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Abstract. We present a collection of five nontrivial exercises in number theory (Questions 1–4) and
graph theory (Question 5). These problems can be efficiently solved using insights and shortcuts
derived from the author’s previously published papers. This preprint invites readers to test their
expertise in these fields and assess their ability to independently solve the proposed exercises.
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1 The problems

Question 1. Which is the maximum value of the positive integer n (let us call it nmax) such that
10000000003333704193 ≡ 314159265358979323846264338327953333704193 (mod 10n), where m3333704193

means 333370419333337041933333704193
···
m-times (e.g., 33 = 33

3
= 327 = 7625597484987)?

Question 2. Which is the smallest positive integer n (let us indicate it as nmin)
such that, in the decimal numeral system, n202520252025 ≡ n+2025202520252025

(mod 10202552022025) (where n202520252025 indicates the n-th tetration of 202520252025, i.e.,
202520252025202520252025

202520252025···
n-times)?

Question 3. Which 4-digit number can be formed by juxtaposing (from left to right) the four
distinct congruence classes modulo 10 of the differences between the 4000000025-th rightmost digit
of 1000000006267785184193 and the 4000000025-th rightmost digit of 1000000007267785184193, the
4000000029-th rightmost digit of 1000000007267785184193 and the 4000000029-th rightmost digit
of 1000000008267785184193, the 4000000033-th rightmost digit of 1000000008267785184193 and the
4000000033-th rightmost digit of 1000000009267785184193, and lastly the congruence class modulo
10 of the difference between the 4000000037-th rightmost digit of 1000000009267785184193 and the
4000000037-th rightmost digit of 1000000010267785184193?

Question 4. Which is the congruence class modulo 1016309690970750 of the
difference 27182818284592922943 − 31415926535892922943, where 27182818284592922943 means
29229432922943

2922943···
2718281828459-times (e.g., 33 = 33

3
= 327 = 7625597484987)?

Question 5. Let the two grids G1 := {{0, 1, 2} × {0, 1, 2} × {0, 1, 2}} ⊂ R3 and G2 := {{4, 5} ×
{4, 5} × {4, 5}} ⊂ R3 be given. Which is the minimum number of edges that a closed polygonal
chain (i.e., a circuit) must have to join all the 27 points of G1 first and then all the 8 points of G2,
returning to the starting point with its last line segment?
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2 The solutions

Answer 1. The value of n such that 10000000003333704193 ≡
314159265358979323846264338327953333704193 (mod 10n) and 10000000003333704193 ̸≡
314159265358979323846264338327953333704193 (mod 10n+1) is 9000000009. So the solution to
this problem is 9000000009.

Explanation of Answer 1. We know that the congruence speed (see Definition 1.1 of [3]) of the
tetration base 3333704193 is certainly stabile at height ν5(33337041932 + 1) + 2 = 10 + 2 = 12

since 33337041932+1 = 11113583646425781250 = 510 · 2 · 42793 · 13296929 (see Definition 2.1,
p. 447, of Reference [3]). Thus, let us calculate the number of stable digits of 123333704193 (i.e.,
the least significant frozen digits of 3333704193 at height 12 that will not change by moving to
height 13) so that we will use the knowledge of the constant congruence speed of 3333704193 to
finally compute the exact number of the rightmost frozen digits of 10000000003333704193.

Now, the constant congruence speed of 3333704193 is equal to 9 by Equation (16) of “Number
of stable digits of any integer tetration” [3] (since V (3333704193) = ν2(3333704193− 1)),
while 123333704193 ≡ 133333704193 (mod 10117) and 123333704193 ̸≡ 133333704193

(mod 10118) (we can do this by hand, in a couple of minutes, by iterating Hensel’s lifting
lemma on the free online version of WolframAlpha) implies that 10000000003333704193 ≡
314159265358979323846264338327953333704193 (mod 109·(1000000000−12)+117) and
10000000003333704193 ̸≡ 314159265358979323846264338327953333704193 (mod 109·(1000000000−12)+118).

Therefore, the correct answer to this original problem is nmax = 9 · (1000000000 − 12) +

117 = 9000000009 (indeed, nmax = 9 · (1000000000 + 1) and thus 9 | nmax as expected since
1000000000 ≥ ν5(3333704193

2 + 1) + 2).

Answer 2. The smallest n ∈ Z+ such that n202520252025 is congruent to n+1202520252025

modulo 10202552022025 is 67506750674. In detail, nmin = 67506750674 is the correct answer to
this question since 67506750674−1202520252025 ̸≡ 67506750674202520252025 (mod 10202552022025)

and 67506750674202520252025 ≡ 67506750674+1202520252025 (mod 10202552022025) implies
that 67506750674−1202520252025 ̸≡ 67506750674+2025202520252025 (mod 10202552022025) and
67506750674202520252025 ≡ 67506750674+2025202520252025 (mod 10202552022025).

Thus, nmin = 67506750674.

Explanation of Answer 2. We use the constancy of the congruence speed (see Definition 1.1
of [3]) of the tetration base 202520252025 to easily solve the present problem, proving that
nmin = 67506750674.

The fifth line of Equation (16) of Reference [3] provides the exact number of the new rightmost
frozen digits of m202520252025 at any height m ∈ N such that m ≥ ν2(202520252025

2 − 1)−1+2

(since taking an hyperexponent greater than or equal to ν̃(a)+2, see Definition 1.1 of Reference [3],
is a sufficient condition for the constancy of the congruence speed of any tetration base not a
multiple of 10, there are only a few cases that we need to directly check in order to provide the
whole map of the congruence speed of 20252025202).

More specifically, (ν2(202520252025
2 − 1) − 1) + 2 = 4 + 2 so that

6202520252025 (mod 103·(6+1)) will not be a thread, and here are the last 30 digits of
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1202520252025,2 202520252025, . . . ,6 202520252025:

000000000000000000202520252025 (height 1),
409532443620264530181884765625 (height 2),
347573653794825077056884765625 (height 3),
691678420640528202056884765625 (height 4),
451657668687403202056884765625 (height 5),
538815871812403202056884765625 (height 6).

The above confirms that the congruence speed of 202520252025 is 2 at height 1, 7 at height 2,
and 3 for each (integer) hyperexponent greater than 2.

Thus, nmin = ⌈202552022025−9
3

⌉+ 2.
Hence, nmin = 202552022025−9

3
+ 2 = 67517340672 + 2.

Therefore, the solution is 67517340674.

Answer 3. The correct answer is 2684 (since the congruence class modulo 10 of the difference
between the 4000000025-th rightmost digit of 1000000006267785184193 and the 4000000025-th
rightmost digit of 1000000007267785184193 is 2, the congruence class modulo 10 of the difference
between the 4000000029-th rightmost digit of 1000000007267785184193 and the 4000000029-th
rightmost digit of 1000000008267785184193 is 6, and so forth).

Explanation of Answer 3. This result is verifiable by observing that the constant congruence speed
of the tetration base 267785184193 is equal to 4 (since 267785184193 is congruent to 13 modulo
20 and 84193−04193

104
̸= 5 so that line 13 of Equation (16) of [3] implies that V (267785184193) =

ν5(267785184193
2 + 1) = 4).

Then, we can use the sufficient condition ν5(267785184193
2 + 1) + 2 in order to find a small

hyperexponent b̄(202520252025) = ν5(267785184193
2 + 1) + 2 = 6 of 267785184193 which

guarantees that the congruence class modulo 10 of the difference between the rightmost non-stable
digit of b̄+4·k202520252025 and the rightmost non-stable digit of b̄+1+4·k202520252025 will not
change for every k = 0, 1, 2, 3, 4, . . .. Now, since these congruence classes form a 4-iteration cycle
(it is a general property holding for any tetration base not a multiple of 10 that the author discussed
in Chapters 3, 4, 6, and 7 of the 2011 book “La strana coda della serie nn...n”), we only need to
repeat the process above for b̄+1202520252025, b̄+2202520252025, and b̄+3202520252025.

Then, we only need to compute the differences between the 4000000025-th, 4000000029-th,
4000000033-th, 4000000037-th righmost digits of 6202520252025 and 7202520252025,
7202520252025 and 8202520252025, 8202520252025 and 9202520252025, 9202520252025 and
10202520252025 (respectively), that are not stable at the given heights.

Here is the list of the last 50 digits of 1202520252025, 2202520252025, . . ., 10202520252025:

00000000000000000000000000000000000002677851840193 (height 1),
72746774787310230786051327055664873001313189344193 (height 2),
69705545170698892750157810132154178151469989344193 (height 3),
46930577055807235383561110643145370215469989344193 (height 4),
29850035072124163574964155668200090215469989344193 (height 5),
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86572083424338844790891220653800090215469989344193 (height 6),
87160656879247250823389908653800090215469989344193 (height 7),
85662154799964302481629908653800090215469989344193 (height 8),
97483849607746497681629908653800090215469989344193 (height 9),
39446532696642497681629908653800090215469989344193 (height 10).

Hence, we get the cycle [2, 6, 8, 4] which uniquely identifies, for any given k ∈ N0, the four
distinct congruence classes modulo 10 of the difference between the rightmost non-stable digit
of 6+4·k202520252025 and the corresponding digit of 7+4·k202520252025 (and this congruence
class modulo 10 is always 2), . . ., and so on up to the congruence class modulo 10 of the
difference between the rightmost non-stable digit of 9+4·k202520252025 and the corresponding
digit of 10+4·k202520252025 (and this congruence class modulo 10 is always 4).

Therefore, the solution to this original problem is the number 2684.

Answer 4. The answer is 5 · 1016309690970749 since 27182818284592922943 ≡ 31415926535892922943

(mod 1016309690970749) (the congruence speed of the tetration base 2922943 is 0 at height 1, 7 at
heights 2 to 8, and finally it stabilizes at the constant congruence speed value V (2922943) = 6

which characterizes every hyperexponent of 2922943 at or above 9) [3] while the absolute value
of the difference between the rightmost non-stable digit of b̄2922943 and the rightmost non-stable
digit of b̄+12922943 is equal to 5 for any integer b̄ ≥ 9.

Explanation of Answer 4. Trivial result (see [4]).

Answer 5. The minimum-link closed polygonal chain that visits all the points of G1 and then all
the points of G2 in R3 consists of 18 connected line segments.

Explanation of Answer 5. A constructive proof is given since, for each k ∈ N − {0, 1}, the
provided upper bound matches the trivial lower bound that follows by combining the general
solution 3 · 2k−2 for any {0, 1}k grid [5] and the general solution 3k−1

2
for any {0, 1, 2}k grid [1].

In detail, here we are considering the case k = 3 so that we need at least 33−1
2

+ 3 · 23−1 − 1

line segments to join all the vertices of G1 ∪ G2 through a single polygonal chain (given the fact
that {0, 1}3 has no more than 2 collinear points and that we can use the last line that solves G1 to
fit 2 more points of G2), so 6 points of G2 remain. Then, the proof of Lemma 1 of [5] is sufficient
to guarantee no covering trail for G1 ∪G2 with less than 18 line segments.

Now, we observe that a closed polygonal chain satisfying our constraints actually
exists since P18 := (0, 1, 0)-(0, 3, 0)-(3, 0, 3)-(0, 0, 0)-(0, 0, 3)-(3, 3, 0)-(0, 0, 0)-(0, 3, 3)-(3, 0, 0)-
(0, 3, 0)-(0, 0, 3)-(3, 0, 0)-(0, 0, 0)-(6, 6, 6)-(2, 4, 4)-(5, 4, 11

2
)-(5, 4, 3)-(5, 6, 5)-(0, 1, 0) is such that

{{0, 1, 2}3 ∪ {4, 5}3} ∈ P18.
Therefore, the correct answer is 18 (see Figures 1 and 2).
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Figure 1. P18, perspective 1.
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Figure 2. P18, perspective 2.
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