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Abstract

In this article we introduce the notion of Floer function which has the
property that the Hessian is a Fredholm operator of index zero in a scale of
Hilbert spaces. Since the Hessian has a complicated transformation under
chart transition, in general this is not an intrinsic condition. Therefore
we introduce the concept of Floerfolds for which we show that the notion
of Floer function is intrinsic.
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1 Introduction

While we nowadays have many examples of Floer homologies the work of Floer
still remains somehow mysterious. By constructing the celebrated semi-infinite
dimensional Morse homology [Flo88,Flo89] Floer considered a very weak metric
to define the gradient. The Hessian of such a weak metric becomes an un-
bounded operator. or, if alternatively one considers a scale of Hilbert spaces, a
Fredholm operator of index zero from the smaller space to the larger space.

In the example of loop spaces the smaller space is the space of W 1,2 loops
whereas the larger space is the space of L2 loops. These two spaces together
with the dense and compact inclusion W 1,2 ↪→ L2 build a scale of Hilbert spaces
(H0, H1) = (L2,W 1,2). This pair can be naturally extrapolated to the triple
(H0, H1, H2) = (L2,W 1,2,W 2,2) and the Hessian has the regularizing property
that if one restricts it to H2 it becomes as well a Fredholm operator of index
zero from H2 to H1.

Although the concept is already taught in basic calculus a confusing aspect
of the Hessian is its complicated transformation under coordinate change. In
fact, it is far from obvious that the properties of the Hessian explained above
are intrinsic, i.e. independent of the choice of the chart. The main purpose of
this note is to propose a general notion of space where the above property of
the Hessian becomes an intrinsic property. The spaces we construct we refer to
as Floerfolds and the functions which admit such a Hessian we refer to as Floer
functions.

To define Floerfolds we introduce the notion of Floer map and Floeromor-
phism. Roughly speaking, a Floer map is a two times differentiable map between
level 0 and level 2 which as well extends to level 0, but also to level −1. The
requirement that they extend to level −1 is probably kind of unexpected. How-
ever, since we want that our Hessian is also a Fredholm operator from level 2 to
level 1 and under coordinate changes the Hessian transforms with the help of
the adjoint of the Jacobian the extension to level −1 seems necessary. In fact, in
the case of the loop space level −1 corresponds to W−1.2 functions which have
to be interpreted as distributions. We show that the composition of Floer maps
is again a Floer map. This enables us to define Floerfolds via atlases whose
transition maps are Floeromorphisms.

The main result of this paper is Theorem A. In this theorem we show that
pulling back a Floer function under a Floeromorphism is again a Floer function
so that the notion of Floer function becomes an intrinsic concept on a Floerfold.
We state this main result as follows.

Theorem A. The notion of Floer function is intrinsic.

Proof. Theorem 4.6.

In the last section we show how the loop space of a manifold M gets en-
dowed with the structure of Floerfold. We show that the chart transition on
the underlying manifold M gives rise to a Floeromorphism between the loops
in these two different charts.
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The motivation for having a general notion of Floer homology is the fol-
lowing. There are many properties of gradient flow lines which should hold
true in every reasonable Floer theory like gluing or admitting the structure of
a manifold with boundary and corners under the Morse-Smale condition. With
appearance of new Floer homologies related to Hamiltonian delay equations
these general facts should be proven in a uniform way and for that we need
to figure out what the actual structure is lying behind Floer homology. This
article makes a contribution to this endeavor.

Acknowledgements. UF acknowledges support by DFG grant FR 2637/4-1.

2 Floeromorphisms

2.1 Two- and three-level strong scale differentiability

Definition 2.1 (Two-level ssc2). Let (H1, H2) be a Hilbert space pair. Let U1

and V1 be open subsets of H1. The part of U1 in H2 is open in H2, in symbols
U2 := U1 ∩ H2 = ι−1(U1) where the map ι : H2 → H1 is inclusion. Similarly
V2 := V1 ∩ H2 is open in H2. We say that a map φ : U1 → V1 is two-level
strongly sc2, or two-level ssc2, if φ is C2 and the restriction of φ to U2 takes
values in V2 and as a map φ2 : U2 → V2 is C2. For a two-level ssc2 map we write

φ : (U1, U2)→ (V1, V2).

The notion of ssc2-map is due to Hofer-Wysocki-Zehnder [HWZ21]. But
differently from us they consider ssc2 maps on infinitely many levels.

Remark 2.2. Let φ : U1 → V1 be two-level ssc2. Then the two maps

d2φ : U2 ×H1 ×H1 → H1, U2 → L(H1, H1;H1), q 7→ d2φ|q

are continuous since φ ∈ C2(U1, V1) and inclusion U2 ↪→ U1 is continuous.

Definition 2.3 (Three-level ssc2). Let (H0, H1, H2) be a Hilbert space triple.
Let U0 and V0 be open subsets of H0. Define open subsets U1 := U0 ∩ H1 of
H1 and U2 := U0 ∩ H2 of H2; analogously define V1 and V2. A three-level
ssc2 map is a C2 map φ : U0 → V0 with the property that its restrictions to
U1 and U2, respectively, take values in V1 and V2, respectively, and as maps
φ1 : U1 → V1 and φ2 : U2 → V2 are C2. For a three-level ssc2 map we write

φ : (U0, U1, U2)→ (V0, V1, V2).

2.2 Floer maps

Definition 2.4 (Floer map). Let (H0, H1, H2) be a Hilbert space triple. A
two-level ssc2 map φ : U1 → V1 between open subsets of H1 is called s-Floer
map where s ∈ [0, 1), if it satisfies the following.
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(i)1 For any q ∈ U1 there is a continuous linear map on H0, notation Dφ|q ∈
L(H0), which extends the derivative dφq from H1 to H0, i.e. the diagram

H0 H0

H1 H1

Dφ|q

dφ|q
q∈U1

, Dφ|q ∈ L(H1) ∩ L(H0) (2.1)

commutes. Furthermore, the map Dφ defined by

Dφ : U1 → L(H0), q 7→ Dφ|q

is continuously differentiable.

(i)2 For any q ∈ U2 the extension Dφ|q ∈ L(H0) extends further to L(H−1),
still denoted by Dφ|q ∈ L(H−1). Furthermore, the map Dφ defined by

Dφ : U2 → L(H−1), q 7→ Dφ|q

is continuously differentiable.

(ii)1 For any q ∈ U1 there exists a continuous bilinear map, notation D2φ|q ∈
L(Hs, H0;H0), which extends d2φ|q ∈ L(H1, H1;H1), i.e. the diagram

Hs ×H0 H0

H1 ×H1 H1

D2φ|q

d2φ|q
q∈U1

commutes. Furthermore, the map

D2φ : U1 → L(Hs, H0;H0), q 7→ D2φ|q

is continuous.

(ii)2 For any q ∈ U2 the continuous bi-linear extension D2φ|q ∈ L(Hs, H0;H0)
extends, upon restriction of the first entry, to a continuous bi-linear map
D2φ|q ∈ L(H1+s, H−1;H−1). Furthermore, the map

D2φ : U2 → L(H1+s, H−1;H−1), q 7→ D2φ|q

is continuous.

Remark 2.5 (Derivative of Dφ). The derivative of Dφ is related to D2φ as
follows. If q ∈ U1, then it is the restriction of D2φ|q : Hs ×H0 → H0, namely

dDφ|q = (D2φ|q)|H1×H0
: H1 ×H0 → H0.

To see this consider ξ, η ∈ H1. Then dDφ|q(ξ, η)
(i)1
= d2φ|q(ξ, η)

(ii)1
= D2φ|q(ξ, η).

Since H1 is dense in H0 the identity dDφ|q(ξ, η) = D2φ|q(ξ, η) extends from
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H1 ×H1 to H1 ×H0.
Given q ∈ U2, applying the same reasoning to ξ, η ∈ H2 and using (i)2 and (ii)2
instead, the derivative of Dφ : U2 → L(H−1) is the restriction of D2φ : U2 →
L(H1+s, H−1;H−1), namely

dDφ|q = (D2φ|q)|H2×H−1
: H2 ×H−1 → H−1.

Remark 2.6 (Definition 2.4 (i)2). If q ∈ U2, then we have the following com-
muting tower of extensions

H−1 H−1

H0 H0

H1 H1

H2 H2.

Dφ|q
q∈U2

Dφ|q
q∈U1

dφ|q
q∈U1

dφ2|q
q∈U2

(2.2)

Since H2 is dense in all three spaces H1, H0, and H−1, all three horizontal maps
Dφ|q in the diagram are uniquely determined by dφ2|q. Furthermore, the map

Dφ : U2 → L(H2) ∩ L(H1) ∩ L(H0) ∩ L(H−1), q 7→ Dφ|q

is continuous.

Remark 2.7 (Definition 2.4 (ii)2). If q ∈ U2, then we have the commuting
diagram of extensions

H1+s ×H−1 H−1

Hs ×H0 H0

H1 ×H1 H1

H2 ×H2 H2.

D2φ|q
q∈U2

D2φ|q
q∈U1

d2φ|q
q∈U1

d2φ2|q
q∈U2

Furthermore, D2φ : q 7→ D2φ|q, is continuous as a map

U2 → L(H1+s, H−1;H−1) ∩ L(Hs, H0;H0) ∩ L(H1, H1;H1) ∩ L(H2, H2;H2).

Remark 2.8.
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(a) If s1 < s2, then s1-Floer maps are s2-Floer.

(b) Restricting a three-level ssc2-map φ : U0 → V0 produces an s-Floer map
φ1 : U1 → V1 whenever s ∈ [0, 1).

(c) For q ∈ U1 the extension D := Dφ|q ∈ L(H0)∩L(H1) in (i)1, by the Stein
Weiss interpolation theorem (see e.g. [BL76, 5.4.1 p.115]), lies in L(Hs)
and

‖D‖L(Hs) ≤ ‖D‖
1−s
L(H0)

‖D‖sL(H1)
, s ∈ [0, 1].

In particular, the diagram (2.1) extends to a commutative diagram

H0 H0

Hs Hs

H1 H1.

Dφ|q
q∈U1

Dφ|q|Hs
q∈U1

dφ|q
q∈U1

(2.3)

(d) The extension D := Dφ|q ∈ L(H0) in (i)1 is continuous as a map

Dφ : U1 → (L(H0) ∩ L(H1), ‖·‖max) , q 7→ Dφ|q.

Indeed Dφ : U1 → L(H0) is continuous by (i)1. Moreover, the restriction
of Dφ|q to H1 equals dφ|q which is continuous as a map U1 → L(H1) since
φ ∈ C2(U1, V1). Furthermore, by the estimate in (c), the restriction

Dφ|Hs : U1 → L(Hs) (2.4)

is continuous for each s ∈ [0, 1].

(e) By the same reasoning as in (c) and (d) the following is true. If q ∈ U2,
then the commuting diagram (2.2) extends to the following commuting
tower of extensions

H−1 H−1

H0 H0

H1 H1

H1+s H1+s

H2 H2.

Dφ|q
q∈U2

Dφ|q
q∈U1

dφ|q
q∈U1

dφ|q|H1+s

q∈U1

dφ2|q
q∈U2

(2.5)

The restriction dφ|q|H1+s
: U2 → L(H1+s) is continuous for each s ∈ [0, 1].
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That the composition of Floer maps is again a Floer map depends on the
Stein-Weiss interpolation theorem.

Proposition 2.9 (Composition). Let (H0, H1, H2) be a Hilbert space triple.
Consider s-Floer maps φ : U1 → V1 and ψ : V1 → W1 between open subsets
of H1. Then the composition ψ ◦ φ : U1 →W1 is an s-Floer map as well.

Proof. The composition ψ ◦ φ : U1 → V1 → W1 of two two-level ssc2 maps is a
two-level ssc2 map, because composing two C2 maps gives a C2 map, same for
the restriction (ψ ◦ φ)2 = ψ2 ◦ φ2 : U2 → V2 →W2.

(i)1 For q ∈ U1 the operator defined by D(ψ ◦ φ)|q := Dψ|φ(q) ◦ Dφ|q extends
the operator d(ψ ◦ φ)|q = dψ|φ(q) ◦ dφ|q ∈ L(H1) to L(H0).
Moreover, the map D(ψ◦φ) : U1 → L(H0), q 7→ Dψ|φ(q) ◦Dφ|q, is continuous as
both factors are. It remains to show that the map is continuously differentiable.
For that purpose we consider the map as a composition of two maps

For the derivative the following version of the Leibniz rule holds

dD(ψ ◦ φ)|q(ξ, η) = dDψ|φ(q)(dφ|qξ,Dφ|qη) +Dψ|φ(q) ◦ dDφ|q(ξ, η) (2.6)

for ξ ∈ H1 and η ∈ H0. This Leibniz rule can be deduced from the chain rule
as follows. We consider the composition

U1 L(H0)× L(H0) L(H0)

q
(
Dψ|φ(q)︸ ︷︷ ︸

=:S

, Dφ|q︸ ︷︷ ︸
=:T

)
Dψ|φ(q) ◦ dDφ|q

F V

bi-lin.

where V (S, T ) = S ◦ T . The derivative of V is given by

dV |(S,T )(Ŝ, T̂ ) = Ŝ ◦ T + S ◦ T̂

and the derivative of F is given by

dF|q : H1 → L(H0)× L(H0), ξ 7→
(
dDψ|φ(q)(dφ|qξ, ·)︸ ︷︷ ︸

Ŝ

, dDφ|q(ξ, ·)︸ ︷︷ ︸
T̂

)
.

Thus by the chain rule the derivative exists and is of the form

d(V ◦ F)|qξ = dV |F(q) ◦ dF|qξ
= dDψ|φ(q)(dφ|qξ,Dφ|q·) +Dψ|φ(q) ◦ dDφ|q(ξ, ·)

for any ξ ∈ H1. Continuity of this map in q holds by axiom (i)1 for φ and for ψ.

(i)2 Same argument as in (i)1. For q ∈ U2 define D(ψ ◦ φ)|q := Dψ|φ(q) ◦Dφ|q
using the extensions to L(H−1) from (i)2.
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(ii)1 Pick q ∈ U1, then for ξ, η ∈ H1 we obtain

d2(ψ ◦ φ)|q(ξ, η)

= d2ψ|φ(q) (dφ|qξ, dψ|qη) + dψ|φ(q) ◦ d2φ|q(ξ, η)

2
= D2ψ|φ(q)︸ ︷︷ ︸
Hs×H0→H0

(Hs→Hs︷ ︸︸ ︷
Dφ|q ξ,

H0→H0︷ ︸︸ ︷
Dψ|q η

)
+Dψ|φ(q)︸ ︷︷ ︸

H0→H0

◦

Hs×H0→H0︷ ︸︸ ︷
D2φ|q (ξ, η)

=: D2(ψ ◦ φ)|q(ξ, η)

As indicated in the formula, equality 2 makes sense for ξ ∈ Hs and η ∈ H0.
Here item (c) of Remark 2.8 enters. Inspection term by term shows that the
map D2(ψ ◦ φ) : U1 → L(Hs, H0;H0) is composed of continuous maps due to
the axioms for φ and ψ and, in addition, the map in (2.4).

(ii)2 Pick q ∈ U2, then for ξ, η ∈ H2 we obtain

d2(ψ2 ◦ φ2)|q(ξ, η)

= d2ψ2|φ(q) (dφ2|qξ, dψ2|qη) + dψ2|φ2(q) ◦ d
2φ2|q(ξ, η)

2
= D2ψ|φ2(q)︸ ︷︷ ︸
H1+s×H−1→H−1

(L(H1+s)︷︸︸︷
dφ|q ξ,

L(H−1)︷ ︸︸ ︷
Dψ|q η

)
+Dψ|φ2(q)︸ ︷︷ ︸
L(H−1)

◦

H1+s×H−1→H−1︷ ︸︸ ︷
D2φ|q (ξ, η)

=: D2(ψ ◦ φ)|q(ξ, η).

As indicated in the formula, equality 2 makes sense for ξ ∈ H1+s and η ∈ H−1.
Continuity of the map

D2(ψ ◦ φ) : U2 → L(H1+s, H−1;H−1), q 7→ D2(ψ ◦ φ)|q

follows as above by using Remark 2.8 (e).
This proves Proposition 2.9.

2.3 Floeromorphisms

Definition 2.10 (Floeromorphism). Let (H0, H1, H2) be a Hilbert space triple.
An s-Floeromorphism is a bijective s-Floer map whose inverse is an s-Floer
map, too.
By Floers(U1, V1) we denote the set of s-Floeromorphisms from U1 to V1.

Lemma 2.11 (Local implies global). Let (H0, H1, H2) be a Hilbert space triple
and s ∈ [0, 1). Let φ : U → V be a homeomorphism between open subsets of H1.
Assume that we have open covers ∪β∈AUβ = U and ∪β∈BVβ = V such that for
every β ∈ B the map φ restricts to an s-Floeromorphism φ|Uβ : Uβ → Vβ. Then
φ itself is an s-Floeromorphism.

Proof. This follows since derivatives are local.
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3 Floerfolds

Definition 3.1 (Floer-atlas). Let X be a topological space and s ∈ [0, 1).
An s-Floer atlas for X is a collection A = {ρα}α∈A of homeomorphisms
ρα : X ⊃ Vα → Uα ⊂ H1 between open sets such that the following conditions
hold.

(i) ∪α∈AVα = X.

(ii) For any α, β ∈ A the map defined between open subsets of H1 by

φαβ := ρβ ◦ ρ−1α |ρα(Vα∩Vβ) : ρα(Vα ∩ Vβ)→ ρβ(Vα ∩ Vβ)

is an s-Floeromorphism, called an s-Floer transition map.

Two s-Floer atlases A = {ρα}α∈A and B = {ρβ}β∈B for X are called compat-
ible, notation A ∼ B, if for all α ∈ A and β ∈ B the map φαβ is an s-Floer
transition map.

Theorem 3.2. Compatibility is an equivalence relation for Floer atlases.

Proof. Reflexivity. Holds by definition. Symmetry. Assume that A is compati-
ble with B. Since the inverse of a Floeromorphism is a Floeromorphism as well,
it follows that B is compatible with A.
Transitivity. Consider three s-Floer atlases A = {ρα}α∈A, B = {ρβ}β∈B , and
C = {ργ}γ∈C such that A is compatible with B and B is compatible with C. We
have to show that A is compatible with C. To see this let α ∈ A and γ ∈ C.
We need to show that

φαγ := ργ ◦ ρ−1α |ρα(Vα∩Vγ) : ρα(Vα ∩ Vγ)→ ργ(Vα ∩ Vγ)

is a Floeromorphism. For any β ∈ B we have that φαγ |ρα(Vα∩Vβ∩Vγ) = φβγ ◦
φαβ |ρα(Vα∩Vβ∩Vγ) as a map ρα(Vα ∩ Vβ ∩ Vγ) → ργ(Vα ∩ Vβ ∩ Vγ) is an s-
Floeromorphism by Proposition 2.9 by compatibility A ∼ B and B ∼ C. Hence
since ∪βVβ = X it follows from Lemma 2.11 that φαγ is an s-Floeromorphism
and hence A ∼ C. This proves Theorem 3.2.

Definition 3.3. An s-Floerfold is a topological space X together with an
equivalence class of s-Floer atlases.

Assume that Ai for i ∈ A is an arbitrary collection of compatible s-Floer
atlases. Then, by definition of compatibility, the union ∪i∈IAi is itself an s-
Floer atlas which is compatible with each Aj for every j ∈ I. In particular, if A
is an s-Floer atlas, then the union A := ∪B∼AB is also an s-Floer atlas which is
compatible with A and which is maximal in the sense that, if B is any s-Floer
atlas compatible with A, then B ⊂ A. In particular, any equivalence class of
s-Floer atlases has a maximal representative, which by definition of maximality
is unique. Therefore, alternatively, we can define an s-Floerfold as well as a
topological space endowed with a maximal s-Floer atlas.
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4 Floer functions

We first define a Floer function on an open subset of H1.

Definition 4.1 (Floer gradient). Let H0 ⊃ H1 ⊃ H2 be a Hilbert space triple.
Let f : H1 ⊃ U1 → R be a C2 function defined on an open subset U1 of H1.
The part of U1 in H2, notation U2 := U1 ∩H2, is an open subset of H2.

Under these conditions a Floer gradient is a map ∇f : U1 → H0 satisfying
the following conditions.

(H0-gradient) If q ∈ U1 and ξ ∈ H1, then it holds that

df |qξ = 〈∇f |q, ξ〉0 . (4.7)

(Restriction) The restriction of ∇f to U2 takes values in H1, notation
(∇f)2 : U2 → H1.

(Differentiability) Both maps

U1 → H0, q 7→ ∇f |q
U2 → H1, q 7→ (∇f)2|q

are continuously differentiable (i.e. of class C1).

Definition 4.2 (Floer Hessian). Let H0 ⊃ H1 ⊃ H2 be a Hilbert space triple.
Let f : H1 ⊃ U1 → R be a C2 function defined on an open subset U1 of H1.
The intersection U2 := U1 ∩H2 is an open subset of H2.

Under these conditions a Floer Hessian is a map

A = A(f) : U1 ×H1 → H0, (q, ξ) 7→ A(q, ξ) =: Aqξ

such that Aq ∈ L(H1, H0) and which satisfies the following properties.

(H0-Hessian) If q ∈ U1 and ξ, η ∈ H1, then it holds that

d2f |q(ξ, η) := d2f(q)(ξ, η) = 〈Aqξ, η〉0 . (4.8)

(Restriction) For each q ∈ U2 the restriction of Aq to H2 takes values in H1

and is bounded as a map Aq2 : H2 → H1.

(Continuity) Both maps

U1 → L(H1, H0), q 7→ Aq

U2 → L(H2, H1), q 7→ Aq2

are continuous.

(Fredholm) For every q ∈ U1 the map Aq : H1 → H0 is Fredholm of in-
dex zero. For every q ∈ U2 the restriction Aq2 : H2 → H1 is
Fredholm of index zero as well.
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Definition 4.3 (Floer function). We say that a function f : U1 → R is Floer
if it admits a Floer gradient and a Floer Hessian.

Remark 4.4 (Symmetry). At any q ∈ U1 a Floer Hessian is symmetric, namely

〈Aqξ, η〉0 = 〈ξ, Aqη〉0

for all ξ, η ∈ H1. The reason is that d2f |q(ξ, η) is symmetric in ξ, η.

Remark 4.5 (Floer Hessian is derivative of Floer gradient). Let f : U1 → R be
a Floer function and Aq its Floer Hessian. Then there are the identities

Aq = d∇f |q, Aq2 = d(∇f)2|q. (4.9)

By (Differentiability) we may differentiate (4.7), applying (4.8) we get

〈d∇f |qη, ξ〉0 = d2f |q(ξ, η) = 〈Aqξ, η〉0

for all ξ, η ∈ H1. Since H1 is dense in H0 it follows that this equation holds
true for any η ∈ H1 and ξ ∈ H0, from which the first identity in (4.9) follows.
The second identity follows by the same calculation, just start with ξ, η ∈ H2

and use that H2 ⊂ H1.

Theorem 4.6 (Pull-back). Let (H0, H1, H2) be a Hilbert space triple. Consider
a Floeromorphism φ : U1 → V1 between open subsets of H1. Let f : V1 → R be a
Floer function. Then the composition f̃ := f ◦ φ : U1 → R is a Floer function.

Proof. There are two steps.

Step 1 (Floer gradient). For q ∈ U1 and ξ ∈ H1 the chain rule yields

d(f ◦ φ)|qξ = df |φ(q) ◦ dφ|qξ
=
〈
∇f |φ(q), dφ|qξ

〉
0

=
〈
∇f |φ(q), Dφ|qξ

〉
0

=
〈
(Dφ|q)∗∇f |φ(q), ξ

〉
0
.

Now we define the Floer gradient of f ◦ φ by

∇f̃ |q = ∇(f ◦ φ)|q := (Dφ|q)∗∇f |φ(q) ∈ H0 ∀q ∈ U1. (4.10)

(H0-gradient) This axiom holds by definition.

(Restriction) We need to show that the restriction of ∇f̃ : U1 → H0 to U2

takes values in H1, in symbols (∇f̃)2 : U2 → H1. For this purpose take q ∈ U2.
Then ∇f |φ(q) ∈ H1 since φ(q) ∈ V2 and f is a Floer function. By (i)2 in
Definition 2.4 the hypothesis of Corollary 4.8 is satisfied and the conclusion is

(Dφ|q)∗ ∈ L(H1). (4.11)

Hence ∇f̃ |q = (Dφ|q)∗∇f |φ(q) ∈ H1 whenever q ∈ U2.

11



(Differentiability) Level 1: We need to show that the map U1 → H0,
q 7→ ∇f̃ |q = (Dφ|q)∗∇f |φ(q), is C1 (continuously differentiable). Differenti-
ating (4.10) at a point q ∈ U1 with the help of the Leibniz rule, which follows
as in (2.6), we obtain the formula

d∇f̃ |qξ = d(Dφ)∗|q
(
ξ,∇f |φ(q)

)
+ (Dφ|q)∗ ◦ d∇f |φ(q) ◦ dφ|qξ

for every ξ ∈ H1. Because by assumption Dφ : U1 → L(H0) is C1 and
∗ : L(H0) → L(H0) is linear, the map (Dφ)∗ : U1 → L(H0) is C1, too. Since
both maps q 7→ φ(q) 7→ ∇f |φ(q) are continuous, the first summand in the dis-
played formula is continuous. The second summand is a composition of a C1

map, a C0 map, and a C1 map, thus C0 itself.

Level 2: We need to show that the map

U2 → H1, q 7→ (∇f̃)2|q = (Dφ|q)∗(∇f)2|φ2(q)

is C1. Differentiating this map at q ∈ U2 we obtain the formula

d(∇f̃)2|qξ = d(Dφ)∗|q
(
ξ, (∇f)2|φ2(q)

)
+ (Dφ|q)∗ ◦ d(∇f)2|φ2(q) ◦ dφ2|qξ

for every ξ ∈ H2. Because by assumption (i)2 the map Dφ : U2 → L(H−1)
is C1 and ∗ : L(H−1) → L(H∗−1) = L(H1) is linear, it follows that the map
(Dφ)∗ : U1 → L(H1) is C1. Since both maps q 7→ φ2(q) 7→ (∇f)2|φ2(q) are
continuous, the first summand in the displayed formula is continuous. The
second summand is a composition of a C1 map, a C0 map, and a C0 map, thus
C0 itself.

Step 2 (Floer Hessian). We need to define a map

Ã = A(f ◦ φ) : U1 ×H1 → H0, (q, ξ) 7→ Ã(q, ξ) =: Ãqξ

such that Aq ∈ L(H1, H0) and verify the four axioms in Definition 4.2.

(H0-Hessian) For q ∈ U1 the chain rule yields d(f ◦ φ)|q = df |φ(q) ◦ dφ|q, so

d2(f ◦ φ)|q(ξ, η)

= d2f |φ(q) (dφ|qξ, dφ|qη) + df |φ(q) ◦ d2φ|q(ξ, η)

=
〈
Aφ(q)dφ|qξ, dφ|qη

〉
0

+
〈
∇f |φ(q), d2φ|q(ξ, η)

〉
0

(4.12)

for all ξ, η ∈ H1 where A = A(f) and ∇f is the H0-gradient. Let ιs : H1 → Hs

be inclusion. We define the Floer Hessian of f ◦ φ by

Ãq = A(f ◦ φ)q := Dφ|q∗ ◦Aφ(q) ◦ dφ|q +Kq ◦ ιs : H1 → H0 (4.13)

where by the theorem of Riesz there exists a unique operator Kq such that

Kq ∈ L(Hs, H0), 〈Kqξ, η〉0 =
〈
∇f |φ(q), D2φ|q(ξ, η)

〉
0

=: Bq(ξ, η), (4.14)
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for all ξ ∈ Hs and η ∈ H0. If ξ, η ∈ H1, then by (4.12) the identity (4.8) for Ã
and f̃ holds true and this proves (H0-Hessian) for Ã.

(Restriction) For each q ∈ U2 the restriction of Ãq to H2 takes values in
H1 and is bounded as a map Ãq2 : H2 → H1. To see this pick q ∈ U2. Then
φ(q) ∈ V2, hence Aφ(q) = Aφ(q)(f) maps H2 to H1 as f is a Floer function, so

Dφ|q∗︸ ︷︷ ︸
H1

(4.11)→ H1

◦ Aφ(q)︸ ︷︷ ︸
H2→H1

◦ dφ|q︸︷︷︸
H2→H2

∈ L(H2, H1).

This proves that summand one in (4.13) lies in L(H2, H1). Concerning summand
two we next show that

Kq ∈ L(H1+s, H1) ∩ L(Hs, H0), ∀q ∈ U2. (4.15)

To see this pick ξ ∈ H1+s and η ∈ H−1. By density of H0 in H−1 pick a sequence
(ην) ⊂ H0 converging in H−1 to η. By [FW24, App. A.3] we have the insertion
isometry [ : H1 → H∗−1, ∇f |φ(q) 7→

〈
∇f |φ(q), ·

〉
0
. Then

|〈Kqξ, ην〉0| ≤ ‖[∇f |φ(q)‖H∗
−1
‖D2φ|q(ξ, ην)‖−1

≤ ‖∇f |φ(q)‖1‖D2φ|q‖L(H1+s,H−1;H−1)‖ξ‖1+s‖ην‖−1

for every ν. Take the limit ν →∞ to obtain the estimate

|〈Kqξ, η〉0| ≤ ‖∇f |φ(q)‖1‖D
2φ|q‖L(H1+s,H−1;H−1)︸ ︷︷ ︸
=:κ1+s

‖ξ‖1+s‖η‖−1

for any ξ ∈ H1+s and η ∈ H−1. Hence we see that the element 〈Kqξ, ·〉0 of
H∗0 is even an element of H∗−1 whose norm is bounded by ‖〈Kqξ, ·〉0‖H∗

−1
≤

κ1+s‖ξ‖1+s. Using the isometric identification of H∗−1 with H1, see [FW24,
App. A.3], we see that Kqξ is an element of H1 of norm ‖Kqξ‖1 ≤ κ1+s‖ξ‖1+s.
Therefore Kq is a bounded linear operator H1+s → H1 whose operator norm is
bounded by κ1+s. Such argument will reappear in the proof of Lemma 4.9.
Abbreviating by ι1+s : H2 → H1+s the inclusion we conclude from (4.13) that
Ãq restricts to an operator

Ãq2 = Dφ|q∗ ◦Aφ(q)2 ◦ dφ2|q +Kq ◦ ι1+s ∈ L(H2, H1). (4.16)

(Continuity) We need to show that both maps

U1 → L(H1, H0), q 7→ Ãq

U2 → L(H2, H1), q 7→ Ãq2

are continuous. By Definition 2.4 (i)1 the map Dφ : U1 → L(H0) is continuous.
Since taking adjoints is continuous as a map L(H0) → L(H0) we conclude
that in (4.13) the first term is continuous as a map (Dφ)∗ : U1 → L(H0). The
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map Aφ(q) : U1 → L(H1, H0) is continuous by (Continuity) of Floer Hessians.
The map dφ : U1 → L(H1) is continuous since φ is ssc2, thus C2. Hence the
composition Dφ|·∗ ◦Aφ(·) ◦ dφ|· : U1 → L(H1, H0) is continuous.

It remains the second summand Kq ◦ ιs in (4.13). It suffices to show that the
map K : U1 → L(Hs, H0), q 7→ Kq, is continuous. To see this we first show that
the bi-linear form B : U1 → L(Hs, H0;R), q 7→ Bq, is continuous. This follows
from the fact that, by Definition 2.4 (ii)1, the map

D2φ : U1 → L(Hs, H0;H0), q 7→ D2φ|q

is continuous. Moreover, by continuity of φ and (Differentiability) of the
Floer gradient the map U1 → V1 → H0, q 7→ φ(q) 7→ ∇f |φ(q), is continuous.
Therefore q 7→ Bq is continuous. Since the Riesz map which associates to a bi-
linear form a linear map is itself continuous in the bi-linear form, we conclude
that the map K : U1 → L(Hs, H0), q 7→ Kq, is continuous as well. This finishes
the proof that q 7→ Ãq is continuopus as a map U1 → L(H1, H0).

Continuity of the second map q 7→ Ãq2: Consider the first summand in (4.16).
The map q 7→ dφ2 ∈ L(H2) is continuous since φ2 ∈ C2 and U2 3 q 7→ φ(q) 7→
A
φ(q)
2 ∈ L(H2, H1) is continuous since φ2 ∈ C2 and by (Continuity) of Floer

Hessians. The map U2 → L(H−1) → L(H1), q 7→ T := Dφ|q 7→ T ∗, is continu-
ous by Definition 2.4 (i)2 and by continuity of taking the adjoint.
Consider the second summand Kq ◦ ι1+s in (4.16). Here ι1+s ∈ L(H2, H1+s)
is inclusion. It remains to show that the map U2 7→ L(H1+s, H1), q 7→ Kq, is
continuous. To see this we show that the bi-linear map U2 7→ L(H1+s, H−1;R),
q 7→ Bq, see (4.14), is continuous. By definition of the bi-linear form Bq this
follows from continuity of the map U2 → L(H1+s, H−1;H−1), q 7→ D2φ|q, ac-
cording to Definition 2.4 (ii)2 and continuity of the map U2 → V2 → H1 = H∗−1,
q 7→ φ(q) 7→ ∇f |φ(q), by continuity of φ2 and (Differentiability) of ∇f . This

proves continuity of U2 3 q 7→ Ãq2 ∈ L(H2, H1).

(Fredholm) Let q ∈ U1. Then the first summand in (4.13) is a Fredholm
operator of index zero, since this is true for Aφ(q) : H1 → H0 and both operators
dφ|q ∈ L(H1) and Dφ|q∗ ∈ L(H0) are isomorphisms. Concerning the second
summand note that inclusion ιs : H1 → Hs is compact due to the assumption
s < 1 and, sinceK is bounded, the compositionKιs is compact as well. Since the
Fredholm property as well as the index are stable under compact perturbation
we conclude that the sum Ãq is a Fredholm operator of index zero as well.

It remains to show that Ãq2 is also a Fredholm operator of index zero when-
ever q ∈ U2. In view of formula (4.16) this follows by the same reasoning.

Adjoints and bi-linear maps used in the proof

Lemma 4.7. Let (H0, H1) be a Hilbert space pair. For T ∈ L(H1) we denote
by T ∗ ∈ L(H∗1 ) the H1-adjoint of T . Then the following is true

T ∈ L(H0) ∩ L(H1) ⇒ T ∗ ∈ L(H∗0 ) ∩ L(H∗1 ).
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Proof. To see that T ∗ ∈ L(H∗0 ) pick v∗0 ∈ H∗0 . Since T ∈ L(H0) it also has an
H0-adjoint T ∗0 ∈ L(H∗0 ). We claim that

T ∗v∗0 = T ∗0v∗0 |H1
. (4.17)

To see this pick v1 ∈ H1. Using the definition of H1- and then H0-adjoint we
obtain (T ∗v∗0)v1 = v∗0(Tv1) = (T ∗0v∗0)v1. This proves (4.17).

Since H1 is dense in H0 it follows from (4.17) that T ∗v∗0 uniquely extends
to a bounded linear map H0 → R which coincides with T ∗0v∗0 . In particular,
T ∗v∗0 lies in H∗0 and we have the identity T ∗v∗0 = T ∗0v∗0 in H∗0 . Since v∗0 was an
arbitrary element of H∗0 we obtain that

T ∗|H∗
0

= T ∗0 ∈ L(H∗0 ).

This proves that the H1-adjoint T ∗ is an element of L(H∗0 ) ∩ L(H∗1 ).

Corollary 4.8. Under the hypotheses of Lemma 4.7 it holds

T ∈ L(H0) ∩ L(H−1) ⇒ T ∗ ∈ L(H0) ∩ L(H1).

Proof. Lemma 4.7 together with the isometries H0 ' H∗0 and H1 ' H∗−1 where
the latter isometry stems from [FW24, App. A.3].

Lemma 4.9. Let (H0, H1) be a Hilbert space pair and B : H0×H0 → R a con-
tinuous bi-linear map. By the theorem of Riesz there is a well defined operator
K ∈ L(H0) such that

B(ξ, η) = 〈Kξ, η〉0 .

Suppose that there is a constant κ > 0 such that

|B(ξ, η)| ≤ κ‖ξ‖1 · ‖η‖−1

for all ξ ∈ H1 and η ∈ H0. In this case K restricts to a bounded linear operator
on H1, in symbols K ∈ L(H1).

Proof. Let ξ ∈ H1 and η ∈ H0. By hypothesis

|〈Kξ, η〉0| ≤ |B(ξ, η)| ≤ κ‖ξ‖1 · ‖η‖−1.

We define a continuous bi-linear map as follows

〈Kξ, ·〉0 : H−1 → R, η 7→ lim
ν→∞

〈Kξ, ην〉0

where (ην) ⊂ H0 is a sequence converging in H−1 to η ∈ H−1. Hence we
see that the element 〈Kξ, ·〉0 of H∗0 is even an element of H∗−1 whose norm is
bounded by ‖〈Kξ, ·〉0‖H∗

−1
≤ κ‖ξ‖1. Using the isometric identification of H∗−1

with H1, see [FW24, App. A.3], we see that Kξ is an element of H1 of norm
‖Kξ‖1 ≤ κ‖ξ‖1. Therefore K is a bounded linear operator H1 → H1 whose
operator norm is bounded by κ.
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5 The loop space as a Floerfold

In this section we show that Floerfolds naturally arise in the object of main
interest in Floer theory, namely the free loop space.

For any manifold we show that the space of small loops has the structure
of a Floerfold. By a small loop we mean a loop whose image fits in a single
chart. It should be possible to give similarly the full loop space the structure of
a Floerfold by decomposing the loop into several pieces each of which fits into
a single chart. To avoid technicalities we concentrate here on small loops.

Consider open subsets U ,V ⊂ Rn and the Hilbert space triple

H0 := L2(S1,Rn), H1 := W 1,2(S1,Rn), H2 := W 2,2(S1,Rn).

Define open subsets

U` := {u ∈ H` | u(t) ∈ U ∀t ∈ S1} ⊂ C0(S1,U), ` = 1, 2,

V` := {v ∈ H` | v(t) ∈ V ∀t ∈ S1} ⊂ C0(S1,V), ` = 1, 2.

Given a diffeomorphism Φ = (Φ1, . . . ,Φn) : U → V, we define an ssc2-
diffeomorphism

φ : H1 ⊃ U1 → V1 ⊂ H1, u 7→ Φ ◦ u = (Φ1(u(·)), . . . ,Φn(u(·)))

whose components are maps φi = Φi(u(·)) : U1 →W 1,2(S1,R).

Theorem 5.1. φ : U1 → V1 is an s-Floeromorphism whenever s ∈ ( 1
2 , 1).

Proof. Fix s ∈ ( 1
2 , 1). It suffices to show that φ is an s-Floer map: Interchanging

the roles of U and V and applying the result to Φ−1 then shows that φ−1 is also
an s-Floer map, so that φ is an s-Floeromorphism. The proof that φ is an
s-Floer map takes 4 steps.

Step 1. We show (i)1.

Proof. The first derivative of the diffeomorphism φ at u ∈ U1 in direction ξ =
(ξ1, . . . , ξn) ∈ H1 is given by the formula

dφ|uξ = dΦ|u(·)ξ(·) =

( n∑
j=1

∂jΦ1|u(·)ξj(·), . . . ,
n∑
j=1

∂jΦn|u(·)ξj(·)
)

(5.18)

at any time t ∈ S1 and where ∂j := ∂
∂xj

. The facts that dφ|uξ lies in H1

and ξ 7→ dφ|uξ is linear and bounded follow since, firstly, pre-composition of
W 1,2-maps with smooth maps takes values in W 1,2, more precisely

C∞(Rn,R)×W 1,2(S1,Rn)→W 1,2(S1,R), (Ψ, u) 7→ Ψ ◦ u.

and, secondly, multiplication is well-defined and continuous as a map

W 1,2(S1,R)×W 1,2(S1,R)→W 1,2(S1,R), (g, h) 7→ gh. (5.19)
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The latter relies on continuity of inclusion W 1,2(S1,R) ↪→ C0(S1,R). This shows
that dφ|u ∈ L(H1). Moreover, since multiplication

C0(S1,R)× L2(S1,R)→ L2(S1,R), (g, h) 7→ gh (5.20)

thus, due to W 1,2 ↪→ C0, multiplication

W 1,2(S1,R)× L2(S1,R)→ L2(S1,R), (g, h) 7→ gh (5.21)

is continuous, the map dφ|u has a unique extension to L(H0), notation

Dφ|u ∈ L(H0).

Here Dφ|uξ is defined again by the right hand side of equation (5.18). In
particular for any ξ ∈ H1 both maps coincide Dφ|uξ = dφ|uξ. Similarly, the
map

Dφ : U1 → L(H0), u 7→ Dφ|u
is continuous. Summarizing we have the picture

∂jΦi|u(t)︸ ︷︷ ︸
W 1,2

ξj(t)︸︷︷︸
L2

∈ L2.

It remains to show that Dφ : U1 → L(H0) is continuously differentiable.
Given u ∈ U1 and ξ ∈ H1, using (5.18) we compute the derivative dDφ|u : H1 →
L(H0) as follows(

(dDφ|uξ) η
)
(t)

=

( n∑
j,k=1

W 1,2︷ ︸︸ ︷
∂k∂jΦ1|u(t)

W 1,2︷︸︸︷
ξj(t)︸ ︷︷ ︸

W 1,2

ηk(t)︸ ︷︷ ︸
L2

, . . . ,

n∑
j,k=1

∂k∂jΦn|u(t)ξj(t)ηk(t)

)
.

(5.22)

Since multiplication of functions (5.19) and (5.21) are continuous maps the
derivative is a well defined map H1 → L(H0) and depends continuously on
u ∈ U1. This shows Step 1.

Step 2. We show (i)2.

Proof. By the same arguments as in Step 1, but using the multiplication
Lemma 5.2 instead, we see that Dφ already on U1 extends to L(H−1), namely

∂jΦi|u(t)︸ ︷︷ ︸
W 1,2

ξj(t)︸︷︷︸
W−1,2

∈W−1,2,
W 1,2︷ ︸︸ ︷

∂k∂jΦ1|u(t)

W 1,2︷︸︸︷
ξj(t)︸ ︷︷ ︸

W 1,2

ηk(t)︸ ︷︷ ︸
W−1,2

∈W−1,2. (5.23)

Then a-fortiori Dφ gives rise to a C1 map Dφ : U2 ↪→ U1 → L(H−1).

Step 3. We show (ii)1.
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Proof. As we already computed in (5.22) we have for u ∈ U1 the formula(
d2φ|u(ξ, η)

)
(t)

=

( n∑
j,k=1

∂k∂jΦ1|u(t)ξj(t)ηk(t), . . . ,

n∑
j,k=1

∂k∂jΦn|u(t)ξj(t)ηk(t)

)

for all ξ, η ∈ H1 and times t ∈ S1. It is a side remark that, differently from
the first derivative, while multiplication of two W 1,2 functions is still in W 1,2,
multiplication of two L2 functions is only in L1.

As a consequence of Proposition 5.3 the bi-linear map d2φ|u ∈ L(H1, H1;H1)
extends uniquely to a bi-linear map D2φ|u ∈ L(Hs, H0;H0) whenever s ∈ ( 1

2 , 1].
To see this observe the inclusions

∂k∂jΦ1|u(·)︸ ︷︷ ︸
∈W 1,2⊂C0

ξj(t)︸︷︷︸
∈Hs⊂C0︸ ︷︷ ︸

∈C0

ηk(t)︸ ︷︷ ︸
∈H0

∈ H0 = L2 by (5.20).

Moreover, the map

D2φ : U1 → L(Hs, H0;H0), u 7→ D2φ|u

is continuous.

Step 4. We show (ii)2.

Proof. By the second equation in (5.23) we see that D2φ : U1 → L(Hs, H0;H0)
after restriction extends to a continuous map D2φ : U1 → L(H1, H−1;H−1).

A-fortiori, by continuous inclusions U2 ↪→ U1 and H1+s ↪→ H1 the derivative
D2φ becomes a continuous map U2 → L(H1+s, H−1;H−1). This proves Step 4
and Theorem 5.1 follows.

Sobolev theory used in the proof

Lemma 5.2. Let W−1,2(S1) be the dual space of W 1,2(S1). Then W−1,2(S1) is
preserved by W 1,2 multiplication, more precisely, multiplication gives a map

· : W−1,2(S1)×W 1,2(S1)→W−1,2(S1), (f∗, g) 7→ f∗ · g (5.24)

and this map is continuous.

Observe that f∗ · g : W 1,2(S1) → R is a linear functional and evaluation is
given by (f∗ · g)h = f∗(gh) for every h ∈W 1,2(S1).
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Proof. Pick h ∈W 1,2(S1), then (f∗ ·g)(h) = f∗(gh). Since W 1,2 is closed under
multiplication, the product gh lies in W 1,2 and therefore f∗ ∈ (W 1,2)∗ and
f∗(gh) ∈ R. Therefore f∗ · g is a linear map W 1,2 → R. By continuity of the
multiplication map (5.19) there is a constant c such that the next estimate holds

|f∗(gh)| ≤ ‖f∗‖−1,2‖gh‖1,2 ≤ c‖f∗‖−1,2‖g‖1,2‖h‖1,2.

This shows that f∗g is continuous as a map W 1,2 → R. In particular f∗g ∈
W−1,2 = (W 1,2)∗. Moreover, we have the estimate

‖f∗g‖−1,2 ≤ c‖f∗‖−1,2‖g‖1,2,

Hence the map (5.24) is continuous.

Proposition 5.3. The inclusion map Hs(Rm) ⊂ Cα(Rm) is continuous when-
ever s = m

2 + α and α ∈ (0, 1). Here

u ∈ Cα(Rm) ⇔ u bounded and ∃C : |u(x+ y)− u(x)| ≤ C|y|α ∀x, y.

Proof. See e.g. [Tay96, Ch. 4 Prop. 1.5].
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