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Abstract  
Errors on computations depend on their arguments and are, in general, different arguments by arguments. Though Shor used a 
simple error model that a qubit is disturbed/decohered locally by its environment state only, he overlooked a fact that an initial 
environment state around a qubit is output from a QEC (Quantum Error Correction) encoder and is affected by and entangled 
with all the argument qubits used to compute the qubit, which makes the errors depend on the argument qubits. As linear 
superposition for quantum parallelism keeps the errors different, usual QEC schemes just do not work. It is actually 
demonstrated that Shor code fails to correct a single qubit error if an input qubit to an encoder is entangled with an external 
qubit. Quantum block codes are not helpful to correct errors on qubits of a block entangled with qubits outside of the block. 
Though it may be possible to construct an improved QEC circuit for N quantum parallel computations to correct N different 
errors, detections and corrections of N different errors require O(N) information, which makes hardware complexity of the 
circuit O(N), which is no better than classical N parallel computations with N parallel hardware, which means quantum 
supremacy with QEC is denied. 
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I. Introduction 
As unitary quantum operators are linear, instead of 
evaluating a unitary operator serially with N different input 
arguments one by one for N times, the operator with linear 
combination or quantum superposition of N different input 
arguments may be evaluated once to obtain a 
superpositioned evaluation result, which is, so called, 
quantum parallelism. 
 
However, results of quantum computations suffer from 
errors and are not so correct against which various QEC 
(Quantum Error Correction) schemes were developed. 
 
With quantum serial computations to obtain outputs of a 
quantum circuit with different input arguments, errors may 
be corrected by QEC. QEC is “quantum analog of error 
correcting codes” [1] and is not very different from CEC 
(Classical Error Correction). 
 
With CEC, there are finite number of correctable error types 
including a type with no error. If an encoded code suffers 
from a correctable error type, during decoding, syndrome 
bits are computed to identify the error type. CEC scheme is 
chosen to make the probability of the codes suffer from an 
uncorrectable error type negligible. An (𝑛, 𝑘, 𝑑) block code 
encodes 𝑘  bits into 𝑛  bit codes with minimum distance 
between the codes 𝑑, which can correct 𝑚 = ⌊(𝑑 − 1)/2⌋ 
bit errors [2]. The block code works even if errors on 𝑚 bits 
in a 𝑛  bit block are strongly correlated. Though relative 
phase errors between two polarization modes are not 
negligible for high-speed and long-distance optical 
communications and known to cause PMD (Polarization 
Mode Dispersion), because PMD characteristics are stable in 
time, the characteristics are measured and equalized by 
modern digital coherent detection technologies [3]. 

 
With QEC, an encoded code suffers from errors (called 
“decoherence” in [1]) to be an erroneous state, which is a 
superposition of states suffering from various correctable 
and uncorrectable error types. During decoding, syndrome 
qubits are computed and observed to converge the erroneous 
state into a state suffering from a correctable or, with 
negligibly small probability, an uncorrectable error type. The 
correctable error type is identified by the observed result. 
Block quantum codes are also available [4]. Though 
correlated errors between nearby qubits are discussed in [5], 
if qubits are well isolated from environment and from each 
other, the number of qubits with correlated errors is bounded 
below a certain constant, for which a block quantum code 
with large enough distance can be applied. Both bit and 
relative phase errors can be corrected by full-fledged QEC 
schemes such as that of [1]. 
 
However, a problem overlooked by Shor is that, because 
errors on computations depend on their argument, the errors 
are, in general, different arguments by arguments. 
 
QEC works for quantum serial computations repeated N 
times with N different arguments, because computations for 
QEC are performed each time to correct errors for each set 
of arguments. 
On the other hand, QEC for N parallel quantum parallel 
computation must correct N different errors simultaneously, 
which makes usual QEC assuming only one error type not 
work. Though it may be possible to develop an improved 
QEC to be able to correct N different errors, O(N) syndrome 
qubits are necessary to identify error types (including cases 
without error) of N errors, which requires O(N) hardware 
complexity, which is no better than classical N parallel 
computation, which denies quantum supremacy with QEC. 



 

 
Hardware complexity of an error correcting quantum gate 
with logical qubits [6] is, if such a gate exists, also O(N). 
 
Quantum block codes are not helpful here as errors on qubits 
of a block, in general, depend on qubits outside of the block. 
In other words, if an improved QEC to be able to correct N 
different errors exists, its decoding circuit must be input 
some ( logଶ 𝑁  bits) information to differently correct 
different errors. 
 
The argument so far is almost purely computational and the 
only quantum mechanical knowledge required is that 
quantum superposition for quantum parallelism is linear. The 
linearity keeps N different errors of N quantum serial 
computations still different even with N quantum parallel 
computations. 

 
In this paper, in section II, it is explained that even with a 
simple error model of Shor, quantum entanglement makes 
errors depend on arguments. In section III, simple examples 
are given on how Shor code fails to correct a single qubit 
error when an input qubit of a Shor encoder is entangled with 
an external qubit. Section IV concludes the paper. 
 
II. Error Model of Shor 
Shor assumes a simple error model “Assuming that the 
decoherence process affects the different qubits in memory 
independently” [1]. That is, he assumes a qubit state 
degrades only by interaction with its environment state as 
follows: 
 

|𝑒଴⟩|0⟩ → |𝑎଴⟩|0⟩ + |𝑎ଵ⟩|1⟩ 
|𝑒଴⟩|1⟩ → |𝑎ଶ⟩|0⟩ + |𝑎ଷ⟩|1⟩ (1) 

 
in [1], where |𝑒଴⟩ is the initial environment state and |𝑎଴⟩, 
|𝑎ଵ⟩ , |𝑎ଶ⟩  and |𝑎ଷ⟩  are the environment states after the 
decoherence process. 
 
However, his assumption “The important thing to note is that 
the state of the environment is the same for corresponding 
vectors from the decoherence of the two quantum states 
encoding 0 and encoding 1.” [1] as if the environment state 
around a qubit were supplied from an external source 
independent from computational process to produce the 
qubit (Fig. 1(a)) is inappropriate. 
 
In both theory and practice, the initial environment state 
around a qubit is output from a QEC decoder as the final 
environment state around the qubit from the last quantum 
gate of the QEC encoder. As such, as shown in Fig. 1(b), the 
initial environment state ( |𝑒ଶ⟩  or |𝑒ଷ⟩  of Fig. 1(b)) is 
affected by input qubits (|𝑞଴⟩ and |𝑞ଵ⟩) of the quantum gate 
to be |𝑒ଶ(𝑞଴, 𝑞ଵ)⟩  or |𝑒ଷ(𝑞଴, 𝑞ଵ)⟩ , which makes errors on 
𝑞ଶ and 𝑞ଷ depend on 𝑞଴ and 𝑞ଵ. 
 
Moreover, as shown in Fig. 1(c), for the last quantum gate, 
considering not only input qubit states (|𝑞଴⟩ and |𝑞ଵ⟩) but 
also initial environment states around the input qubits (|𝑒଴⟩ 
and |𝑒ଵ⟩ ) as the final environment states around output 
qubits of the previous quantum gates, the final quantum 
states of the output environment states of the last quantum 
gate is affected by and entangled with |𝑒଴𝑞଴⟩  and |𝑒ଵ𝑞ଵ⟩ 
to be |𝑒ଶ(𝑒଴, 𝑞଴, 𝑒ଵ, 𝑞ଵ)𝑞ଶ⟩ and |𝑒ଷ(𝑒଴, 𝑞଴, 𝑒ଵ, 𝑞ଵ)𝑞ଷ⟩. 
 
Recursive applications of such arguments make an 
environment state around a qubit depends on and entangled 
with all the input qubit states of all the quantum gates used 
to compute the qubit, which, in turn, makes a state of the 
qubit after decoherence depends on all the input qubit states 
of all the quantum gates used to compute the qubit. In other 
words, errors on computations depend on their arguments 
and are, in general, different arguments by arguments. 
 

Fig. 1 Qubit states |𝒒𝒊⟩ and their environment states |𝒆𝒋ൿ
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III. A Simple Example of How Shor Code 
Fails 

In this section, with a simple quantum circuit composed of a 
CNOT gate followed by a Shor code encoder and a Shor 
code decoder (Fig. 2) , it is shown that Shor code decoder 
fails to decode the original state if an environment state 
|𝑒ଶ(𝑞଴,  𝑞ଵ)⟩  around an input qubit |𝑞ଶ⟩  of a Shor code 
encoder is entangled with an external qubit of |𝑞଴⟩. 
 
In the previous section, it is discussed that |𝑒ଷ⟩ depends on 
|𝑒ଶ(𝑞଴,  𝑞ଵ)⟩  and |𝑞ଶ⟩  to be denoted as 
|𝑒ଷ(𝑒ଶ(𝑞଴,  𝑞ଵ), 𝑞ଶ)⟩ . But, as |𝑒ଶ(𝑞଴,  𝑞ଵ)⟩  and |𝑞ଶ⟩ , then, 
depend on |𝑞଴⟩ and |𝑞ଵ⟩, a notation of |𝑒ଷ(𝑞଴, 𝑞ଵ)⟩ is used 
for simplicity. 
 
It is assumed that only one output qubit |𝑞ଷ⟩  of the Shor 
code decoder suffers from an error of a bit flip error with 
probability 𝜀  only if its initial environment state is 
|𝑒ଷ(1, 0)⟩. That is, following the notation of (1), only |𝑞ଷ⟩ 
suffers from an error to be |𝑞ଷ

ᇱ ⟩ as: 
 

|𝑒ଷ(0, 0)⟩|0⟩ → |𝑎଴⟩|0⟩ 
|𝑒ଷ(0, 0)⟩|1⟩ → |𝑎ଷ⟩|1⟩ 
(||𝑎଴⟩| = ||𝑎ଷ⟩| = 1) (2) 

 
and 
 

|𝑒ଷ(1, 0)⟩|0⟩ → |𝑎଴⟩|0⟩ + |𝑎ଵ⟩|1⟩ 
|𝑒ଷ(1, 0)⟩|1⟩ → |𝑎ଶ⟩|0⟩ + |𝑎ଷ⟩|1⟩ 

(||𝑎଴⟩| = ||𝑎ଷ⟩| = √1 − 𝜀,  
||𝑎ଵ⟩| = ||𝑎ଶ⟩| = 𝜀) (3) 

 
Then, as shown in Table 1 (A column labelled with “M” 
shows observation results), when 𝑞଴  and 𝑞ଶ  are not 
entangled, that is, |𝑞଴𝑞ଵ⟩ = |00⟩  or |𝑞଴𝑞ଵ⟩ = |10⟩ , a bit 
flip error, if any, on 𝑞ଷ  is properly corrected. That is,  
|𝑞଴𝑞ଶ⟩ = |𝑞଴

ᇱ 𝑞ଶ
ᇱᇱ⟩. 

 
However, with a superpositioned state of them, that is, if 
|𝑞଴𝑞ଵ⟩ = (|00⟩ + |10⟩)/√2 , 𝑞ଶ  is entangled with 𝑞଴  as 
|𝑞଴𝑞ଶ⟩ = (|00⟩ + |11⟩)/√2 and different errors on 𝑞ଷ will 
make 
 

|𝑞଴𝑞ଷ
ᇱ 𝑞ସ

ᇱ 𝑞ହ
ᇱ ⟩ = (|0000⟩ + |0100⟩ + 

√1 − 𝜀(|1000⟩ − |1100⟩) + 
√𝜀(|1111⟩ − |1011⟩)/2 (4) 

 
which is an entangled state involving 𝑞଴ with coefficients 
depending on 𝑞଴. As such, observations on 𝑞ଷ

ᇱ  and 𝑞ସ
ᇱ  at a 

vertical dashed line in Fig. 2 have non-local effect involving 
𝑞଴, which causes QEC fail. As shown by boxes enclosed by 
fat border lines in Table 1, the original state |𝑞଴𝑞ଶ⟩ 
((|00⟩ + |11⟩)/√2) and the resulting state |𝑞଴

ᇱ 𝑞ଶ
ᇱᇱ⟩ ((|00⟩ +

√1 − 𝜀|11⟩)/√2 − 𝜀 or |11⟩) are significantly different. 
 

IV. Conclusion 
It is pointed out that Shor overlooked an environment state 
around a qubit is entangled with other qubits used to 
compute the qubit, which makes errors on the qubit depends 
on the qubits. 
 
Though Shor stated in [1] “The assumption that the qubits 
decohere independently is crucial” because “This 
assumption corresponds to independence of errors between 
different bits in classical information theory”, if 
entanglements are properly considered, the assumption of 
independent decoherence does not mean locality or 
independence of errors between different qubits. 
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Table 1. Quantum States of Fig. 2 
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Fig. 2 Simple Circuit with a CNOT gate followed by Shor Code Encoder/Decoder 
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