mathematical reasoning, that the photon’

s path length remains the same in all inertial frames. 

 

Consider a photon traveling between two spatial points labeled 𝑥1 and 𝑥2. We introduce 

a parameter 𝜆 ∈ [0,1] to describe a continuous spatial curve 𝑥(𝜆), such that 𝑥(0) = 𝑥1 

and 𝑥(1) = 𝑥2. The photon's action is written as 

 𝑆[𝑥(𝜆)] = ∫ 𝑑𝜆ℒ(𝑥(𝜆), 𝑥′(𝜆))
1

0

, 

where 𝑥′(𝜆) =
𝑑

𝑑𝜆
𝑥(𝜆). We do not specify the explicit form of ℒ, only stating that it must 

be invariant under any global inertial relabeling of the spatial coordinates and that it 

describes a massless particle. For concreteness, one can regard ℒ as a scalar function 

constructed from the derivative 𝑥′(𝜆)  in a way that encodes “photon-like” or “null” 

propagation, while remaining the same in all inertial frames. 

 

In the path-integral approach of quantum mechanics, the amplitude 𝐴(𝑥2|𝑥1) for the 

photon to go from 𝑥1 to 𝑥2 is 

 𝐴(𝑥2|𝑥1) = ∫𝒟[𝑥(𝜆)]𝑒𝑥𝑝 (
𝑖

ℏ
 𝑆[𝑥(𝜆)]), 

where 𝒟[𝑥(𝜆)] is a path-integral measure integrating over all possible continuous curves 

𝑥(𝜆) that begin at 𝑥1 and end at 𝑥2. Such a measure can be viewed formally as the limit 

of an infinite product of standard integrals over the coordinates of 𝑥(𝜆) at discrete values 

of 𝜆. By construction, we require that 𝒟[𝑥(𝜆)] does not change under a uniform inertial 

relabeling of the underlying spatial points. Furthermore, since 𝑆[𝑥(𝜆)]  by assumption 

remains the same in all inertial frames, the exponential factor 𝑒𝑥𝑝 (
𝑖

ℏ
 𝑆[𝑥(𝜆)]) is unaffected 

by switching to another inertial coordinate description. Therefore, the entire integrand in 

∫𝒟[𝑥(𝜆)]𝑒𝑥𝑝 (
𝑖

ℏ
 𝑆[𝑥(𝜆)]) 

is invariant under changes of inertial labels, so the resulting path-integral amplitude 
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𝐴(𝑥2|𝑥1) must also be invariant. 

 

In a regime where ℏ is small compared to the typical scale of the action, one can evaluate 

this path integral using the stationary-phase (or steepest-descent) approximation. 

Specifically, we look for paths 𝑥𝑐𝑙(𝜆) that satisfy the variational condition 

𝛿𝑆[𝑥(𝜆)] = 0 

which leads to the usual Euler–Lagrange equation: 

𝑑

𝑑𝜆
(

𝜕ℒ

𝜕𝑥′(𝜆)
) −

𝜕ℒ

𝜕𝑥(𝜆)
= 0 

These “stationary-action” or “classical” paths dominate the path integral’s phase 

contribution, ensuring that the main contributions to 𝐴(𝑥2|𝑥1) come from neighborhoods 

of 𝑥𝑐𝑙(𝜆).  

 

Since we have required that 𝑆[𝑥(𝜆)] is invariant in all inertial frames, the above Euler–

Lagrange equation retains the same functional form under any inertial relabeling. Hence, 

the same physical trajectory 𝑥𝑐𝑙(𝜆) that solves 𝛿𝑆 = 0 in one inertial description also 

solves it in any other inertial description. If that were not the case—if, for instance, a different 

path became the stationary solution under another inertial labeling—then the total phase 

from the dominant path would change, thus altering the value of 𝐴(𝑥2|𝑥1). But that would 

contradict the requirement that 𝐴(𝑥2|𝑥1) itself is invariant. Hence, we deduce that the 

classical path 𝑥𝑐𝑙(𝜆) is consistently identified as the same geometric curve in every inertial 

frame. 

 

We now connect this argument to the invariance of the photon’s path length. Let us define 

the geometric length of an arbitrary curve 𝑥(𝜆) by an integral of the form 

 𝐿[𝑥(𝜆)] = ∫ 𝑑𝜆𝐺(𝑥(𝜆), 𝑥′(𝜆))
1

0

, 

 

where 𝐺 encodes the local notion of “length element” appropriate to a massless path. In a 

typical relativistic framework one might refer to this as “null separation” or a related quantity, 

but here we merely state that 𝐺 must be constructed in the same invariant manner as ℒ. 

Concretely, if ℒ is invariant under inertial transformations, so is 𝐺. Consequently, the value 

 𝐿[𝑥(𝜆)] evaluated on the stationary path 𝑥𝑐𝑙(𝜆) is the same curve length in all inertial 

frames. Indeed, changing inertial labels cannot alter the path that solves the stationary 

condition, nor can it alter the function 𝐺. Therefore, the path length of the photon, taken 

as the integral of 𝐺 along 𝑥𝑐𝑙(𝜆), cannot vary across inertial frames. 

 

In this regard, we draw the conclusion that the magnitude of the photon’s displacement is 

independent of the transformation of the reference frame, and its displacement does not 

adhere to vector addition law in an inertial frame. 

 

Relativity of the Photon Wave Function 

According to the aforementioned proof, we know that the behavior of photons does not 
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adhere to vector composition. Consequently, this leads to an intriguing phenomenon: when 

observing the same photon from different reference frames at the same moment, the 

photon's position will be different. 

In quantum mechanics, the position of a photon is described by the probability of its 

appearance within a certain region: 

𝑃 = ∫ |𝜓(𝑥, 𝑦, 𝑧)|2𝑑𝑉
𝑉

= ∫ ∫ ∫ |𝜓(𝑥, 𝑦, 𝑧)|2𝑑𝑥𝑑𝑦𝑑𝑧
𝑧2

𝑧1

𝑦2

𝑦1

𝑥2

𝑥1

 

Since the position of a photon observed from different reference frames at the same 

moment is different, the probability of the photon appearing within the same region is also 

different in different reference frames. Consequently, the corresponding wave functions of 

the photon 𝜓(𝑥, 𝑦, 𝑧) are different in each reference frame. 

 

Next, I will outline specific experiments that may support this view. The behavior of photons 

in different reference frames is influenced by the observer's motion, and this has been 

indirectly proven through several classical experiments. One such experiment is the 

Compton scattering experiment. In this experiment, photons collide with electrons, and by 

measuring the energy and momentum of the photon before and after the collision, it 

becomes evident that these quantities change depending on the reference frame. This 

suggests that photons are not invariant across all reference frames, and their wave function 

is affected by the reference frame. 

 

For example, the following data from the Compton scattering experiment shows how the 

photon’s energy and momentum change with the scattering angle: 

 

Initial Photon 

Energy (𝐸1) 

Scattered Photon 

Energy (𝐸2) 

Scattering Angle (𝜃) Momentum Change 

(Δ𝑝) 

662 (Gamma ray) 550 (Scattered 

photon) 

90° 4.6 ×  10−2 

662 (Gamma ray) 500 (Scattered 

photon) 

5° 5.2 ×  10−2 

 

From this data, we can observe that the energy and momentum of the scattered photon 

vary with the angle, indicating that the photon’s behavior is not only dependent on its 

intrinsic properties but also influenced by the reference frame. Since the photon’s wave 

function is related to its energy and momentum, it can be inferred that the wave function is 

different in different reference frames. 

 

Another experiment that demonstrates how the photon’s wave function changes with the 

reference frame is the quantum interference experiment, such as the double-slit experiment. 

In this experiment, photons create an interference pattern when passing through two slits. 

However, if the observer is moving relative to the light source, the spacing of the 

interference fringes will change. This happens because the observer's motion affects the 

photon’s wavelength, thus altering the interference pattern. The following data from a 
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double-slit experiment shows how the fringe spacing changes with the reference frame 

speed: 

 

Reference Frame 

Speed (𝑣) 

Interference Fringe 

Spacing (Δ𝑥) 

Wavelength (𝜆) Speed of Light 

(𝑐) 

Rest Frame 0.2 mm 500 nm 3 ×  108 m/s 

High-Speed 

Frame 

0.18 mm 480 nm 3 ×  108 m/s 

 

As the reference frame speed increases, the wavelength of the photon shortens, causing 

the interference fringes to become closer together. This clearly shows that the photon’s 

wave function changes with the reference frame. 

 

In addition, the Doppler effect also provides indirect evidence for the change in the photon’s 

wave function. When the light source moves relative to the observer, the frequency of the 

photon changes. This frequency shift is directly related to the photon’s wave function. By 

measuring the frequency change, we can infer how the photon’s wave function changes in 

different reference frames. The following data shows the results of a Doppler effect 

experiment: 

 

Source 

Speed (𝑣) 

Photon Frequency 

(𝑓1)(THz) 

Observed Frequency 

(𝑓2)(THz) 

Frequency Shift 

(Δ𝑓)(THz) 

0 0.5 0.5 0 

0.9c 0.5 1.5 1.0 

 

When the source moves at a speed close to the speed of light, the frequency of the photon 

observed by the moving observer increases. This indicates that the frequency change of the 

photon is directly related to the reference frame, further supporting the idea that the 

photon’s wave function changes with the reference frame. 

 

Through these experimental data, we can see that the energy, momentum, wavelength, and 

frequency of the photon vary with the reference frame, suggesting that the photon’s wave 

function is not invariant but changes with the reference frame. 

 

Reconsideration of Lorentz Transformation  

The Lorentz transformation is a cornerstone of special relativity, adjusting the Galileo 

transformation to account for the inhomogeneity of space-time, introducing a constant 

factor, γ (the Lorentz factor). It provides the mathematical foundation for the invariance of 

the speed of light and the effects of time dilation. However, when we examine the light 

emitted by a moving object, such as a train, the expression for γ changes depending on 

the direction of emission. This prompts us to question whether the Lorentz transformation 

and the principle of vector synthesis hold universally true, particularly when considering the 

behavior of photons at high velocities. 
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To elucidate this issue, consider a visualization the changes in space-time as an object 

moves. In the image on the left, the green curve represents the propagation distance of 

photons relative to a time interval when the object is at rest. The black curve illustrates the 

propagation distance of photons, assuming vector synthesis, in the same time interval, but 

when the photon is emitted by a high-speed moving object. Vector synthesis is assumed 

based on the invariance of the speed of light, which is a crucial assumption in traditional 

relativity. However, we are led to challenge this assumption.      

 

If we accept the Lorentz transformation as a universal truth, we must also accept that the 

time elapsed in a given inertial frame will differ from the time experienced by a moving 

object. This directly implies time dilation, which contradicts the notion that time should be 

uniform across different inertial frames. According to the principle of relativity, the elapsed 

time should be the same for both the moving object and the observer. If time dilation occurs, 

this creates a paradox. 

 

To resolve this paradox and maintain consistency, we must revise our understanding of 

photon displacement. The idea that photons follow vector synthesis is problematic. If 

photons followed simple vector addition, the time dilation observed in high-speed frames 

would not make sense, and the resulting shape of the light cone would no longer remain 

invariant across reference frames. The vector synthesis model is insufficient in accounting 

for these relativistic effects, and this discrepancy calls for a new approach to the 

transformation of space-time and the behavior of light. 

 

In the case of light emitted by a moving object, if we consider the motion of the object and 

the invariance of the speed of light, we must acknowledge that the displacement of photons 

is not governed by classical vector rules. Instead, the motion of the object must influence 

the photon's trajectory in a way that goes beyond traditional vector synthesis. To preserve 

the consistency of time dilation and the invariance of the speed of light, the concept of 

photon displacement must be revised, suggesting that photons do not adhere to vector 

synthesis in the way that classical objects do. 

 

To summarize, the assumption that the Lorentz transformation and vector synthesis can be 

universally applied must be reconsidered. The violation of time dilation and the inability of 

photons to follow vector addition at high velocities reveal flaws in the classical framework 

of relativity. This reconsideration opens the door for new perspectives on space-time and 
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photon behavior, necessitating a departure from the Lorentz transformation and the 

traditional view of light as a simple vector phenomenon. 

 

Therefore, we have to find a new transformation that is not only compatible with general 

relativity, but also able to explain the behavior of particles at high speeds. 

 

Time Dilation of Photons in Vector Addition Law 

In Einstein's groundbreaking work, Einstein applied the theorem to the concept of spacetime, 

demonstrating how the measurements of time and space are relative to the observer's 

frame of reference. This led to the formulation of the special theory of relativity, which 

revolutionized our understanding of the universe. The time dilation, which describes how 

time slows down for objects moving at speeds close to the speed of light, is a cornerstone 

of modern physics. Einstein's use of the Pythagorean theorem in this context illustrates the 

theorem's enduring relevance and its role in the development of new scientific paradigms.  

 

Nonetheless, the equation deduced from the Pythagorean theorem lacks strictness. In order 

to improve the rigor, accuracy and conciseness of the formula, it is better to use the 

derivation method similar to Einstein's combined with Lorentz transformation, deduced by 

cosine theorem and introduce two angle variables so that research the distortion of space 

by objects at different positions. 

 

Assume an inertial frame of reference in which photons follow the vector synthesis theorem. 

Although this inertial reference frame does not exist in reality, we can derive the mass-

energy equation from it. As to why this is possible, this will be elaborated upon in the 

following chapter. 

 

Suppose there are two inertial frames, 𝑆 and 𝐾. In frame 𝑆, during an extremely brief time 

interval 𝑑𝑡, a photon travels a spatial displacement vector 𝑟 . By the principle of invariant 

light speed in special relativity,   

‖𝑟 ‖ = 𝑐𝑑𝑡. 

In frame 𝐾 , consider a particle or an origin moving from 𝑂  to 𝑂′ . Let Δ𝑟  be its 

displacement vector. If its speed is 𝑣, then in the same time 𝑑𝑡 (as measured in 𝑆), we 

have   

‖Δ𝑟 ‖ = 𝑣𝑑𝑡. 

We can also introduce another frame (for example, 𝑆′) or another segment of the photon's 

motion, described by a vector 𝑟 0 with   

‖𝑟 0‖ = 𝑐𝑑𝜏. 

Here, 𝑑𝜏 can be viewed as the photon's travel time measured in “another reference frame” 

or under “a particular measurement condition”. 

 

To reflect how the photon's direction (relative to the moving reference frame) affects time 

dilation, define   

𝜃 = 〈𝑟 , Δ𝑟 〉, 
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i.e., the angle between the photon's displacement 𝑟  and the moving displacement Δ𝑟 . 

And the physical meaning is that if 𝑐𝑜𝑠 𝜃 = 𝑣/𝑐 , one recovers certain classical special-

relativity scenarios. 

 

We consider the three vectors 𝑟 , Δ𝑟 , and 𝑟 0 in spatial 3D. By translating them in space 

(without changing their lengths or directions), one can form a closed triangle in the same 

instantaneous spatial slice. In special relativity, once we fix a simultaneous “slice” in a given 

inertial frame, these spatial displacements can indeed be combined in ordinary 3D geometry, 

allowing us to apply the law of cosines at each instantaneous snapshot. 

 

For any triangle with sides 𝑎 , 𝑏 , and 𝑐 and an angle 𝜃 between sides 𝑎 and 𝑏, the 

law of cosines states: 

𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠𝜃 = 𝑐2 

In our scenario, 

𝑎 = ‖𝑟 ‖ = 𝑐𝑑𝑡, 𝑏 = ‖Δ𝑟 ‖ = 𝑣𝑑𝑡, 𝑐 = ‖𝑟 0‖ = 𝑐𝑑𝜏. 

And the relevant angle is 𝜃 = 〈𝑟 , Δ𝑟 〉. By substituting these into the law of cosines, we obtain 

  (𝑐𝑑𝑡)² + (𝑣𝑑𝑡)² − 2(𝑐𝑑𝑡)(𝑣𝑑𝑡) 𝑐𝑜𝑠 𝜃 = (𝑐𝑑𝜏)² . 

Expanding and simplifying: 

𝑐²𝑑𝑡² + 𝑣²𝑑𝑡² − 2𝑐𝑣𝑑𝑡² 𝑐𝑜𝑠 𝜃 = 𝑐²𝑑𝜏² 

Factor out 𝑑𝑡² and divide by 𝑐²: 

𝑑𝑡² (1 +
𝑣²

𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠 𝜃) = 𝑑𝜏² 

Hence 

𝑑𝜏² = 𝑑𝑡²(1 +
𝑣²

𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠 𝜃). 

Taking the positive square root (assuming 𝑑𝑡 and 𝑑𝜏 are both positive time intervals), we 

arrive at 

 𝑑𝜏 = 𝑑𝑡√1 +
𝑣²

𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠(𝜃) , 

Or equivalently 

 𝑑𝑡 =
𝑑𝜏

√1 +
𝑣²

𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠(𝜃)

 . 

This is our key formula: it reveals how the time interval measured in one frame depends not 

only on the relative speed 𝑣 but also explicitly on the direction 𝜃 of the photon's emission 

(or displacement) relative to that speed. 
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And in order to verify that the formula is correct, we can assume that the vectors 𝑟 , 𝑟 0 and 

Δ𝑟  can form a right triangle, so 

𝑐𝑜𝑠 𝜃 =
𝑣𝑑𝑡

𝑐𝑑𝑡
=

𝑣

 𝑐 
, 

and the formula can be simplified: 

𝑑𝑡 =
𝑑𝜏

√1 +
𝑣²

𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠(𝜃)

=
𝑑𝜏

√1 +
𝑣²

𝑐²
− 2

𝑣²

𝑐²

=
𝑑𝜏

√1 −
𝑣²

𝑐²

 

It is worth noting that the final equation we derived seamlessly connects with the classical 

time dilation formula initially derived from the two-dimensional plane under specific 

conditions. 

 

The final formula 

𝑑𝑡 =
𝑑𝜏

√1 +
𝑣²

𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠(𝜃)

 

shows that if 𝜃 ≠ 𝑎𝑟𝑐𝑐𝑜𝑠(𝑣/𝑐), the measured time interval 𝑑𝑡 entangles with the direction 

𝜃. In essence, the photon's emission direction relative to the object's motion modifies the 

observed time flow. Only in certain angles do we recover the familiar γ -factor result.   

 

To maintain “directionally uniform time dilation”, one must impose additional constraints in 

the vector composition (such as “photons cannot be simply vector-synthesized”). This is 

precisely the physical reason for the symmetry breaking mentioned in the paper. 

 

Mass-energy Equation 

We assume that an extended relationship is derived from a certain hypothesis. If this 

extended relationship cannot reduce to the classical form under specific conditions (or fails 

to align with forms verified as correct in reality), then the extended relationship must be 

incorrect. This is because the classical form is typically a simplified result of a broader 

physical theory under specific limiting conditions, reflecting the agreement between higher-

level theories and experimental observations. Therefore, any new extended relationship that 

cannot encompass the classical form indicates theoretical or experimental flaws, making it 

unfit as an extension of physical laws. Consequently, a correct extended relationship must 

necessarily reduce to the classical form under certain conditions. 

 

Based on this logical reasoning, we can derive the mass-energy equation. Assuming that 

photons obey the vector addition rule (even though this assumption does not hold), and 

applying the principle of least action and Lorentz transformations, we derive the 

corresponding energy relationship. Finally, in the limiting condition of a velocity of 0 m/s, 

the correct mass-energy equation can be obtained. 

 



 

 — 20 
— 

We assume that there is an inertial reference frame in which the angle between the direction 

of motion of the free particle and the straight line distance of the reference frame does not 

change. 

 

Because the static energy we need to research is independent of the angular variable and 

photons emitted from a stationary object do not require vector synthesis, so the static 

energy form should be the same at any angle. In order to make the formula more concise 

and clear, we can substitute special value that 𝑐𝑜𝑠 𝜃 =
 𝑣 

 𝑐 
 . For this form of γ , we can 

derive the energy expression of particles at rest by using the principle of minimum action. 

However, we need to find the Lagrangian form of this γ form first. 

 

Considering the intrinsic relation between 𝑑𝜏 and 𝑑𝑡 is 

𝑑𝑡 =
𝑑𝜏

√1 +
 𝑣²

 𝑐²
− 2

𝑣

𝑐
 𝑐𝑜𝑠〈𝑟 , Δ𝑟 〉

=
𝑑𝜏

√1 −
 𝑣²

 𝑐²

= γ𝑑𝜏. 

The Hamiltonian principle can be expressed as 

𝑆 = ∫ ℒ𝑑𝑡
𝑡2

𝑡1

= ∫ ℒγ𝑑𝜏
𝜏2

𝜏1

. 

If the equations of motion are required to have the same form in all such special inertial 

reference frames, then γℒ should be a Lorentz invariant. The invariant must be constructed 

from the four-dimensional vector 𝑥𝜇 and the four-dimensional velocity 𝑢𝜈 . However, the 

uniformity of spacetime requires that the action is constant (assuming that the action 

remains constant because it can reduce to the correct classical form through Taylor 

expansion at low speeds and not to mention the limiting condition of zero velocity, which 

supports the derivation of the mass-energy equation by extending logical reasoning from 

hypothetical relationships) under the translational transformation 𝑥𝜇 → 𝑥𝜇 + 𝑎𝜇(where 𝑎𝜇 

is a constant vector), then γℒ can only be a function of 𝑢𝜇. γℒ is 𝑎 scalar, and 𝑢𝜇 can 

only construct an invariant scalar ∑ 𝑢𝜇𝑢𝜇𝜇  =  −𝑐², so gamma ℒ can only be a constant 

𝑎 , that is 

  ℒ = 𝑎√1 −
 𝑣²

 𝑐²
 . 

The constant 𝑎 is determined by the requirement that ℒ becomes a non-relativistic kinetic 

energy at a difference of one additive constant in a non-relativistic approximation. In the 

non-relativistic approximation, if 𝑣/𝑐 ≪ 1, then 

 ℒ = 𝑎√1 −
 𝑣²

 𝑐²
≈ 𝑎 (1 − 

𝑣²

2𝑐²
) = 𝑎 −

𝑎𝑣²

2𝑐²
. 

The first term is a constant, and the second term should be equal to 𝑚0𝑣²/2 , and we get 

𝑎 =  −𝑚0𝑐², so the Lagrangian function of the relativistic free particle is 
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 ℒ =  −𝑚0𝑐²√1 −
 𝑣²

 𝑐²
 . 

In order to improve the rigor of the process, we will derive the formula from the principle 

of minimum action, which is the most general expression of the motion law of a mechanical 

system. 

 

Next, we derive the differential equation of motion by solving the problem of minimizing 

the integral. For writing purposes, we assume that the system has only one degree of 

freedom and write it in the form of generalized coordinates, we only need to determine 

one function 𝑞(𝑡). 

 

Let 𝑞 = 𝑞(𝑡) be the function that minimizes S, that is, replacing 𝑞(𝑡) with any function 

𝑞(𝑡) + δ𝑞(𝑡) increases 𝑆, where δ𝑞(𝑡) is small for the entire time interval from 𝑡1 to 𝑡2. 

Since the comparison function at time 𝑡 = 𝑡1 and 𝑡 = 𝑡2 should also take the values 𝑞(1) 

and 𝑞(2), respectively, we have: 

δ𝑞(𝑡1) = δ𝑞(𝑡2) = 0 

Replace 𝑞(𝑡) with 𝑞(𝑡) + δ𝑞(𝑡) to increment 𝑆 by 

    ∫ ℒ(𝑞 + δ𝑞, �̇� + δ�̇�, 𝑡)𝑑𝑡
𝑡2

𝑡1

− ∫ ℒ(𝑞, �̇�, 𝑡)𝑑𝑡 .
𝑡2

𝑡1

 

When the integrand in this difference is expanded by powers of a and b, the principal terms 

are some first-order terms. The necessary condition for 𝑆 to be minimum is that the sum 

of these terms equals zero. So the principle of least action can be written as 

δ𝑆 = δ∫ ℒ(𝑞, �̇�, 𝑡)𝑑𝑡
𝑡2

𝑡1

= 0 

After variating it, we get: 

∫ (
𝜕ℒ

𝜕𝑞
δ𝑞 +

𝜕ℒ

𝜕�̇�
δ�̇�)𝑑𝑡

𝑡2

𝑡1

= ∫
𝜕ℒ

𝜕𝑞
δ𝑞𝑑𝑡

𝑡2

𝑡1

+ ∫
𝜕ℒ

𝜕�̇�
δ�̇�𝑑𝑡 = 0

𝑡2

𝑡1

 

Noting that δ�̇� =
𝑑

𝑑𝑡
δ𝑞, integrate the second term by parts to get: 

δS = [
𝜕ℒ

𝜕�̇�
δ𝑞]

𝑡1

𝑡2

− ∫ (
𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�
−

𝜕ℒ

𝜕𝑞
)δ𝑞𝑑𝑡 = 0 

𝑡2

𝑡1

 

From the above equation, δ𝑞(𝑡1) = δ𝑞(𝑡2) = 0, it can be seen that the first term equals 

zero. The remaining integral should equal zero for any value of δ𝑞. This is only possible if 

the integrand is identically zero. Thus, we obtain the equation 

𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�
−

𝜕ℒ

𝜕𝑞
= 0 

Since time has uniformity, the Lagrangian of a closed system does not explicitly depend on 

time. Therefore, the total derivative of the Lagrangian with respect to time can be expressed 

as: 
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𝑑ℒ

𝑑𝑡
= ∑

𝜕ℒ

𝜕𝑞i
𝑖

�̇�i + ∑
𝜕ℒ

𝜕�̇�i
𝑖

�̈�i 

Using Lagrange's equation to replace 
𝜕ℒ

𝜕𝑞i
 with 

𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�i
 , we get: 

𝑑ℒ

𝑑𝑡
= ∑

𝑑

𝑑𝑡

𝜕ℒ

𝜕�̇�i
𝑖

�̇�i + ∑
𝜕ℒ

𝜕�̇�i
𝑖

𝑑

𝑑𝑡
�̇�i =

𝑑

𝑑𝑡
(∑

𝜕ℒ

𝜕�̇�i
𝑖

�̇�i) 

Either is fine: 

 
𝑑

𝑑𝑡
(∑

𝜕ℒ

𝜕�̇�i
𝑖

�̇�i − ℒ) =
𝑑𝐸

𝑑𝑡
= 0 

It can be concluded from this: 

𝐸 = ∑
𝜕𝐿

𝜕�̇�i
𝑖

�̇�i − ℒ =
𝜕𝐿

𝜕𝑣
𝑣 − ℒ =

𝑚0𝑐²

√1 − 𝑣²/𝑐²
 

when 𝑣 is equal to zero, we get the mass-energy equation 

𝐸0 = 𝑚0𝑐² 

Finally, we get the energy formula for the particle at rest and this is consistent with the 

formula derived by Einstein. 

 

However, this approach has certain limitations. The core issue with this approach is that the 

vector synthesis assumption of photons itself does not align with reality. Specifically, vector 

synthesis is not applicable to photons. To derive the mass-energy equation from the 

behavior of photons, it may be necessary to understand the differences between photons 

and matter particles in a deeper way, such as considering different descriptions in quantum 

electrodynamics. 

 

Following the discovery of the formula for rest energy, it is now feasible to deduce the actual 

Lagrangian. The process of derivation is outlined as follows: 

δ𝑆0  =  δ∫𝑚0𝑣𝑑𝑠 = 0 

Now the velocity is equal to 𝑑𝑠 by 𝑑𝑡, which we can rearrange to get 𝑑𝑠 equals 𝑣𝑑𝑡. And 

plugging this in, we have an integral 

δ∫𝑚0𝑣²𝑑𝑡 = 0. 

Expanding it into kinetic energy: 

δ∫2𝑇𝑑𝑡 = δ∫(𝑇 + 𝑇)𝑑𝑡 = 0 

The total energy is the sum of kinetic energy, potential energy, and static energy. Therefore, 

we can express it in this form: 

∫(𝑇 + 𝐸 − 𝐸0 − 𝑉)𝑑𝑡 = 0 

We can split this integral into two: 
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δ∫(𝑇 − 𝐸0 − 𝑉)𝑑𝑡 + δ∫𝐸𝑑𝑡 = 0 

Since the energy is constant, we can integrate this term over time to get 

δ∫(𝑇 − 𝐸0 − 𝑉)𝑑𝑡 + δ(𝐸𝑡) = 0. 

Simplifying, then we get: 

δ∫(𝑇 − 𝐸0 − 𝑉)𝑑𝑡 + 𝐸δ𝑡 + 𝑡δ𝐸 = δ∫(𝑇 − 𝐸0 − 𝑉)𝑑𝑡 + 𝐸δ𝑡 = 0 

By only considering paths that have the same travel time, 𝐸δ𝑡 is equal to zero. And we find 

that Maupertuis' principle has changed into another form: 

δS0 = δ∫(𝑇 − 𝐸0 − 𝑉)𝑑𝑡 = δ∫ℒ(𝑞, �̇�, 𝑡)𝑑𝑡 

Finally, we find out the true Lagrangian of the particle: 

ℒ = 𝑇 − 𝐸0 − 𝑉 

In this Lagrangian, 𝑇 represents kinetic energy, 𝑉 represents potential energy, and 𝐸0 

represents rest energy. It is evident that even in the framework of relativity, the Lagrangian 

should take this form. 

 

Mass-Velocity Relation 

The relativistic mass-velocity relationship, encapsulated in the idea that mass increases with 

speed, has long been a cornerstone of special relativity. According to this concept, as an 

object approaches the speed of light, its mass increases significantly, making it impossible 

to reach or exceed the speed of light. However, a detailed examination of experimental 

evidence and theoretical frameworks reveals that this relationship is not as universally 

applicable as once thought. The rest mass of particles remains invariant across different 

velocities, and a more nuanced understanding of mass, energy, and velocity is necessary to 

reconcile these observations. 

 

Experimental evidence from particle accelerators challenges the notion that mass increases 

with velocity. In high-energy physics experiments, electrons are accelerated to speeds 

approaching the speed of light. According to the traditional relativistic mass formula, their 

mass should increase with speed. Yet, what is observed is that the rest mass of the electron 

remains constant, while its total energy increases due to its kinetic energy. The rest mass, 

being an intrinsic property of the particle, does not change regardless of its velocity. This 

observation fundamentally undermines the idea that mass itself depends on speed and 

suggests that the concept of relativistic mass may be more accurately interpreted as an 

increase in energy rather than a change in intrinsic mass. 

 

The symmetry between particles and antiparticles further highlights the limitations of the 

relativistic mass-velocity relationship. For instance, an electron and its antiparticle, the 

positron, have identical rest masses, even when they are moving at different velocities. 

According to the relativistic mass-velocity relationship, if one particle is moving faster than 
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the other, its mass should be greater. However, experiments confirm that both particles 

maintain their identical rest masses regardless of their velocities. The increase in relativistic 

mass observed in these particles is better understood as a manifestation of their kinetic 

energy rather than a change in their intrinsic properties. 

 

Nuclear reactions provide additional insight into the relationship between mass, energy, and 

velocity. In both nuclear fission and fusion, mass is converted into energy according to 

Einstein's famous equation 𝐸 = 𝑚𝑐². The mass difference observed in these reactions is a 

result of energy release or absorption and is not linked to the velocity of the particles 

involved. The rest masses of the particles remain constant throughout the process, 

indicating that changes in mass are due to energy transformations rather than speed-

related effects. 

 

Quantum field theory (QFT), which forms the foundation of modern particle physics, further 

challenges the traditional relativistic mass concept. In QFT, the mass of a particle is a 

fundamental property determined by its interaction with quantum fields, such as the Higgs 

field. This mass is invariant and does not change with the particle's velocity. The relativistic 

mass concept is not used in QFT because it conflates energy with intrinsic properties. Instead, 

the invariant mass, which remains constant regardless of the particle's motion, is the more 

accurate and meaningful descriptor. 

 

Gravitational physics also contradicts the relativistic mass-velocity relationship. In 

gravitational fields, the mass of an object is influenced by gravitational potential, but not by 

its velocity. Celestial bodies, such as planets or stars, can move at high speeds without any 

change in their rest mass. Their total energy may change due to kinetic energy and 

gravitational interactions, but the intrinsic mass remains unaffected by velocity. This further 

demonstrates that the mass-velocity relationship is not universally applicable. 

 

Even quantum mechanical properties, such as electron spin, remain constant regardless of 

the particle's velocity. The spin of an electron is an intrinsic property that does not change 

whether the electron is at rest or moving at relativistic speeds. This invariance reinforces the 

idea that certain fundamental properties, including rest mass, are unaffected by changes in 

velocity. 

 

Given these challenges, a re-examination of the relativistic mass-velocity relationship is 

necessary. The traditional equation assumes a dependence on time dilation and length 

contraction, which are themselves subject to interpretation. By revisiting the concept within 

the framework of warped spacetime, we can propose a refined derivation. Starting with the 

definition of momentum as the product of mass and velocity, we consider the four-

dimensional velocity 𝑢𝜇 in the rest frame of the particle: 

𝑝 = 𝑚0𝑢
𝜇 

Applying the chain rule to express the derivative of time in the moving frame, we find that 

the relationship simplifies to: 

𝑝 = 𝑚0𝑣 = 𝑚𝑣 
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Here, 𝑚 represents the relativistic mass, which equals the rest mass 𝑚0 when we assume 

that the warped spacetime ensures that the time 𝑑𝑡 in one frame is identical to the time 

𝑑𝑡0  in another. This suggests that the relativistic mass concept arises from an energy 

perspective rather than a change in intrinsic mass. Therefore, there is no intrinsic relationship 

between mass and velocity. 

 

In conclusion, the relativistic mass-velocity relationship, while historically significant, does 

not hold universally. Experimental and theoretical evidence indicates that rest mass remains 

invariant across different velocities. The concept of relativistic mass is better understood as 

an increase in energy rather than a change in intrinsic mass. Revisiting this relationship 

through the lens of quantum field theory and gravitational physics reveals a more accurate 

understanding of mass and energy interactions, leading to a broader, more nuanced 

interpretation of relativistic phenomena. 

 

References 

1. Alburger, D. E., Harbottle, G., & Norton, E. F. (1986). Half-life of ²³⁴Pu and ²³⁴U measured by 

a direct method. Earth and Planetary Science Letters, 78(2-3), 168-

176. https://doi.org/10.1016/0012-821X(86)90054-6 

 

2. Jenkins, J. H., Fischbach, E., Buncher, J. B., et al. (2009). Evidence of correlations between 

nuclear decay rates and Earth-Sun distance. Astroparticle Physics, 32(1), 42-

46. https://doi.org/10.1016/j.astropartphys.2009.05.004 

 

3. Parkhomov, A. G. (2011). Experimental anomalies in radioactive decay rates and their relation 

to solar activity. Journal of Modern Physics, 2(9), 1310-

1317. https://doi.org/10.4236/jmp.2011.29162 

 

4. Compton, A. H. (1923). A quantum theory of the scattering of X-rays by light elements. 

Physical Review, 21(5), 483-502. https://doi.org/10.1103/PhysRev.21.483 

 

5. Grangier, P., Roger, G., & Aspect, A. (1986). Experimental evidence for a photon 

anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics 

Letters, 1(4), 173-179. https://doi.org/10.1209/0295-5075/1/4/004 

 

6. Einstein, A. (1905). On the electrodynamics of moving bodies. Annalen der Physik, 17(10), 

891-921. https://doi.org/10.1002/andp.19053221004 

 

7. Lorentz, H. A. (1904). Electromagnetic phenomena in a system moving with any velocity 

smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 

6, 809-831. 

 

8. Hafele, J. C., & Keating, R. E. (1972). Around-the-world atomic clocks: Observed relativistic 

https://doi.org/10.1016/0012-821X(86)90054-6
https://doi.org/10.1016/j.astropartphys.2009.05.004
https://doi.org/10.4236/jmp.2011.29162
https://doi.org/10.1103/PhysRev.21.483
https://doi.org/10.1209/0295-5075/1/4/004
https://doi.org/10.1002/andp.19053221004


 

 — 26 
— 

time gains. Science, 177(4044), 168-170. https://doi.org/10.1126/science.177.4044.168 

 

9. Ives, H. E., & Stilwell, G. R. (1938). An experimental study of the rate of a moving atomic clock. 

Journal of the Optical Society of America, 28(7), 215-

226. https://doi.org/10.1364/JOSA.28.000215 

 

10. Ashby, N. (2003). Relativity in the Global Positioning System. Living Reviews in Relativity, 6(1), 

1-42. https://doi.org/10.12942/lrr-2003-1 

 

11. Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society 

A, 117(778), 610-624. https://doi.org/10.1098/rspa.1928.0023 

 

12. Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman Lectures on Physics, Vol. 

III: Quantum Mechanics. Addison-Wesley. 

 

13. Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Physical Review, 

131(6), 2766-2788. https://doi.org/10.1103/PhysRev.131.2766 

 

14. Resnick, R. (1968). Introduction to Special Relativity. Wiley. 

 

15. Hestenes, D. (2003). Reforming the mathematical language of physics. American Journal of 

Physics, 71(2), 104-121. https://doi.org/10.1119/1.1522700 

https://doi.org/10.1126/science.177.4044.168
https://doi.org/10.1364/JOSA.28.000215
https://doi.org/10.12942/lrr-2003-1
https://doi.org/10.1098/rspa.1928.0023
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1119/1.1522700

