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Proof to “Fermat’s Last Equation” 

                                                                                                                      by B.N. Pathak 

 

 

1. Introductory:- 

 

1.1 Fermat’s Last Theorem also known as FLT, states that the equation  

      xn + yn = zn  holds good, i.e. will have innumerable equations/solutions 

for all integral x, y and z when n=2, but does not hold good for integral 

values of x, y and z, when n > 2, where n is an integer. 

 

1.2 We will write FLT as:- 

 

               xn   +   yn       = zn                             …. (1.0) 

 

1.3 We will prove FLT through the following workings. 

 

 

2. Preliminary Examination of FLT:- 

 

2.1 Let x, y and z be all positive quantities. 

 

2.2 A simple examination of the equation xn + yn = zn will lead us to the 

conclusion that x (or y) < z, since xn (or yn) = zn – yn (or xn), i.e. 

 

x (or y) = [zn – yn (or xn)](1/n) 

 

2.3 Similarly from FLT, we have x ≠ y, since if it is so, i.e. if x=y, we 

have from FLT 

xn + xn = 2xn = zn or 

 

z = x * 2 (1/n) 

 

Since 2 (1/n) for n > 1, is always a surd or non-integer, z will be non-

integer for integral values of x. Alternately, to keep z as an integer, we 

must have:- 

x = a * 2 (n-1)/n            x will become non-integral even with a as an 

integer 

* -  multiplication sign 
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3. Modus Operandi:- 

3.1 We will assume x and y to be any two positive integers and n also to 

be a positive integer. Let us also initially assume/expect z to be an 

integer. From the very further workings of FLT we will prove that at n 

= 2 only, z will be an integer, when x and y are positive integers, 

confirming the initial assumption of z as an integer. Of course, it will 

also be seen that n = 2, when FLT holds good, x, y and z will have 

certain relationship amongst themselves. Similarly, it will be seen at n 

> 2, when x and y are integers, z shall not be an integer, which will 

thus contradict the initial assumption of z to be an integer. This will 

prove Fermat’s Last Theorem (FLT). 

 

3.2 Since as per para 2.3, x ≠ y, let y = p + x, where let p also be a positive 

integer, alongwith x and y as positive integers, whence y > x (say). 

From FLT, we have :- 

 

zn = xn + yn = xn + (p+x)n = pn + nC1p
n-1x + nC2p

n-2x2 + --- 

                          + nCn-1pxn-1 + 2xn                      ---- (1.01) 

 

3.2/1   For integral values of z, for n ≥2, we shall have p ≠ x, since if p = x, 

then from eqn.(1.01), we shall have :- 

 

    zn  =  xn  +  ( p + x )n    =  xn  + ( 2x )n  = xn (1 + 2n )  

                    

   or  

    z  =  x(1 + 2n )1/n                                                            …. (1.01)/1 

 

                   

 As  (1 + 2n )1/n  ≠ an integer for  n≥2, z will become  a non-integer as 

per equation (1.01)/1, since x  = an integer. 

                            

  It can be easily shown that for n≥2, value of   

 (1 + 2n)1/n  ≠  an integer, since if this is a positive integer( with which 

alone we are dealing all along), say = m, then we shall have;- 

             

  1 + 2n = mn   

  or 

  1 = mn - 2n = (m -2)(m n-1 + m n-2.2 + …..+ m.2n-2 + 2 n-1)   …. (1.01/2) 

     

In RHS of eqn. (1.01)/2, in order to maintain the same positive sign 

therein, as in LHS  of this equation, the minimum integral value of 

m  can be put equal to 3, i.e  m = 3, whence we will have from 

(1.01)/2, the following:- 

 

1 = 3n-1 + 3n-2.2 + …. + 3.2n-2 + 2 n-1       …. (1.01)/3 
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 Since the above is an absurd and unacceptable result, we shall have 

 

  (1 + 2n)1/n ≠ an integer for n ≥2. 

 

  From all the above it is concluded that for n ≥2, in FLT, for all 

integral values of z,  we shall have p ≠ x . Alternatively, it will follow 

that for p=x, value of z will in turn always be non-integral for n ≥2 

 

 

3.2.1 From binomial theorem, we have:- 

            (1-x)n = 1 – nC1x + nC2x
2 – nC3x

3 + …  

                           + (-1)n-1 nCn-1 x
n-1 + (-1)n nCnx

n 

 

            Putting x = 1 in above equation, we have:- 

 

             0 = 1 -  nC1 + nC2 – nC3 + …  

                           + (-1)n-1 nCn-1 + (-1)n nCn 

              or 

 

              1 =   nC1 - 
nC2 + nC3 - 

nC4 + …  

                           - (-1)n-1 nCn-1 - (-1)n nCn   ---- (1.01.1) 

 

Using equation (1.01.1), we can write pn in equation (1.01) as follows:- 

 

             pn = pn [nC1 – nC2 + nC3 – nC4 + ….  – (-1)n-1  nCn-1 –  

                     (-1)n], since nCn = 1  

 

Putting the above value of pn in equation (1.01) and rearranging them we 

have :- 

 

             zn = -(-1)n pn + nC1 p n-1 (x+p) + nC2 p
n-2 (x2 – p2) + 

                      nC3 p
n-3 (x3+p3) + … +nCn-1 p[xn-1 – (-1)n-1 pn-1] + 2xn 

 

or 

 

            zn = pn – [1 + (-1)n] pn + nC1 p
n-1 (x+p) + nC2 p

n-2 (x2 – p2) + … + 

                   nCn-1p[xn-1 – (-1)n-1 pn-1] + 2xn   …… (2.0) 

 

Further rearranging aforesaid equation (2.0) we have :- 

 

            zn  = pn  + nC1 p n-1 (x+p) + nC2 p
n-2 (x2 – p2) + 

                    nC3 p
n-3 (x3+p3) + … +nCn-1 p[xn-1 – (-1)n-1 pn-1] + 

                    + [2 xn – { 1 + (-1)n} pn]   ……. (2.1) 

 

                  =  Qn  (say)   ….. (2.2) 
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                  =  (p + t)n     (say)    ….. (2.3) 

 

3.2.2 As the R.H.S. of equation (2.1) has (n +1) terms and first n terms 

are associated with their respective coefficients (including unity 

with first term i.e. pn) with descending powers of p starting from 

pn, as also the various terms are respectively associated with nC0 

(with pn, as nC0 = 1), nC1, 
nC2, …. nCn-1 and nCn (since again nCn = 

1) with the last (n+1)th term, AND the L.H.S. of equation (2.1) is 

nth power of a quantity i.e. equal to zn, for FLT to hold good the 

R.H.S. should also be the nth power of a quantity say Q, whence 

we shall have zn = Qn, as written in equation (2.2) above. 

 

 

Proof 

 

3.2.3 Since equations (2.2) & (2.1) have been derived from the original 

equation (1.0) of FLT, wherefrom we have zn = xn + yn = xn + 

(p+x)n whence zn > yn i.e. z > y or z > (p + x) or z > p. Since as 

per equation (2.2) zn = Qn or z = Q, Q must also be > p, i.e. Q > 

p. Let Q = (p + t). Thus we have zn = Qn = (p + t)n as stated/ 

written at equation (2.3), whence z = Q = (p + t) 

 

3.2.4 Since p has been assumed to be an integer (along with x and y); 

for z to be an integer t must also be an integer. It will now be 

shown that t is an integer only at n = 2, whence z is an integer ( 

as also x and y being integers as assumed earlier) at n = 2 only, 

whereas for n > 2, we shall have t ≠ An integer, i.e. a non-

integer, whence for z = (p + t) ≠ An integer. This will prove FLT. 

 

 

From all the above proceedings, we have:- 

 

Zn = Qn 

 

     = (p + t)n 

 

     = pn + nC1 p
n-1 t + nC2 p

n-2 t2 + nC3 p
n-3 t3 + … + nCn-1 p tn-1  

        + tn                                                  …… (3.0) 

Comparing the coefficients of equal powers of p in different 

terms in R.H.S. expressions of equations (2.1) and (3.0), we  

have :- 

 

t = x + p                                        …. (i)      } 

 

t2 = x2 – p2                                    …. (ii)     . 

                                                                          …. (3.01) 
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t3 = x3 + p3                                    …. (iii)    . 

. 

. 

. 

 

tn-1 = xn-1 – (-1)n-1 pn-1                  …. (n-1)   } 

 

and 

 

tn = 2xn – {1 + (-1)n} pn                                    …. (3.02) 

 

 

4.      Vertically multiplying the various (n-1) subequations of both 

L.H.S. and R.H.S. of equation (3.01), we have only the following 

valid and acceptable equation incorporating all the aforesaid  

            (n-1) relationships. 

 

            t1+2+3+….+(n-1)  = tn(n-1)/2  = (x+p)(x2 – p2)(x3 + p3) …  

                                                                [xn-1 – (-1)n-1 pn-1]   …. (4.0) 

 

                                                     |……(n-1) terms ………| 

 

 

             or 

 

            t = [(x + p)(x2 – p2)(x3 + p3)  …. {xn-1 – (-1)n-1 pn-1}]2/{n(n-1)}  

                                                                                                   ....(4.01) 

                  |……………..(n-1) terms………………………………| 

 

             Since as per para 3.2/1 , we have p ≠ x, whence  t ≠ 0 

 

4.1 We will now examine values of t from equations (4.0), (4.01) 

and (3.02) for different values of n and will find when t becomes 

integral. From equation (4.0) we find that the R.H.S. has (n-1) 

terms i.e. at n = 2, the R.H.S. of equation (4.0) will have only 

one term, at n = 3, the R.H.S. will have two terms and so on. 

 

4.2 We will now examine value of t at n = 2. From equation 4.0 we 

have the following at n = 2. As stated earlier, the R.H.S. of this 

equation will have only one term at n = 2. 

tn(n-1)/2  =  t  =  x + p                                …. (4.0 / 2) 

 

i.e.  t2 = (x+p)2                                        …. (4.0 / 2.1) 

 

also from equation (3.02) we have at n = 2 
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tn = 2xn – [1 + (-1)n]pn 

 

or 

 

t2 = 2x2 – 2p2 = 2(x2 – p2)                      …. (3.02 / 2) 

 

Equating (4.0 / 2.1) and (3.02 / 2) we have at n = 2 :- 

 

t2 = (x + p)2 = 2(x2 – p2) = 2(x+p)(x-p)   …. (4.0 / 2.1.1) 

 

Since x and p are both positive integers, x + p ≠ 0, whence 

canceling x + p from both sides of above equation, we have 

 

x + p  =  2(x – p) 

 

or 

 

x = 3p                                                     …. (4.0 / 2.2) 

 

4.2.1 From para (3.2), 

            Since y = p + x, we have at n = 2 :- 

            y = p + x = 4p                                        …. (4.0 / 2.3) 

 

            Also, since from FLT at n = 2, we have :- 

             

            z2 = x2 + y2          = (3p)2 + (4p)2 = 25p2 

 

            or 

 

            z = 5p                                                     …. (4.0 / 2.4) 

 

4.2.2 Thus at n = 2, we have from FLT :- 

 

            x = 3p  } 

            y = 4p  .  …… All integers, since p = An integer  …. (4.0 / 2.5) 

            z = 5p  } 

 

4.2.3 Giving different values to p say 1, 2, 3, etc., we shall have 

following equations for FLT at n = 2. 

 

z2 = x2 + y2 

 

52 = 32 + 42 

 

102 = 62 + 82 
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152 = 92 + 122 

 

…. and so on … 

 

4.2.4 A more general all integral values of x, y and z of FLT at n = 2 

can be had from following equations by assuming x = b(2a + b) 

and p = 2a2 – b2 in equation (1.01), where a and b are two 

positive integers. 

 

x = b (2a + b)                                             } 

p = 2a2 – b2                                                                        . 

                                                       . 

As per para (3.2), we have : -                     . 

                                                                   . 

y = p + x = 2a(a + b)                                  . 

                                                                   . 

Also as per FLT at n = 2, we have :-         .   

                                                                   .  …. (4.0 / 2.5.1) 

z = (x2 + y2)1/2 = a2 + (a + b)2                           . 

                                                                   . 

Also as per para 3.2.3, we have :-              . 

                                                                   . 

z = p + t    whence                                     . 

                                                                   . 

t = z – p = a2 + (a+b)2 – 2a2 + b2               . 

                                                                   . 

               = 2b(a + b)                                  } 

 

 

4.2.5 Thus we will have a more general all integral values of x, y and z 

of FLT at n = 2 as follows :- 

 

x = b(2a + b)                      } 

y = 2a(a + b)                      .         …. (4.0 / 2.6) 

z = a2 + (a + b)2                  } 

 

 

 

 

From above we have for n = 2, the following equations of FLT. 

 

(i) 52 = 32 + 42 for  x = 3   } 

                                      y = 4   .     …. at a = b = 1 

                                      z = 5    }  

 

(ii) 132 = 52 + 122  for x = 5    } 
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                                          y = 12  }    …. at a = 2 and b =1 and  

                                                                                      so  on … 

 

4.2.6 Thus FLT holds good for all integral x y and z for n = 2. 

 

4.3        We will now examine various values of t for other values of  

              n > 2. At n = 3, we have from equation (3.02):- 

 

                        tn = 2xn – [1 + (-1)n] pn          ….  (3.02) 

 

               i.e.     t3 = 2x3 – [1 – 1] p3   =  2x3    …. (3.02 / 3) 

 

               or      t = x(2)1/3                               …. (3.02 / 3.1) 

 

4.3.1 From above we find that at n=3, t will be a non-integer, since x 

as assumed earlier is an integer and (2)1/3 is a surd. Thus at n = 

3, we will have as per para 3.2.3, z = p + t = A non integer, 

since p = An integer and t ≠ An integer. 

 

4.3.2 Similarly for all odd values of n > 2, i.e. for n = 3, 5, 7, …,  

 

             2m + 1, etc., t will always be found to be non-integral, as in 

equation (3.02), the coefficient of pn will be 0, whence we will 

have :- 

 

                         tn = 2xn or t = x(2)1/n = A non-integer, since (2)1/n = A 

non-integer or surd for all values of n ≥ 2 and x = An integer. 

 

            Thus for all odd values of n > 2, we have from z = p + t = A non-

integer. 

 

              4.4      We will now examine general values of t for all values of n > 2.     

                                       From equation (4.01), we have :- 

 

                                       t = [ (x + p)(x2 – p2)(x3 + p3) …. {xn-1 – (-1)n-1 pn-1}]2/{n(n-1)}   

                                                                                                                            ….  (4.01) 

                                             | ……………….(n-1) terms) …………………..| 

 

                                           = A 2/{n(n-1)}    (say) 

 

4.4.1 The R.H.S. of equation (4.01) has (n-1) terms and the index of 

‘A’ or the total bracketed figure of R.H.S. is always a fraction 

less than unity for values of n > 2. the denominator of this 

fractional index shall always be a multiple of n, whence for t to 

be an integer the first requirement will be that at least the 

rational/integral nth root of ‘A’ could be taken out. This is 
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however just not possible as the R.H.S. of equation (4.01) has 

only (n-1) terms, each being different integers for assumed 

integral values of x and p and as after the first term no two 

consecutive terms are fully divisible amongst themselves, and 

though the first term divides all other terms, but neither the 

respective results of divisions are equal, the various terms being 

different from each other, nor the results of divisions individually 

or combinedly form squares, cubes, etc. of the same 

quantity/term, whence no n factors of same integer can be equal 

to the value of A or total bracketed figure of R.H.S. of equation 

(4.01) whence rational/integral nth root of “A” is not possible at 

all. This means that t will never be an integer for values of n > 2, 

whence z = p + t = A non integer for all values of n > 2, where p 

is an integer and t is a non-integer. 

 

4.4.2 Thus FLT shall not hold good for all integral x, y and z for n > 2, 

where z will always be non-integral even if x and y are 

maintained as integers for n > 2. 

 

4.4.3 Incidentally for n = 2, we have the following relationship from 

equation (4.01), as in this case the R.H.S. will have only one 

term. 

 

t = (x + p)2/{n(n-1)}  = (x + p)2/{2(2-1)} = x + p  …. (4.01/n) 

 

The above equation is the same as the equation (4.0/2) which 

was derived for n = 2. 

 

5.         Conclusion :- 

Thus we have seen that FLT holds good, vide para 4.2.6, for all 

integral x, y and z for n = 2 and does not hold good, vide para 

4.4.2, for all integral x, y and z for n > 2. 

 

This proves Fermat’s Last Theorem (FLT). 

 

 

 

    


