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Abstract 

Complex Ginzburg-Landau equation (CGLE) is a paradigm for the onset of chaos and turbulence in 

nonlinear dynamics of extended systems. Here we point out that the underlying connection between CGLE 

and the Navier-Stokes (NS) equation bridges the divide between fluid flows, on the one hand, and the 

mathematics of General Relativity (GR) and classical gauge theory, on the other. The analogy hints to a 

possible link between the transition from laminar to turbulent flows and the mass generation mechanism 

of quantum field theory (QFT).    

Key words: chaos and complexity, complex Ginzburg-Landau equation, turbulence, Navier-Stokes 

equation, classical gauge theory, General Relativity.   

 

1. Introduction 

Building on the assertion that complex dynamics plays a critical role in foundational 

physics [1-3], the object of this brief report is to show that the roots of both classical gauge 

theory and GR may be traced back to the CGLE. 

The report contains a couple of paragraphs and an Appendix section. First paragraph 

delves into the derivation of the NS equation from CGLE and the role of kinematic 

viscosity in the transition from laminar flows to turbulence. The second paragraph points 
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out to research studies looking into the analogy between NS and classical field theory, 

namely GR and Maxwell’s electrodynamics. The analogy suggests an unforeseen parallel 

between the onset of fluid turbulence via the reduction of kinematic viscosity and the 

mass generation mechanism of QFT.   

We caution from the outset that the sole intent of this report is to lay the groundwork for 

further exploration of the topic. Exclusively presented in a draft form, our analysis is far 

from completion and far from meeting the quality standards of a full blown research 

project. Independent work is needed to develop, validate, or reject the ideas presented 

here.    

2. CGLE and the NS equation  

We start by recalling that the CGLE encodes many key properties of out-of-equilibrium 

nonlinear dynamical systems with space-time dependence. As paradigm for the 

emergence of complex behavior, CGLE describes the generic onset of chaos, turbulence, 

and spatiotemporal patterns in extended systems [4-6]. It assumes the standard form  

 
2

1 3(1 ) (1 )t z z ic z ic z z


 = + +  − −   (1) 

in which z  is a complex-valued field, the parameters   and   are positive and the 

coefficients 1c  and 3c  are real. The nonlinear Schrödinger equation (NSE) is a particular 

embodiment of the CGLE in the limit 0 → , namely [11], 
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To streamline the presentation, we work in 1+1 space-time and assume 1 = . In its 

original formulation and natural units ( 1= ), the quantum-mechanical version of (2a) 

reads 

 21
( , ) [ ( , )] ( , )

2
i z x t V x t z x t

t m


= −  +


  (2b) 

where ( , )V x t  is the potential function. The so-called Madelung transformation enables 

one to turn (2b) into the quantum Euler equation for compressible potential flows [7]. In 

particular, taking the complex-valued field in the canonical form, 

 
( , )

( , ) exp[ ( , )]
x t

z x t iS x t
m


=   (3) 

and substituting it into (1)-(2) leads to 

 ( ) 0u
t





+ =


  (4) 

 
1
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du u

u u Q V
dt t m


= +  = −  +


  (5) 

Here, ( , )u x t  denotes the flow velocity, 
2

m z =  stands for the mass density and  

 
2( )1
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= −   (6) 

is the so-called Bohm potential. The flow velocity and its associated probability current 

are given by 
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  = =  −    (8) 

Since the Schrödinger equation is conservative, the Madelung transformation naturally 

leads to the Euler equation, which is exclusively valid for inviscid flows. To account for 

fluid viscosity and arrive at the NS equation, one needs to either appeal to an extended 

version of the NSE containing non-conservative terms [7-8] or bring up the concept of 

kinematic viscosity – a concept linked to the mass of quantum particles [9] as in  

 
1

2m
 =   (9) 

On account of (9) and for incompressible flows, the NS equation that mirrors (5) is given 

by  

 21du u
u u p u

dt t





= +  = −  +


   (10) 

where p  is the pressure. An alternative expression for the NS equation (10) may be 

obtained using the identity 

 21

2
u u u u  =  −    (11) 

where u =  represents the vorticity vector [10]. The corresponding NS equation 

reads 
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Referring to (3), the phase of the field amounts to 

 S m udx=    (13) 

such that 

 
( , )

exp( )( , )
x t

im udx
m

z x t


−=    (14) 

3. From CGLE to abelian gauge theory and GR 

It is instructive to note that there is a wealth of literature dealing with the connection 

between the NS equation, on the one hand, and the formalism of classical electrodynamics 

and GR, on the other. The interested reader is invited to consult a cross-section of 

representative references listed under [12 - 19].   

4. Concluding remarks 

The brief analysis presented here falls in line with our previous findings where, under 

general boundary conditions, the long-run evolution of Renormalization Group flows is 

conjectured to converge on strange attractors [2, 21-22]. Supported by an underlying 

multifractal structure, these attractors provide realistic models for the onset of chaos in 

nonlinear dynamics, the transition to turbulence as well as for the phenomenology of the 

Standard Model near or above the electroweak scale [1, 3]. 
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Relation (9) confirms that highly viscous fluids produce a hydrodynamic regime close to 

laminar flows. Interpreted in the context of the minimal fractal manifold [3], the 

kinematic viscosity assumes the role of a mass generation mechanism and corresponds to 

the inverse of the dimensional parameter 

2

24 ( ) 1
UV

mD O = − = 


 

Stated differently, 

 
1
2

1
( )

2
O

m
 

−
= =   (15) 

Extrapolating (15) to QFT, hints that the kinematic viscosity may justify the mechanism 

of mass generation in the Standard Model of particle physics.  

 APPENDIX 

Our analysis suggests that the geometry of strange attractors underlies the equations of 

classical field theory in an inconspicuous way. The aim of this Appendix section is to 

reinforce this conclusion. Here we show that seemingly disparate concepts of quantum 

physics and classical field theory – namely, the Berry phase, gauge potentials and the 

connection coefficients of GR - share a common geometric foundation. 

A) Berry phase in quantum physics 

A quantum system adiabatically transported around a closed path C in the space of 

external parameters acquires a non-vanishing phase (Berry phase, BP in short). Since BP 

is exclusively path-dependent, it provides key insights into the geometric structure of 

quantum mechanics and QFT. The BP concept is closely tied to holonomy, that is, the 
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extent to which some of variables change as other variables or parameters defining a 

system return to their initial values.  

Consider a quantum system described by the time-dependent Hamiltonian ( )H t , whose 

associated eigenstate is ( )t  and which is embedded in a slowly changing environment.   

After a periodic evolution of the environmental parameters ( t t T→ + ), the eigenstate 

returns to itself, apart from a phase angle, 

 ( ) (0)it e  =   (A1) 

If   denotes the eigenvalue of ( )t , a generalization of the phase angle T =  in units 

of 1=  is given by the “dynamical phase” 

 
0 0

( ) ( ) ( ) ( )
T T

d t dt t H t t dt   = =    (A2) 

 Berry has shown that there is a time-independent (but contour dependent) supplemental 

“geometric phase” entering the phase angle, namely, 

 ( )d C  = +   (A3) 

where 

 ( )
C

C i dr  =    (A4) 
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The dynamical phase 
d  encodes information about the duration associated with the 

cyclic evolution of the complex vector ( )t . By contrast, (A4) encodes information about 

the geometry of the environment where the transport takes place. 

  

B) The geometry of gauge and gravitational fields 

The gauge field concept may be built from a straightforward geometric interpretation, 

according to [20]. Consider the parallel transport of a complex vector   round a closed 

rectangular loop. The difference between the value of  at the starting point (
0

 ) and 

at the end point 
0 f

 → is given by 

 
0f ig S F

    = − = −    (B1) 

in which S  denotes the area enclosed by the rectangle and the strength of the gauge 

field is 

 ,F A A ig A A      
 =  − −     (B2) 

Echoing the formation of the Berry phase, the effect of parallel transport is to induce a 

non-vanishing rotation of   in internal space proportional to the strength of the gauge 

field. Likewise, the curvature tensor of GR may be motivated through similar arguments. 

Taking a vector V   on a round trip by parallel transport, the difference between the initial 

and final components of the vector amounts to 
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1

2
V R V S   

 =    (B3) 

This equation faithfully replicates (B1) and signals the presence of a gravitational field, 

via the curvature tensor R
 .  The geometric analogy between gauge theory and General 

Relativity is captured in the table below. 

Gauge Theory General Relativity 

Gauge transformation Coordinate transformation 

Gauge group 
Group of coordinate 

transformations 

Gauge potential A  Connection coefficient 

  

Field strength F   Curvature tensor R

   

Comparison between the geometry of gauge and gravitational fields. 
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