
Proof of Goldbach’s Conjecture and Bertrand’s Postulate

Using Prime Generator Theory (PGT)

Jabari Zakiya – jzakiya@gmail.com

March 8, 2025

Abstract

 Goldbach’s Conjecture states every even integer n > 2 can be
 written as the sum of 2 primes, while Bertrand’s Postulate states

 for each n ≥ 2 there is at least one prime p such that n < p < 2n.
 I show both are essentially statements on the primes distribution,

 and their inherent properties when modeled and understood as
 the residues of modular groups n. In addition, a much tighter
 dynamic bound on p than given by the BP will be presented.

Introduction

In 1742, the Prussian mathematician Christian Goldbach wrote a series of letters to the renowned Swiss
mathematician Leonhard Euler, stating that every even number n > 2 can be written as the sum of prime
numbers. In Goldbach’s time ‘1’ was considered a prime, so some of his conjectures varied between
the sum of 2 or more primes when using it. Its modern statement is: every even number > 2 can be
written as the sum of 2 primes (not necessarily unique). It’s been computer verified to hold for all
even n up to 4 x 1018 [1].

In 1845, 23 year old French mathematician Joseph Bertrand stated: for each n ≥ 2, there is a prime p
such that n < p < 2n. Its 1852 proof made it a fundamental theorem of Prime Number Theory.

Prime Generator Theory (PGT) will be the basis of the mathematical framework used to formalize the
properties of modular groups n over the even integers n > 2. I provide the minimum necessary axioms
and properties here for the purpose of establishing the validity of the GC. More extensive expositions
of the theory and applications of PGT can be found in my papers on the Twin Primes Conjecture [2],
and my Twin Primes Segmented Sieve algorithm and code [3].

I show Goldbach’s Conjecture (GC) is really a (weak) statement about the inherent properties of primes
when modeled and understood as the residues of modular groups n. I also show Bertrand’s Postulate
(BP) falls directly out of it as a necessary (weaker) condition for the GC to be true. You can’t have the
former without the later. I also present a much tighter, and dynamic, bound on p than given by the BP.
But both are fundamentally statements on the distribution of the primes, which do not exist randomly!

The techniques used here will be “modern”, in the sense they don’t use or need the classical conceptual
and numerical approaches used previously to prove the BP, and in the many unsuccessful attempts to
prove the GC. Instead it will use the conceptual framework, logic, math and properties of the residues
of modular groups n over the even integers n > 2. In fact, most of what needs to be understood is
purely conceptual in nature, requiring very little number crunching. Finally, I present a simple
algorithm to identify all the prime pairs for any n, its implementation in software, and empirical data.

1

mailto:jzakiya@gmail.com

Modular Group Residues

Prime Generator Theory is the understanding of prime numbers, their distribution, characteristics, gap
structures, and other relationships, thru the properties of modular groups residues. For even values of n,
it uses the residues of the modular groups n to construct Prime Generators, which efficiently generate
every prime that is not a factor of n.

A modular group n is constructed from the integers {0…n – 1}, with n the group’s modulus. A Prime
Generator is constructed from its residues, the ri odd values coprime to n e.g. gcd(ri , n) = 1. Their ri
values are the: 1) coprime primes pj < n, 2) their powers pj

e < n, or 3) their cross-products rk = ri · rj < n.
The number of ri residues in n is an even value given by φ(n), the Euler Totient Function (ETF).

 (1)

The are the j unique prime factors of n. Thus for n = 12:

We can easily identify the 4 residues with a greatest common divisor (gcd) of 1 in 12, as: {1, 5, 7, 11}.
Thus the canonical residues of n are ‘1’ and the set of odd integer values < n that are not multiples of
its prime factors. Every prime coprime to n exists as a congruent modular value to a residue of n.

To identify the residues values of n we do not need to know its prime factors. We can simply do a
gcd(ri, n) = 1 test on the odd integers in the half interval [1, n/2) to identify its φ(n)/2 residue values.
These are the low-half-residues (lhr) values. The φ(n)/2 high-half-residues (hhr) are then just their
modular complements.

Modular Complement Properties

A very important property of modular residues is that they exist as modular complement pairs (mcp).
For a modulus n, each ri residue has a modular complement ri

c, adhering to these 2 modular properties:

 ri
c = n – ri (2)

 ri + ri
c = n (3)

Conceptually, a modular complement for an ri is its modular reflection into its opposite half residues.

Looking at the residues {1, 5, 7, 11} for 12, when split into their lhr||hhr values, and starting from the
middle 6, we see {5, 7} and {1, 11} are its 2 mcp, which each sum to 12. Thus to identify the φ(n)
residue values of n, we can just find the φ(n)/2 values < n/2, and their n–ri complements are the rest.

Also, for every even modulus n > 2, the integers pair {1, n – 1} are automatic mcp residues. For n > 6
the closest odd integers less|greater than the midpoint n/2 are also mcp residues. For 12, {1, 11} are
mcp of the first type and {5, 7} the latter. Thus we automatically know 4 residues, and 2 mcp, for n > 6.

2

Mirror Image Symmetry

An analog clock is the simplest form to show the modular complement properties of residues. For the
group size 12, we see the parallel horizontal lines connect pairs of hours on the left|right halves of the
clock, and each pair sums to the group size 12. This is true for any even group size representation > 2.

Figure 1.

Here the solid lines connect the two modular complement pair residues {1, 11} and {5, 7}. As the
prime factors of 12 are 2 and 3, the dashed lines connect their non-residue composite values, which
occur as modular composite factors pairs. For p = 2, its composite complements must be a multiple of
itself to have an even sum, but for p = 3 (or any odd prime factor), it must be an odd multiple of itself
to have two odd numbers sum to an even n. Thus each ri must have either an odd prime residue, a
prime residue power, or an odd composite product of prime residues, as their modular complements.

For the lhr {1, 5}, ri ≡ ri mod n, but the hhr {7, 11}, can be thought of and used as, n – ri ≡ –ri mod n.
We can thus write, use, and conceptually understand the hhr as the negative residue values of the lhr.
Thus conceptually for the lhr values 0 < ri < n/2, their –ri equivalents are their modular reflections into
their hhr complements n/2 < –ri < n.

This is a modular arithmetic property analogous to the orientation of angles in trigonometry. Positive
angles are defined as counter clockwise (CCW) around the clock, while clockwise (CW) angles are
considered as negative. Here the CW residue values are considered positive, and the same units of
values CCW around the clock can be referred to as negative values mod n. Thus if ri CW units is a
right side residue value, then the same units CCW on the left side are residue values too.

This creates a conceptually and arithmetically consistent structure for performing modular math. Thus
for 12, its lhr are 1 ≡ 1 mod 12 and 5 ≡ 5 mod 12, while the hhr are: (12 – 1) = 11 ≡ –1 mod 12 and
(12 – 5) = 7 ≡ –5 mod 12. And as n ≡ 0 mod n, we have these conceptually simple relationships:

 ri
c = n – ri ≡ –ri mod n (4)

 ri + ri
c = ri + –ri = n ≡ 0 mod n (5)

Figure 1. is a visual metaphor of the symmetry properties of every even n modular group. Thus we
will see Goldbach’s Conjecture can be restated and proven as the properties of the n residues and their
modular complement pair relationships. Thus from the residue properties of even n modular groups,
we will see there is at least one mcp, consisting of primes in each half, that sum to every even n > 6.

3

1
12

2

3

4

5

6

11

10

9

8

7

Definitions and Axioms

Here I define the terminology and establish the axiomatic mathematical foundation that will be used.

Definitions

Definition 1: A modular group n, with modulus n an even integer, is the set of integers {0..n – 1}.

Definition 2: A residue of n is an integer ri < n coprime to n, i.e. an integer ri < n e.g. gcd(ri, n) = 1.

Definition 3: A modular complement (mc) of an ri, i.e. ri
c, is the residue value rj e.g. rj = ri

c = n – ri.

Definition 4 : A modular complement pair (mcp) of n are two residues that sum to n.

D efinition 5 : A prime complement pair (pcp) of n is a modular complement pair of two primes.

D efinition 6 : A trivial prime pair (tpp) is a single prime added to itself, e.g. n = 2p = p + p.

Definition 7: The low-half-residues (lhr) are the set of residues in the interval 0 < {rlo} < n/2.

Definition 8: The high-half-residues (hhr) are the set of residues in the interval n/2 < {rhi} < n.

Axioms

Axiom 1: The number of residues of n is determined by φ(n), the Euler Totient Function (ETF).

A xiom 2: The number of residues is even, as each odd prime factor pi of n contributes (pi – 1) to φ(n).

A xiom 3 : The set of the φ(n) residue values {ri} consists of the odd values in {1..n – 1} coprime to n.

A xiom 4 : The set of {ri} residues contain all the coprime primes < n.

A xiom 5 : The powers of a residue ri < n, i.e. its ri
e < n, are also residues, as they too are coprime to n.

Axiom 6 : The products < n of two residues is also a residue, i.e. rk = ri · rj < n is also coprime to n.

A xiom 7 : The two residues of an mcp|pcp consist of an ri < n/2 and its complement ri
c = n – ri > n/2.

A xiom 8 : Each residue can only be the modular complement to one residue in its opposite half.

A xiom 9 : There are φ(n)/2 modular complement pairs for each n modular group.

Goldbach’s Conjecture can be restated within the framework of Prime Generator Theory (PGT) as:
every even integer n > 6 has for its modular group n at least one prime complement pair (pcp).

Integers 4 and 6 have form n = 2p, and thus single trivial prime pairs, 4 = 2 +2 and 6 = 3 +3, to satisfy
the general GC for n > 2. Every other integer of form n = 2p (of the infinitely many) have a similar
tpp, in addition to at least one pcp. The proof, algorithm, code, and data presented herein ignores them.

4

PGT Proof of Goldbach’s Conjecture

A minimal proof need only show there is at least one pcp prime pair that sums to n for all even n > 6.
This will be established using the residue mirror symmetry|reflection properties of modular groups n.
It will be proved, a simply crafted bounded hhr region close to n always contains at least one prime pq,
the modular complement to a small lhr prime pm = n – pq, forming a {pm, pq} pcp prime pair, as n → ∞.

Residue Properties

Lemma 1. For residues ri < n/2, their modular complements n – ri cannot be multiples of themselves.

Proof: Assume n – ri = k · ri.. Then k = (n – ri)/ri = n/ri – 1, requiring n/ri be an even integer, and ri a
factor of n. But ri is coprime to n, and thus cannot be a factor of n, thus this is a contradiction.
Therefore the modular complements n – ri for the residues ri < n/2 cannot be multiples of themselves.

Lemma 2. For residues ri < n/2, their modular complements n – ri cannot be powers of themselves.

Proof: Assume n – ri = ri
e. Thus n = ri

e + ri = ri (ri
e—1 + 1), giving n/ri = (ri

e—1 + 1) for e ≥ 2. Then n/ri
must be an integer, requiring ri be a factor of n. But ri is coprime to n, thus this is a contradiction.
Therefore the modular complements n – ri for the residues ri < n/2 cannot be powers of themselves.

Corollary 1.
For the φ(n)/2 lhr ri < n/2, their hhr modular complements n – ri can only be either:
1) a prime pr, 2) a prime power pr

e, or 3) the cross-product rj · rk of residues not including themselves.

Define r0 = 1 as the first canonical residue of n.
Define r1 = pi as the first|smallest prime not a factor of n.

Lemma 3. The set of residues {ri} < r1
2, i.e. in r1 ≤ {ri} < r1

2, are the coprime primes < r1
2.

Proof: As r1 is the first prime residue, r1
2 is the first multiple of any residue in n.

Thus, every residue in 1 < rk < r1
2 cannot be a multiple of r1, or any other residue, thus is a prime < r1

2.

If r1 = 3, then {5, 7} < 9 are the next ordered residues if not factors of n. If {5, 7} are factors, the next
residue is r2 = r1

2 = 9 if < n, because 11 is the next larger prime. In this case, if r3 = 11, then all the
coprime primes residues {r1} < (r3

2 = 121) are also primes < n. And we continue in this manner.

We can extend this for all rm < n/2, to establish all the coprime prime pr ≤ {pm} < pr
2 are residues to n.

The residues also contain all the powers of the prime residues pr e.g. {pr, pr
2..} < n, in addition to the

residue cross-products rj· rk < n. However, once for some rn (nth residue), rn
2 > n, no larger lhr rn+1

prime power, or cross-product, can be a residue < n. Then for rn-1 (previous residue), r2
n-1 is the largest

square that can be a hhr < n. Let’s designate this residue as: rmax = rn-1 for some llr ri < n/2.

Thus the hhr in r2
max < {pr||rcp} < n can only be pr primes or cross-products of the type rcp = rmax-· rmax+,

with rmax- ≤ rmax and rmax+ > rmax. Thus no larger lhr power can be a residue e.g r2
max< ri

e < n, for e ≥ 2.

When n is small, only primes exist in the region. As n increases, cross-products, and more primes, will
populate it, as a function of the prime factorization of n. When the cross-products and prime powers
are filtered out, only the primes in both halves are left, and form the pcp prime pairs for even n > 6.

5

Optimum Bounded Regions

The optimum bounded hhr region that contains prime residues that always form at least one pcp is:

 r2
max < {pr} < n (6)

It dynamically adjusts to create the smallest bounded hhr region of pcp primes, and has generic form:

 LowBound < {pi} < HighBound (7)

High Bound Limit

Normally the hhr high bound is just n. But we want the smallest region a prime hhr can exist within.

Because n – 1 is the modular complement for r0 = 1, whether its prime or not, it cannot be part of a pcp.
We thus set the hhr high bound to n – 2, the next smaller even value from n. Thus any hhr ri < n – 2
can possibly be a prime hhr that can form a pcp with a small lhr prime.

Low Bound Limit

From the low bound of (6), the largest lhr value whose square satisfies r2
max < n – 2, is given by:

 rmax = isqrt(n – 2) (8)

where isqrt(x) is the integer square root of x. Ex: isqrt(8) = 2, isqrt(9) = 3, isqrt(15) = 3, isqrt(16) = 4.

Applying Modular Reflection

We now know that rmax sets the limit as to how large a lhr can be; an odd lhr value e.g. ri ≤ rmax < n/2.
Because rmax is computed 2 hhr units below n, its lhr region high bound reflection must do so too:

 HighBoundlhr = rmax + 2 (9)

We now determine its hhr modular (negative) reflection. Starting at the top of the Figure 1. clock, the
equivalent region extends down rmax CCW units. Again, because we computed the value from n – 2, and
not n, the hhr region extends rmax units below it. Thus the hhr region low bound is:

 LowBoundhhr = (n – 2) – rmax (10)

Thus the smallest bounded hhr region which a prime residue exists within whose lhr mc forms a pcp is:

 (n – 2) – rmax ≤ pr < n – 2 (11)

We use ≤ pr vs < pr because LowBound can be an odd|prime value, while odd pr < n – 2 is always true.
The equivalent lhr bounded region is then:
 2 < pr ≤ rmax + 2 (12)

We use pr ≤ rmax vs pr < rmax here too, as rmax can be odd, making the right side odd.

These bounded regions always produce a pcp for increasing n. And as n increases, and its factorization
includes more and larger primes, other pcp prime pairs will be created, whose total will greatly exceed
those coming from them alone. However, the analysis of these regions alone proves the GC’s validity.
In fact, these optimally adjusting dynamic bounds have implications far beyond Goldbach’s Conjecture.

6

Bounded Bonding of Primes

Shown again are the parameters of the lhr and hhr bounded regions that produce at least one pcp.

 rmax hhr bounds lhr bounds

 isqrt(n – 2) (n – 2) – rmax ≤ pr < n – 2 2 < pr ≤ rmax + 2 (13)

The modular complement and symmetry relationships between the residues are inherent and immutable
properties of n modular groups. These properties define the distribution of the residues, which means
they define the distribution of the primes, whose values and relationships constitute them.

Let’s start with the integers 4 and 6. They have φ(2||4) = 2 residues, {1, 3} and {1, 5}, which are their
single mcp. In Goldbach’s time they would have been considered a prime pair by some.

For 8 = 23, its residues include all the coprime primes < 8, {1, 3, 5, 7}, whose mcp are: {1, 7}, {3, 5}.
Here rmax = 2, giving the bounded regions 4 ≤ 5 < 6 and 2 < 3 ≤ 4. For 10 it’s, 6 ≤ 7 < 8 and 2 < 3 ≤ 4.
And we see the bounds dynamically adjusting to give the smallest possible regions the pcp exist within.

The residues for 10 = 2·5 are {1, 3, 7, 9}, with mcp {1, 9 = 32}. But unlike for 4, 6, and 8, it wouldn’t
have been considered a prime pair even in Goldbach’s time. But this explicitly illustrates why we set
the hhr upper limit to n – 2 and not n. Integers 8, 10, 12, 14, and 38 are the only ones with one pcp.

Metaphorically, to understand the primes we must understand there is a clear deterministic chemistry
that exists within the residue properties of modular groups that defines their behavior. Part of that
chemistry tells us the primes bond in pairs, and with other relationships, that are built into the structure
of modular groups. (For example, verification of Polignac’s|Twin Primes conjectures [2]).

The primes, as the primary residues of modular groups, are their fundamental building block elements.
And their powers and cross-products are their molecules. And like with the chemical elements, there
are defined ways we know they can and must move and interact, and ways they can’t.

The pcp are the symmetric load bearing beams of the structure of these modular groups. They are the
bonding forces that hold everything together. It is part of the chemistry of the primes that they bond in
this manner. As n grows so do the pcp, in a structured way that is a function of the factorization of n.

We can conceptually determine the number of pcp bounded by rmax from the following formula:

 #pcp(rmax) = #lhr(rmax) – #hhr(rmax)_rcp – #lhr(rmax)_rcp||pr
e (14)

However, the actual algorithm to determine the number and values of the pcp, within the rmax bounded
regions and for all n, is quite simple and short, easy to do by hand, and translates easily into software.

Again, the ability to determine the number and values of the pcp, and to create optimum dynamically
adjusting boundary conditions, is based on the understanding of the properties of how the primes exist
as the residues of these simple n modular groups. Thus the GC is really a (weak) statement on the
distribution of the primes, whose structure requires they bond in the group patterns the GC proposed.

We will also see Bertrand’s Postulate is another (weaker) statement on the distribution of the primes.

7

PGT’s Postulate

Bertrand’s Postulate (BP) states: for each n ≥ 2, there is a prime p such that n < p < 2n. From the
perspective of PGT, this is merely saying there is always at least one prime residue within the hhr for n.
We know this to be trivially true, because you can’t have no prime residues in either the lhr or hhr.

PGT’s Postulate (PGTP) states: for each n ≥ 2, there is a prime p such that 2n - (2n)1/2 ≤ p < 2n.
We can equivalently simplify it: for each even n > 2, there is a prime p such that n - n1/2 ≤ p < n.

For a prime complement pairs (pcp) to exist their must be a prime pi e.g. 2 < pi < n/2 and another pj e.g.
n/2 < pj < n. The later requirement is just a restatement of the BP that n < p < 2n, n ≥ 2. We previously
established the optimum low bounds to identify at least one pcp prime within LowBound ≤ p < n to be:

 LowBound(n-2) = (n – 2) – isqrt(n – 2) (15)

Using the stricter PGTP bound, to mimic the BP, will identify at least one prime, not necessarily a pcp.

 LowBound(n) = n – isqrt(n) (16)

Let’s compare the two bounds for the first few even values of n, and the pcp prime pairs identified.

 n LowBound(n) ≤ p < n PCP Prime Pairs LowBound(n-2) ≤ p < n–2

 6 4 ≤ p < 6 : p = 5 {3,3}* 2 ≤ p < 4 : p = 3
 8 6 ≤ p < 8 : p = 7 {3,5} 4 ≤ p < 6 : p = 5
 10 7 ≤ p < 10 : p = 7 {3,7} 6 ≤ p < 8 : p = 7
 12 9 ≤ p < 12 : p = 11 {5,7} 7 ≤ p < 10 : p = 7
 14 11 ≤ p < 14 : p = {11,13} {3,11} 9 ≤ p < 12 : p = 11
 16 12 ≤ p < 16 : p = 13 {5,11},{3,13} 11 ≤ p < 14 : p = {11,13}
 18 14 ≤ p < 18 : p = 17 {5,13} 12 ≤ p < 16 : p = 13
 20 16 ≤ p < 20 : p = {17,19} {3,17} 14 ≤ p < 18 : p = 17
 22 18 ≤ p < 22 : p = 19 {5,17},{3,19} 16 ≤ p < 20 : p = {17,19}
 24 20 ≤ p < 24 : p = 23 {5,19} 18 ≤ p < 22 : p = 19
 26 21 ≤ p < 26 : p = 23 {3,23} 20 ≤ p < 24 : p = 23
 28 23 ≤ p < 28 : p = 23 {5,23} 21 ≤ p < 26 : p = 23
 30 25 ≤ p < 30 : p = 29 {7,23} 23 ≤ p < 28 : p = 23
 32 27 ≤ p < 32 : p = {29,31} {3,29} 25 ≤ p < 30 : p = 29
 34 29 ≤ p < 34 : p = {29,31} {5,29},{3,31} 27 ≤ p < 32 : p = {29,31}
 36 30 ≤ p < 36 : p = 31 {7,29},{5,31} 29 ≤ p < 34 : p = {29,31}
 38 32 ≤ p < 38 : p = 37 {7,31} 30 ≤ p < 36 : p = 31
 40 34 ≤ p < 40 : p = 37 {3,37} 32 ≤ p < 38 : p = 37
 42 36 ≤ p < 42 : p = {37,41} {5,37} 34 ≤ p < 40 : p = 37
 44 38 ≤ p < 44 : p = {41,43} {7,37},{3,41} 36 ≤ p < 42 : p = {37,41}
 46 40 ≤ p < 46 : p = {41,43} {5,41},{3,43} 38 ≤ p < 44 : p = {41,43}
 48 42 ≤ p < 48 : p = {43,47} {7,41},{5,43} 40 ≤ p < 46 : p = {41,43}
 50 43 ≤ p < 50 : p = {43,47} {7,43},{3,47} 42 ≤ p < 48 : p = {43,47}

As n increases, the lower bounds dynamically grow, creating much tighter bounds on p than the BP.

 100 90 ≤ p < 100 : p = 97 {11, 89},{3, 97} 89 ≤ p < 98 : p = {89, 97}
 256 240 ≤ p < 256 : p = {241,151} {17,239},{5,251} 239 ≤ p < 254 : p = {239,241,251}

For 256, the bounded primes are {239, 241, 251}, and cross-products {243, 245, 247, 249, 253}. The
mc for 241 is 15 = 3·5, but 5 forms the pcp with 251. The mc for 3 is 253 = 11·23, mc to 245 and 233,
and the mc for 247 is 9 = 32. Now 243 = 35, but 3|32 < (rmax=15), and 33|34 are residues too, so 243 really
is 3·81 and 9·27. For 245 = 5·72, then 5|7 < rmax multiply residues 49|35, and 249 = 3·83, a product of
primes. Also, 256 has 6 other pcp below this region. In comparison, the BP bound is: 128 < p < 256.

8

Thus the BP structurally falls out of the GC, as its necessarily true for the GC to be true. But the GC
doesn’t need it, as seen here, as much tighter bounds on p can be created using the various properties of
modular groups. The BP is a mere consequence of the GC being true, and states a weaker bound on p.

In essence (15) and (16) are numerically the same bounds, as they both apply numerically to just even
values. But as shown in the construction of their derivations, they have different conceptual meanings
and purposes, which must be understood to know when to apply them, and what they tell you.

PGT’s Postulate Empirical Verification

Shown is Crystal code to verify PGT’s Postulate. It first computes the strict low_bnd for n. If low_bnd
is prime n passes. If not prime, it computes the first prime greater than it, and if < n (inside the bound)
it passes. The code is fast and memory efficient, and does the minimum amount of required work. It
uses two fast custom methods prime? and next_prime, to perform the necessary primality tests shown.

Empirical results establish, only n = 126 fails the strict low_bnd, but it passes (with all other values) for
low_bnd-2. For 126 the strict bounds are: 115 ≤ p < 126. Lowering it by 2 to 113 ≤ p < 126 catches the
prime p = 113. But as we’re concerned with the asymptotic behavior of n as it becomes large (n → ∞),
the strict low_bnd accurately characterizes the distribution of the primes, and is a much more precise
statement of it than Bertrand’s Postulate.

At the time of writing, PGT’s Postulate was verified for every n up to 1012 (1,000,000,000,000). It was
also verified for at least the first 100B (100,000,000,000) starting at 1013..1019, to cover as much of the
64-bit (264 = 18,446,744,073,709,551,616) number space as possible. Hopefully others will extend the
number space that is tested.

Compile: $ crystal build --release --mcpu native pgt_postulate_check.cr
Run as: $./pgt_postulate_check 10_000_000_000 20_000_000_000

require "./prime-utils.cr" # provides methods: prime? | next_prime

def pgt_postulate_checks(n1, n2) # check at least one prime in bounded region for n
 n1.step(to: n2, by: 2).each do |n| # check for each even number n in range
 low_bnd = (n - Math.isqrt(n)) | 1 # make value next odd number if even
 puts "no prime in bound for #{n.format}" unless low_bnd.prime? || low_bnd.next_prime < n
 print "\rchecked up to #{n.format}" if n.divisible_by?(1_000_000) # output for every 1M done
 end
 puts "\nTested Values #{n1.format} to #{n2.format}"
end

n1 = (ARGV[0].to_u64 underscore: true) # inputs taken as u64 values up to 1.8 x 10^19 (2^64)
n2 = (ARGV[1].to_u64 underscore: true) # change to u128 for values up to 3.4 x 10^38 (2^128)

t1 = Time.monotonic # start execution timing
pgt_postulate_checks(n1, n2) # execute code
pp Time.monotonic - t1 # show execution time

$./pgt_postulate_check 4 500_000_000 $./pgt_postulate_check 500_000_000 1_000_000_000
no prime in bound for 126 checked up to 1,000,000,000
checked up to 500,000,000 Tested Values 500,000,000 to 1,000,000,000
Tested Values 4 to 500,000,000 00:02:40.765757603
00:02:17.650365026

9

Prime Pairs Algorithm

An algorithm to identify all the pcp prime pairs is very short and simple, which is demonstrated here.
It merely removes (filters out) the composite non-pcp residues, leaving only the prime residues of pcp.

1) For even n treat as Zn, and identify its low-half-residues (lhr) < n/2.
The residue values r are odd integers coprime to n, e.g. gcd(r, n) = 1.
The 1st canonical residue is 1, but 1 is not prime, so it can't be part of
a prime pair, so test the odds numbers from 3 < n/2 to identify the pcp lhr.

2) Store in lhr_mults the powers of ri in lhr < n-2; these are composite residues.
We test up to n-2 because n-1 is the mcp for 1, which can't be part of a pcp.
Once the square of an ri (i.e. ri^2) > n-2, exit process, as all other rj are > n-2.

3) Store in lhr_mults the cross-products ri*rj < n-2.
Starting with smallest ri lhr, test cross-products with all larger lhr.
If ri > sqrt(n-2), exit process, as ri^2, and all other ri lhr cross-products, are > n-2.
If for next larger residue rj, ri*rj > n-2, exit process, as no others are < n-2.
Otherwise save in lhr_mults cross-product ri*rj < n-2, repeat for the next larger rj lhr.

lhr_mults now has all the non-prime composite residue values < n-2.

4) Remove from the lhr the non-pcp lhr_mults values. The pcp prime pairs remain.
 a) For lhr_mults values r > n/2, convert to their mcp values n-r.
 b) All now are non-pcp values < n/2; remove their values from lhr list.

The lhr list now contains all prime residues whose mcp make a pcp prime pair.
For the remaining primes pn, the pcp for n are the prime pairs [pn, n - pn].

Let’s now do a non-trivial example that performs all the algorithmic parts.

Example: Find the pcp prime pairs for n = 50 = 2* 5* 5.

1) Identify the lhr values < n/2.

Write out list of odd numbers from 3 to < 25 = 50/2

 [3 5 7 9 11 13 15 17 19 21 23]

The lhr are values r coprime (share no factors) to n; i.e gcd(r,50) = 1.

 [3 7 9 11 13 17 19 21 23]

Thus: lhr = [3, 7, 9, 11, 13, 17, 19, 21, 23]

2) Store in lhr_mults the powers of the lhr < 48 = 50-2.

a) for 3: lhr_mults = []
 3 * 3: lhr_mults = [9], as 9 < 48
 3 * 9: lhr_mults = [9, 27], as 27 < 48
 3 * 27: stop powers for 3, as 81 > 48
b) for 7: exit powers process; as 7 * 7 = 49 > 48; no other lhr power can be < 48.

3) Store in lhr_mults the lhr cross-products < 48.

a) for 3: lhr_mults = [9, 27]
 3 * 7: lhr_mults = [9, 27, 21], as 21 < 48
 3 * 9: lhr_mults = [9, 27, 21, 27], as 27 < 48
 3 * 11: lhr_mults = [9, 27, 21, 27, 33], as 33 < 48
 3 * 13: lhr_mults = [9, 27, 21, 27, 33, 39], as 39 < 48
 3 * 17: stop cross-products process for 3, as 3 * 17 = 51 > 48

10

b) for 7: lhr_mults = [9, 27, 21, 27, 33, 39]
 7 * 9: exit total cross-product process, as 7 * 9 = 63 > 48;

4) Remove from the lhr the lhr_mults values

 lhr = [3, 7, 9, 11, 13, 17, 19, 21, 23]

 lhr_mults = [9, 27, 21, 27, 33, 39]

a) Convert lhr_mults values > 25 = 50/2 to their modular complement value 50-r

 lhr_mults = [9, 23, 21, 23, 17, 11]

b) Remove from lhr values in lhr_mults

 lhr = [3, 7, 9, 11, 13, 17, 19, 21, 23]

 lhr_mults = [9, 23, 21, 23, 17, 11]

b1) For lhr_mults val 9; remove from lhr:

 lhr_mults = [9, 23, 21, 23, 17, 11]
 ^
 lhr = [3, 7, 11, 13, 17, 19, 21, 23]

b2) For lhr_mults val 23; remove from lhr:

 lhr_mults = [9, 23, 21, 23, 17, 11]
 ^
 lhr = [3, 7, 11, 13, 17, 19, 21]

b3) For lhr_mults val 21; remove from lhr:

 lhr_mults = [9, 23, 21, 23, 17, 11]
 ^
 lhr = [3, 7, 11, 13, 19]

b4) For lhr_mults val 17; remove from lhr:

 lhr_mults = [9, 23, 21, 23, 17, 11]
 ^
 lhr = [3, 7, 11, 13, 19]

b5) For lhr_mults val 11; remove from lhr:

 lhr_mults = [9, 23, 21, 23, 17, 11]
 ^
 lhr = [3, 7, 13, 19]

lhr list of only primes now exists; as original lhr composite residues have been removed.

Thus lhr = [3, 7, 13, 19] now contains 4 prime pcp residues for n = 50.

Their 4 pcp prime pairs values for 50 are:

pcp for 3: [3, 50 - 3] = [3, 47]
pcp for 7: [7, 50 - 7] = [7, 43]
pcp for 13: [13, 50 - 13] = [13, 37]
pcp for 19: [19, 50 - 19] = [19, 31]

Every even integer n > 6 has at least one pcp prime pair.
This is a property of modular groups Zn over even integers n.

11

Prime Pairs Code

Here is a Crystal implementation of the simplified canonical prime pairs algorithm that was given. It
simplifies having to find the prime powers into just finding their squares. Higher residue powers are
then cross-products of their different residue powers values. It also eliminates the lhr_mults array by
first converting cross-product values > n/2 into their lhr mc values and storing them into lhr_del.

def prime_pairs_lohi(n) # generate the pcp prime pairs for even n > 6
 return puts "Input not even n > 2" unless n.even? && n > 6

 # generate the low-half-residues (lhr) r < n/2
 lhr = 3u64.step(to: n//2, by: 2).select { |r| r if r.gcd(n) == 1 }.to_a
 ndiv2, rhi = n//2, n-2 # lhr:hhr midpoint, max residue limit

 # identify and store all powers and cross-products of the lhr members < n-2
 lhr_del = [] of typeof(n) # lhr multiples, not part of a pcp
 lhr_dup = lhr.dup # make copy of the lhr members list
 while (r = lhr_dup.shift) && !lhr_dup.empty? # do mults of current r w/others
 rmax = rhi // r # r can't multiply others with greater vals
 lhr_del << (r*r < ndiv2 ? r*r : n - r*r) if r < rmax # for r^2 multiples
 break if lhr_dup[0] > rmax # exit if product of consecutive r’s > n-2
 lhr_dup.each do |ri| # for each residue in reduced list
 break if ri > rmax # exit for r if cross-product with ri > n-2
 lhr_del << (r*ri < ndiv2 ? r*ri : n - r*ri) # store value if < n-2
 end # check cross-products of next lhr member
 end

 lhr -= lhr_del # remove from lhr its lhr_mults, pcp remain
 pp [n, lhr.size] # show n and pcp prime pairs count
 pp [lhr.first, n-lhr.first] # show first pcp prime pair of n
 pp [lhr.last, n-lhr.last] # show last pcp prime pair of n
end

n = (ARGV[0].to_u64 underscore: true) # get n input from terminal
t1 = Time.monotonic # start execution timing
prime_pairs_lohi(n) # execute code
pp Time.monotonic - t1 # show execution time

This is a faster, memory efficient version, which directly identifies the pcp; timing differences shown.

require "./prime-utils.cr" # provides methods: prime? | next_prime

def prime_pairs_lohi(n) # generate the pcp prime pairs for even n > 6
 return puts "Input not even n > 2" unless n.even? && n > 6

 p, pcp = 2u64, [] of typeof(n) # identify|store the lhr pcp primes
 while (p = p.next_prime) < n//2; pcp << p if (n - p).prime? end

 pp [n, pcp.size] # show n and pcp prime pairs count
 pp [pcp.first, n-pcp.first] # show first pcp prime pair of n
 pp [pcp.last, n-pcp.last] # show last pcp prime pair of n
end

n = (ARGV[0].to_u64 underscore: true) # get n input from terminal
t1 = Time.monotonic # start execution timing
prime_pairs_lohi(n) # execute code
pp Time.monotonic - t1 # show execution time

$./primes_pairs_lohi 12_345_678 $./primes_pairs_lohi 123_456_780
[12345678, 71169] [123456780, 717906]
[31, 12345647] [19, 123456761]
[6172799, 6172879] [61728367, 61728413]
00:00:00.674223922 | 00:00:00.219135707 00:00:05.727994126 | 00:00:02.504820498

12

Empirical Data Table 1.

The data shown here is: # residues < n/2, primes cnt < n/2|n, pcps, pcps % of primes, and 1st|last pcps.

n φ(n)/2 π(n/2) π(n) PCP % PCP(n/2|n) First Prime Pair Last Prime Pair

1,000,000 200,000 41,538 78,498 5,402 13.00 13.76 [17, 999983] [499943, 500057]

2,000,000 400,000 78,498 148,933 9,720 12.38 13.05 [7, 1999993] [999961, 1000039]

3,000,000 400,000 114,155 216,816 27,502 24.09 25.37 [43, 2999957] [1499857, 1500143]

4,000,000 800,000 148,933 283,146 17,630 11.84 12.45 [29, 3999971] [1999853, 2000147]

5,000,000 1,000,000 183,072 348,513 21,290 11.63 12.22 [37, 4999963] [2499949, 2500051]

6,000,000 800,000 216,816 412,849 49,783 22.96 24.12 [7, 5999993] [2999911, 3000089]

7,000,000 1,200,000 250,150 476,648 34,284 13.71 14.39 [3, 6999997] [3499967, 3500033]

8,000,000 1,600,000 283,146 539,777 31,753 11.21 11.77 [7, 7999993] [3999763, 4000237]

9,000,000 1,200,000 315,948 602,489 70,619 22.35 23.44 [7, 8999993] [4499953, 4500047]

10,000,000 2,000,000 348,513 664,579 38,807 11.14 11.68 [29, 9999971] [4999913, 5000087]

11,000,000 2,000,000 380,800 726,517 46,812 12.29 12.89 [3, 10999997] [5499979, 5500021]

12,000,000 1,600,000 412,849 788,060 90,877 22.01 23.06 [11, 11999989] [5999947, 6000053]

13,000,000 2,400,000 444,757 849,252 53,398 12.01 12.58 [3, 12999997] [6499841, 6500159]

14,000,000 2,400,000 476,648 910,077 62,026 13.01 13.63 [19, 13999981] [6999997, 7000003]

15,000,000 2,000,000 508,261 970,704 110,140 21.67 22.69 [19, 14999981] [7499939, 7500061]

16,000,000 3,200,000 539,777 1,031,130 58,383 10.82 11.32 [11, 15999989] [7999913, 8000087]

17,000,000 3,200,000 571,119 1,091,314 65,592 11.48 12.02 [37, 16999963] [8499979, 8500021]

18,000,000 2,400,000 602,489 1,151,367 129,501 21.49 22.49 [13, 17999987] [8999777, 9000223]

19,000,000 3,600,000 633,578 1,211,050 71,656 11.31 11.83 [3, 18999997] [9499811, 9500189]

20,000,000 4,000,000 664,579 1,270,607 70,730 10.64 11.13 [19, 19999981] [9999739, 10000261]

21,000,000 2,400,000 695,609 1,329,943 177,440 25.51 26.68 [23, 20999977] [10499963, 10500037]

22,000,000 4,000,000 726,517 1,389,261 85,476 11.77 12.31 [23, 21999977] [10999811, 11000189]

23,000,000 4,400,000 757,288 1,448,221 83,727 11.06 11.56 [7, 22999993] [11499949, 11500051]

24,000,000 3,200,000 788,060 1,507,122 165,922 21.05 22.02 [19, 23999981] [11999927, 12000073]

25,000,000 5,000,000 818,703 1,565,927 85,838 10.48 10.96 [17, 24999983] [12499481, 12500519]

26,000,000 4,800,000 849,252 1,624,527 97,209 11.45 11.97 [67, 25999933] [12999919, 13000081]

27,000,000 3,600,000 879,640 1,683,065 184,050 20.92 21.87 [19, 26999981] [13499939, 13500061]

28,000,000 4,800,000 910,077 1,741,430 113,922 12.52 13.08 [101, 27999899] [13999691, 14000309]

29,000,000 5,600,000 940,455 1,799,676 101,387 10.78 11.27 [61, 28999939] [14499973, 14500027]

30,000,000 4,000,000 970,704 1,857,859 202,166 20.83 21.76 [11, 29999989] [14999969, 15000031]

31,000,000 6,000,000 1,000,862 1,915,979 107,710 10.76 11.24 [11, 30999989] [15499943, 15500057]

32,000,000 6,400,000 1,031,130 1,973,815 106,627 10.34 10.80 [61, 31999939] [15999871, 16000129}

33,000,000 4,000,000 1,061,198 2,031,667 243,780 22.97 23.99 [17, 32999983] [16499939, 16500061]

34,000,000 6,400,000 1,091,314 2,089,379 120,272 11.02 11.51 [107, 33999893] [16999859, 17000141]

35,000,000 6,000,000 1,121,389 2,146,775 138,452 12.35 12.89 [31, 34999969] [17499793, 17500207]

Table 1.

13

The Tale of Table 1.

The variance seen in the pcp numbers is due to the number and characteristics of the residues φ(n),
which is due to the number, size, and values of the prime factors for each n, as shown here.

$./prime_pairs_lohi 148_000_006 $./prime_pairs_lohi 150_000_006
[148000006, 436612] [150000006, 708844]
[3, 148000003] [5, 150000001]
[73999643, 74000363] [74999959, 75000047]
00:00:14.870575626 00:00:09.438616531

While close in size, 148,000,006 has substantially fewer pcp, and takes more time to process them.
That’s because its residues produce more prime powers and cross-products that have to be filtered out.
And that’s due to the difference in their prime factors, which determine their n groups residue values.

148_000_006.factors 150_000_006.factors
[[2, 1], [7, 1], [11, 1], [19, 1], [50581, 1]] [[2, 1], [3, 1], [13, 2], [29, 1], [5101, 1]]

φ(148,000,006) = (2 – 1) (7 – 1) (11 – 1) (19 – 1) (50581 – 1) = 54,626,400
φ(150,000,006) = 13 (2 – 1) (3 – 1) (13 – 1) (29 – 1) (5101 – 1) = 44,553,600

So n values with relatively larger pcp counts have fewer residues, with relatively larger values. They
produce relatively fewer prime factors and cross-products, leaving more lhr primes to form pcp with.

However, the much more interesting phenomena is what the data reveals in the two % PCP columns.
These are the percentages of all the primes π(n) less than n, and in low half π(n/2), that form the pcp.

 % PCP(n/2) = (pcp / π(n/2)) · 100 % PCP(n) =(2·pcp / π(n)) · 100 (17)

The interesting phenomena that’s revealed is, the pcp appear to bond in quantized ratios! And the affect
is stronger among all the primes < n versus just those < n/2. So as the primes density decreases as n
grows, the bonding between all the possible pr < n is slightly stronger|larger than just for those < n/2.

The n values in Table 1. only end in ‘0’, so the table below shows results for larger consecutive even n
that end in each even digit, and have the same number of π(n) primes for those values.

n φ(n)/2 π(n) PCP % PCP First Prime Pair Last Prime Pair

900,000,000 120,000,000 46,009,215 4,132,595 17.96 [37, 899999963] [449999993, 450000007]

900,000,002 204,211,920 46,009,215 1,724,113 7.49 [73, 899999929] [449999981, 450000121]

900,000,004 224,969,472 46,009,215 1,550,567 6.74 [41, 899999963] [449999887, 450000117]

900,000,006 150,000,000 46,009,215 3,099,095 13.47 [43, 899999963] [449999783, 450000223]

900,000,008 224,956,800 46,009,215 1,550,273 6.74 [79, 899999929] [449999731, 450000277]
Table 1a.

We still see this quantizing phenomena, and that the largest number of pcp for n have the highest ratios.
Now that it’s been revealed, hopefully more research will be pursued to study and characterize it.

What is seen here is a deterministic pattern in the primes distribution, that facilitates they form prime
pairs in such numbers, and in such ratios. This would not be possible if the primes existed randomly.
Thus the data also illustrates again from this property, the primes do not exist randomly!

14

Empirical Data Table 2.

Here we see the lhr data variance in the region bounded by rmax+2. While rmax linearly increases with n,
the number of residues and pcp prime pairs is still predominantly a function of the factorization of n.

n rmax + 2 lhr(rmax+) π(rmax+) PCP(rmax+) % PCP(rmax+) First Prime Pair Last Prime Pair(rmax+)

1,000,000 1,001 400 168 20 11.90 [17, 999983] [977, 999023]

2,000,000 1,416 565 223 24 10.76 [7, 1999993] [1321, 1998679]

3,000,000 1,734 462 270 63 23.33 [43, 2999957] [1721, 2998279]

4,000,000 2,001 800 303 34 11.22 [29, 3999971] [1997, 3998003]

5,000,000 2,238 894 332 39 11.75 [37, 4999963] [2113, 4997887]

6,000,000 2,451 653 363 84 23.14 [7, 5999993] [2447, 5997553]

7,000,000 2,647 907 383 54 14.09 [3, 6999997] [2621, 6997379]

8,000,000 2,830 1,131 410 45 10.98 [7, 7999993] [2797, 7997203]

9,000,000 3,001 800 431 96 22.27 [7, 8999993] [2917, 8997083]

10,000,000 3,164 1,265 447 44 9.84 [29, 9999971] [2633, 9997367]

11,000,000 3,318 1,205 466 51 10.94 [3, 10999997] [3271, 10996729]

12,000,000 3,466 923 485 100 10.62 [11, 11999989] [3461, 11996539]

13,000,000 3,607 1,331 504 68 13.39 [3, 12999997] [3461, 12996539]

14,000,000 3,743 1,283 522 82 15.71 [19, 13999981] [3739, 13996261]

15,000,000 3,874 1,032 536 111 20.71 [19, 14999981] [3847, 14996153]

16,000,000 4,001 1,600 551 61 11.07 [11, 15999989] [3989, 15996011]

17,000,000 4,125 1,552 566 68 12.01 [37, 16999963] [4093, 16995907]

18,000,000 4,244 1,131 582 112 19.24 [13, 17999987] [4241, 17995759]

19,000,000 4,360 1,651 595 66 11.09 [3, 18999997] [4271, 18995729]

20,000,000 4,474 1,789 607 62 10.21 [19, 19999981] [4363, 19995637]

21,000,000 4,584 1,047 620 141 22.74 [23, 20999977] [4561, 20995439]

22,000,000 4,692 1,706 634 70 11.04 [23, 21999977] [4547, 21995453]

23,000,000 4,797 1,835 645 63 9.77 [7, 22999993] [4723, 22995277]

24,000,000 4,900 1,305 654 129 19.72 [19, 23999981] [4703, 23995297]

25,000,000 5,001 2,000 669 71 10.61 [17, 24999983] [4889, 24995111]

26,000,000 5,101 1,883 682 76 11.14 [67, 25999933] [4999, 25995001]

27,000,000 5,198 1,385 692 153 22.11 [19, 26999981] [5171, 26994829]

28,000,000 5,293 1,815 701 91 12.98 [101, 27999899] [5279, 27994721]

29,000,000 5,387 2,080 710 75 10.56 [61, 28999939] [5347, 28994653]

30,000,000 5,479 1,461 724 148 20.44 [11, 29999989] [5443, 29994557]

31,000,000 5,569 2,155 735 83 11.29 [11, 30999989] [5501, 30994499]

32,000,000 5,658 2,262 745 73 9.79 [61, 31999939] [5647, 31994353]

33,000,000 5,746 1,392 756 173 22.88 [17, 32999983] [5693, 32994307]

34,000,000 5,832 2,194 765 85 11.11 [107, 33999893] [5813, 33994187]

35,000,000 5,918 2,028 777 81 10.42 [31, 34999969] [5791, 34994209]

Table 2.

15

The Tale of Table 2.

Here % PCP(rmax+) = (pcp / π(rmax+)) ·100 is the percentage of primes as pcp <= rmax+2, and other parameters
rmax+ for lhr <= rmax+2. The % PCP values for n in both tables closely match, though the bounded regions
become a smaller percentage of n/2 as n grows. As a ratio of n/2 it’s essentially, n1/2/n/2 = 2/n1/2 . So as
n increases it’s a decreasing percentage, and many more pcp occur outside the region than in it. But the
bounded pcp still relatively increase because the regions increase in absolute size. So for n = 1,000,000
its bounded region ratio is 2/1000, or 0.2%, and 20 of its total of 5402 pcp (0.37%) come from it.

This is fast|memory efficient Crystal code to generate the bounded region data for rmax given in Table 2.

Compile: $ crystal build --release --mcpu native prime_pairs_rmax.cr
Run as: $./prime_pairs_rmax 10_000_000_000

require "./prime-utils.cr" # provides method: prime?

def prime_pairs_rmax(n) # generate rmax bounded pcp for even n > 6
 return puts "Input not even n > 6" unless n.even? && n > 6

 lhr_rmax = Math.isqrt(n-2) + 2 # the rmax + 2 high bound
 lhr = 3u64.step(to: lhr_rmax, by: 2).select { |r| r if r.gcd(n) == 1}.to_a # gen bounded lhr

 pcp_rmax = lhr.select { |r| r if r.prime? && (n-r).prime? }.to_a # identify bounded lhr pcp
 (puts "no pcp in bound for #{n}\n"; return) if pcp_rmax.empty? # if no pcp, report n value

 pp [n, lhr_rmax, lhr.size, pcp_rmax.size] # show n, lhr_rmax, lhr count, pcp count
 pp [pcp_rmax.first, n-pcp_rmax.first] # show first pcp prime pair of n
 pp [pcp_rmax.last, n-pcp_rmax.last] # show last pcp prime pair <= rmax + 2
end

n = (ARGV[0].to_u64 underscore: true) # get n input from terminal
t1 = Time.monotonic # start execution timing
prime_pairs_rmax(n) # execute code
pp Time.monotonic - t1 # show execution time

$./prime_pairs_rmax 123_456_780 $./primes_pair_rmax 1_234_567_809_876_542
[123456780, 11113, 2900, 268] [1234567809876542, 35136419, 17540241, 82032]
[19, 123456761] [61, 1234567809876481]
[11113, 123445667] [35136133, 1234567774740409]
00:00:00.000434230 00:00:02.530332120

16

PCP Bounds Asymptotic Behavior

As with the PGT’s Postulate bounds, we are concerned with the asymptotic behavior of the pcp bounds.
This Crystal code was used to test the pcp bounds adherence over ranges of even values. It verified for
every n up to 1012 (1,000,000,000,000), and for at least the first 100M (100,000,000) from 1013..1019,
that a pcp prime pairs comes from each bounded region, except for 49 small values. Each of these has
primes in their bounded regions, but they don’t form pcp prime pairs. All the pcp prime pairs for them
come from outside the bounded region defined by rmax . Here are their values:

98, 122, 220, 308, 346, 488, 556, 962, 992, 1144, 1150, 1354, 1360, 1362, 1408, 1424, 1532, 1768,
1928, 2078, 2438, 2512, 2530, 2618, 2642, 3458, 3818, 3848, 4618, 4886, 5978, 6008, 7426, 9596,
9602, 11438, 11642, 12886, 13148, 13562, 14198, 14678, 16502, 18908, 21368, 23426, 23456, 43532,
63274

Because the factorization of n is plays the most prominent role in the distribution of the pcp, small
values of n show the most variance within the bounded regions. As the square root of n increases with
n, the bounded regions become larger in absolute value, and the affects of factorization become more
normalized over both halves residues of n, ensuring pcp prime residues exist in the bounded regions.

Thus as n increases the regions bounded by rmax increase, and from the less strict PGTP bounds we
know they always contain primes, and these will form pcp prime pairs. Thus from these regions alone,
we “know” there exist prime pairs for all increasing n, establishing its asymptotic behavior as n → ∞,
and thus the validity of Goldbach’s Conjecture for all even n.

require "./prime-utils.cr" # provides methods: prime? | next_prime

def prime_pairs_rmax_check(n) # check at least one pcp residue within bounds for n
 p, lhr_rmax = 2u64, Math.isqrt(n-2) + 2 # the rmax + 2 high bound
 while (p = p.next_prime) <= lhr_rmax; return if (n-p).prime? end
 puts "no pcp in bound for #{n}\n" # no pcp residue, report n value
end

n1 = (ARGV[0].to_u64 underscore: true) # inputs taken as u64 values up to 1.8 x 10^19 (2^64)
n2 = (ARGV[1].to_u64 underscore: true) # change to u128 for values up to 3.4 x 10^38 (2^128)

t1 = Time.monotonic # start execution timing
n1.step(to: n2, by: 2) do |n| # for even n values in range
 prime_pairs_rmax_check(n) # check for n if a pcp residue in bounded region
 print "\rchecked up to #{n.format}" if n.divisible_by?(100_000) # output for every 100K done
end
puts "\nTested Values #{n1.format} to #{n2.format}"
puts Time.monotonic - t1 # show execution time

$./prime_pairs_rmax_check 8 500 $./prime_pairs_rmax_check 65_000 100_000_000
no pcp in bound for 98 checked up to 100,000,000
no pcp in bound for 122 Tested Values 65,000 to 100,000,000
no pcp in bound for 128 00:00:55.456560943
no pcp in bound for 220
no pcp in bound for 308
no pcp in bound for 346
no pcp in bound for 488
Tested Values 8 to 500
00:00:00.000150531

17

Below is the Crystal source code for prime-utils.cr.

require "big"

@[Link("gmp")]
lib LibGMP
 fun mpz_powm = __gmpz_powm(rop : MPZ*, base : MPZ*, exp : MPZ*, mod : MPZ*)
end

def powmodgmp(b, e, m)
 y = BigInt.new; LibGMP.mpz_powm(y, b.to_big_i, e.to_big_i, m.to_big_i)
 y
end

def powmodint(b, e, m)
 r = typeof(m).new(1);
 b = b % m; b = typeof(m).new(b)
 while e > 0; r = (r &* b) % m if e.odd?; e >>= 1; b = (b &* b) % m end
 r
end

def powmod(b, e, m); m > UInt32::MAX ? powmodgmp(b, e, m) : powmodint(b, e, m.to_u64) end

struct Int
 def next_prime # return the next prime number > self
 n = self
 return (n >> 1) + 2 if n <= 2 # to do 2 or 3
 n = n &+ 1 | 1 # 1st odd number > n
 until (res = n % 6) & 0b11 == 1; n &+= 2 end # n first P3 pc >= n, w/residue 1 or 5
 inc = (res == 1) ? 4 : 2 # set its P3 PGS value, inc by 2 and 4
 until n.prime?; n &+= inc; inc ^= 0b110; end # find first prime P3 pc
 n
 end
 # PGT and Miller-Rabin combined primality tests
 def prime? (k = 5) # set k higher for more primer? reliability
 # Use PGT residue checks for small values < PRIMES.last**2
 return PRIMES.includes? self if self <= PRIMES.last
 return false if MODPN.gcd(self) != 1
 return true if self < PRIMES.last &** 2
 primemr?(k)
 end

 def primemr? (k = 5) # deterministic Miller-Rabin w/witnesses
 neg_one_mod = n = d = self – 1 # these are even as self is always odd
 d >>= d.trailing_zeros_count # shift out factors of 2 to make d odd
 # wits = [range, [wit_prms]] or nil
 wits = WITNESS_RANGES.find { |range, wits| range > self }
 witnesses = wits ? wits[1] : k.times.map{ rand(self - 4) + 2 }
 witnesses.each do |b|
 next if b.divisible_by? self # skip base if multiple of input: (b % self) == 0
 y = powmod(b, d, self) # y = (b**d) mod self
 s = d
 until y == 1 || y == neg_one_mod || s == n
 y = (y &* y) % self # y = (y**2) mod self
 s <<= 1
 end
 return false unless y == neg_one_mod || s.odd?
 end
 true
 end

 private MODPN = 232862364358497360900063316880507363070u128.to_big_i # 101# is largest for u128
 private PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103]

 # Best known deterministic witnnesses for given range and set of bases
 # https://miller-rabin.appspot.com/
 private WITNESS_RANGES = {
 341_531u64 => [9345883071009581737u64],
 1_050_535_501u64 => [336781006125u64, 9639812373923155u64],
 350_269_456_337u64 => [4230279247111683200u64, 14694767155120705706u64, 16641139526367750375u64],
 55_245_642_489_451u64 => [2u64, 141889084524735u64, 1199124725622454117u64, 11096072698276303650u64],
 7_999_252_175_582_851u64 => [2u64, 4130806001517u64, 149795463772692060u64, 186635894390467037u64,
 3967304179347715805u64],
 585_226_005_592_931_977u64 => [2u64, 123635709730000u64, 9233062284813009u64, 43835965440333360u64,
 761179012939631437u64, 1263739024124850375u64],
 18_446_744_073_709_551_615u64 => [2, 325, 9375, 28178, 450775, 9780504, 1795265022] of UInt64
 }
end

18

The Epistemology of Math

A key question this paper raises, implicitly if not explicitly, is how do we “know” something? That is,
what constitutes the establishment of mathematical knowledge? In math there is invariably more than
one way to “know” things (solve problems). And usually, the simplest way to understand something is
the preferred way to explain it.

In this paper I use a field of math I call Prime Generator Theory. It uses centuries old knowledge of
basic modular arithmetic, and the math and properties of residues of multiplicative modular groups. At
the foundational arithmetic level nothing is new here. However at the conceptual level, PGT opens up
an understanding of the primes heretofore not imagined. And it’s at this conceptual level we are able to
“know” things about the primes, in simple ways, and without the need for complex computations.

Picking the right model to frame a problem is essential to its understanding. Fermat’s Last Theory
(1637) stood unsolved until 1994, when Andrew Wiles used elliptic curves and modular forms as the
framework to understand and solve it. Here, using modular groups make Goldbach’s Conjecture simple
to understand and solve, and also significantly improve upon Bertrand’s Postulate (1845). I previously
used PGT to prove Polignacs’s Conjecture, more commonly known as the Twin Primes Conjecture [2].

One key understanding that PGT provides is that the primes do not exist randomly among the integers.
They exist as the congruent modular values of the residues of modular groups n, which means there is
a deterministic order to the primes. Thus it is unnecessary (even counter productive) to model their
distribution as random, and then employ the computational tools used for those models as a way to
understand them. Thus the GC stood from 1742 until now (2025) “unsolved” using those techniques.

A defining property of a valid theory is it can predict empirically testable results. PGT provides not
only the mathematical basis to establish Goldbach’s Conjecture, et al, but also the means to “know”
how many primes pairs exist for any even n, and their exact values, using simple algorithms|software.

Another key, and modern, way to mathematically “know” things now is by computer modeling. This
has become an essential, and indispensable, tool for computational analysis in so many fields now.
Here, the empirical data substantiates both the paper’s establishment of Goldbach Conjecture as true,
but also PGT’s Postulate being a better, more precise, bound on p than given by Bertrand’s Postulate.

Thus marrying better theory, with better computational tools to test them, can lead to better progress in
solving age old problems (and not just in math). But it’s the imagination to derive better theories that is
tantamount to the advancement of knowledge (of “knowing”). We must be willing (and attempt) to see
things with new eyes, or more accurately, process the things we see with a different consciousness of
the possibilities of “knowing” them.

Because there is an “art” to knowing. It doesn’t always flow from the linear progression of small dots
being connected to draw a picture of a larger whole (truth). Sometimes (many times) it is one person
making a leap in imagination to see a problem in a way not envisioned before. And usually this means
the complexity and confusion of old thinking gets wiped away, and replaced with an insight that makes
things so much simpler to know and understand. And as Einstein said – Imagination is more important
than knowledge.

19

Conclusion

Prime Generator Theory (PGT) provides the most powerful and conceptually simple mathematical
framework for understanding the nature, characteristics, and distribution of the primes. By treating
even values of n as modular groups n, we apply the properties of residues to easily identify the prime
pairs of n, which deterministically exist as the modular complement pairs (mcp) of strictly primes, i.e.
they exist as the prime complement pair (pcp) residues of n.

From this framework we establish every even integer n > 6 will (must) have at least one pcp prime pair.
The properties of this framework can then be algorithmically constructed to identify all the pcp prime
pairs. This simple algorithm is then translated into software that provides the total count of pcp prime
pairs of n, and displays their values as desired. This is done without the need to perform any explicit
prime searches or tests. The structure of the n residues guarantees identification of the primes.

We also see Bertrand’s Postulate is just a necessary condition that falls out of the modular symmetry of
the pcp. There always must be a prime in the intervals n/2 < p < n in order for there to be prime pairs.
As an extra bonus, we’re able to create much smaller (tighter) dynamically adjusting bounds for p,
compared to the wider static BP bounds, which become relatively larger as n increases. Thus we now
have a much better understanding of the distribution of the primes.

Finally, empirical data is provided for an increasing range of n values, showing their total pcp counts,
and their first and last prime pairs values. It shows large variances in the pcp counts for close n values,
as a functions of their factorization profiles. We also see the ratios of the pcp primes as a percentage of
all the primes < n occur in quantized bands. Thus the pcp increase as n does, verifying that Goldbach’s
Conjecture is correct, but also revealing so much more to the story than was previously known.

References

[1] Oliveiria e Silva, Herzog, and Pardi – Empirical Verification Of The Even Goldbach Conjecture
 And Computation Of Prime Gaps Up To 4·1018, Journal: Math. Comp. 83 (2014), 2033-2060.
 https://www.ams.org/journals/mcom/2014-83-288/S0025-5718-2013-02787-1/S0025-5718-2013-
 02787-1.pdf

[2] Jabari Zakiya – On The Infinity of Twin Primes and other K-tuples, International Journal of
 Mathematics and Computer Research (IJMCR), Vol 13 No 1 (2025), 4739-4761.
 https://ijmcr.in/index.php/ijmcr/article/view/867/678 (pdf)

[3] Jabari Zakiya – Twin Primes Segmented Sieve of Zakiya (SSoZ) Explained, J Curr Trends Comp
 Sci Res 2(2), 119 - 147, 2023.
 https://www.opastpublishers.com/open-access-articles/twin-primes-segmented-sieve-of-zakiya-
 ssoz-explained.pdf

20

https://www.opastpublishers.com/open-access-articles/twin-primes-segmented-sieve-of-zakiya-ssoz-explained.pdf
https://www.opastpublishers.com/open-access-articles/twin-primes-segmented-sieve-of-zakiya-
https://ijmcr.in/index.php/ijmcr/article/view/867/678
https://www.ams.org/journals/mcom/2014-83-288/S0025-5718-2013-02787-1/S0025-5718-2013-02787-1.pdf
https://www.ams.org/journals/mcom/2014-83-288/S0025-5718-2013-02787-1/S0025-5718-2013-

	Introduction
	Modular Group Residues
	Modular Complement Properties
	Mirror Image Symmetry
	Definitions and Axioms
	Definitions
	Axioms

	PGT Proof of Goldbach’s Conjecture
	Residue Properties
	Optimum Bounded Regions
	High Bound Limit
	Low Bound Limit
	Applying Modular Reflection
	Bounded Bonding of Primes

	PGT’s Postulate
	PGT’s Postulate Empirical Verification
	Prime Pairs Algorithm
	Prime Pairs Code
	Empirical Data Table 1.
	The Tale of Table 1.
	Empirical Data Table 2.
	Table 2.
	The Tale of Table 2.
	PCP Bounds Asymptotic Behavior
	The Epistemology of Math
	Conclusion
	References

