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Abstract 

   A quantization of classical spinning particle equations is carried out using the Euler angles of 

the particle.   Relativistic corrections are found and compared to the Foldy-Wouthuysen  

transformation of the Dirac equation.   We only consider constant linear electric and magnetic 

fields, and find agreement up to order 1/c6. 

 

I. Introduction 

  There are many papers on connecting classical spin to the Dirac equation and we will not try  

to give a comprehensive review of all the methods.  For information on the Dirac equation see 

for example Sakurai [1].   For a review of some of the different classical spin ideas see Rivas [2]. 

As an example, Grossmann and Peres [3] use a classical particle with 8 internal degrees of 

freedom to reproduce the properties of the Dirac eq.  Rafanelli and Schiller [4] as well as 

Rubinow and Keller [5] use a WKB expansion of the Dirac equation and compare the result to 

the BMT spin equation [6].   

   A number of papers, including some by Silenko [7], look at a classical analogy of the Dirac eq.  

by taking the Foldy-Wouthuysen transformation [8] and using the Heisenberg equations of 

motion to find corresponding classical equations.   Chen and Chiou [9] derive the classical 

equations found in Jackson [10] which are based on the BMT spin equation, and set up a spin 

and orbital Hamiltonian based on those equations and compare the results to the Foldy- 



Wouthuysen transformation of the Dirac equation.  They find the same relations that we do but 

use a different method.  We give a summary of their method at the end of the paper.   

   We will use a method similar to that of Bopp and Haag [11].  They use the Euler angles with 

the classical spin equations to derive the non-relativistic quantum mechanical equation of spin, 

the Pauli spin equation.  Other papers follow their method, for example Bozic and Maric [12], 

but do not include relativistic corrections.  We extend their ideas by including some relativistic 

corrections based on the translational and spin equations for a particle in constant Electric and 

Magnetic fields.  These equations can be found in Jackson [10].   We will only consider terms 

linear in the Electric and Magnetic fields and quantize the system in the Schrodinger picture.  We 

then compare our results to those of the Foldy-Wouthuysen transformation for the Dirac 

equation.   We obtain the exact case for a constant magnetic field and find agreement with the 

Foldy-Wouthuysen terms up to 6th order in 1/c when a constant electric field is also included. 

We will only consider the spin one half case. 

 

II. Classical equations 

   From Jackson [10] we have the translational and spin equations for constant electric and 

 magnetic fields 
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where s is the spin angular momentum in the particle's rest frame and E and B are the electric  

and magnetic fields in a general frame.   In these expressions 𝛃 = 𝐯/c and γ = (1 − β2)−1/2  



where v is the velocity of the particle in the general frame and c is the speed of light.  q is the  

charge of the particle and m is its rest mass.   g is the g-factor which is close to 2 for the electron.    

We use a bold symbol to indicate a vector. 

   Setting 𝐬 = I𝛚0 where I is the moment of inertia for the particle and 𝛚0 is the angular velocity 

in the particle's rest frame, for g = 2 eq. (2) reduces to 
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We wish to find a Lagrangian for eqs. (1) and (3) using the Euler angles , , and  and the 

particle position as the degrees of freedom.   𝛚0 can be expressed in terms of the Euler angles  

and their time derivatives, however these derivatives are with respect to the proper time , that is 

the time in the rest frame of the particle and in the variation of the Lagrangian we want to use the 

time t in the general frame.   From Goldstein [13] we have 
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where x, y and z are unit vectors in the x, y, and z directions, and using  as the time in the rest 

frame.   Now define  to the same form as 𝛚0 except for 
d

dτ
 replaced by 

d

dt
 and since  

  
d

dτ
=
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dτ

d

dt
= γ

d

dt
  we have 𝛚0 = γ𝛚.     Thus eq. (3) takes the form   
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q

mc
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where we have set 𝐁′ = 𝐁 −
γ

γ+1
𝛃 × 𝐄. 

 

III. Variational principles  

   Now look at finding a Lagrangian.    If we take a function L() and apply the Euler-Lagrange  

equations to it using the Euler angles as variables we find the equations 

 

   
d

dt
𝛁𝛚L = 𝛚 × 𝛁𝛚L                                                                                                                     (6) 

 

where 𝛁𝛚L represents the gradient of L with respect to 𝛚.    We also have the usefull relation 
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Now define m0 = m −
1

2c2 Iγ2ω2.   m and m0 are both constants of the motion since 

 
d

dt
(γ2ω2) = 0 as can be seen from eq. (5).   m0 can be thought of as the non-rotating rest mass.     

    For a Lagrangian try 

 

  L = −m0c2𝛾−1 + q (
1
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2
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where A is the vector potential and  is the scalar potential. 

   Using the Euler-Lagrange equations for the particle position which are given by 

 

      𝛁L −  
d

dt
𝛁𝐯L = 0                                                                                                                     (9) 

 



we find that if  we only keep linear E and B fields we obtain the translational eq. (1) by 

using the relations 𝐁 = 𝛁 × 𝐀 and 𝐄 = −𝛁Φ −
1

c

𝜕𝐀

𝜕t
 .   𝛁𝐯L represents the gradient of L with  

respect to the velocity v.  For the rotational part the Euler-Lagrange equation for the Euler  

angles, eq. (6), reduces to the rotational equation (5) if we only keep linear E and B fields. 

  The conjugate momentum and Hamiltonian H take the form 
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  𝐩𝛚 = 𝛁𝛚L = Iγ𝛚 +
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mc
𝐁′                                                                                                         (11) 
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− L = 𝐯 ⋅ 𝐩𝐯 + 𝛚 ⋅ 𝛁𝛚L − L  
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using the relation γ2 − 1 = γ2β2, and eq. (7).   We want to express the Hamiltonian in terms of  

the 𝐩𝐯 and 𝐩𝛚 so that we can quantize the system. 

   First consider the case of E =  = 0 in which case the conjugate momentum relations (10) and  

(11) can be arranged so that 
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again only keeping linear fields.   We have set 𝛑 = 𝐩𝐯 −
q

c
𝐀 and m′ = m0 +

1

2Ic2 p𝛚
2.     

   Using eq. (12-14) the Hamiltonian takes the form 
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c4 + c2π2 −

2q

m
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1
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again only keeping linear fields and we have set Π =
1

m′2
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Assuming that  is small compared to one we can expand eq. (15) to the form 
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plus higher order terms.  We have only kept linear B field terms.  Eq. (16) will be useful in the 

next section.    

   Next consider the case of including the electric field and making an expansion.  In this case 

eqs. (10) and (11) can be combined to yield 

 

  𝛑 = (m′c −
q

mc2 𝐩𝛚 ⋅ 𝐁′) γ𝛃 +
q
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again only keeping linear fields.   We can put this into a more convenient form by defining the 

terms 𝐄2 = −
q

mc2 𝐩𝛚 × 𝐄 and m2 = m′c −
q

mc2 𝐩𝛚 ⋅ 𝐁 so that eq. (17) takes the form 
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Expanding  in terms of β2 and keeping terms in  up to the 6th order, eq. (18) can be written as 
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where 𝐩2 = 𝛑 +
1

2
𝐄2.  

   Now expand  in a power series of 𝐩2 to the 6th order and require that eq. (19) be obeyed.  By 

 equating powers and only keeping linear terms in the fields, we find the expansion 
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We now want to put eq. (20) into the Hamiltonian. 

   Expanding  in terms of β2 and keeping terms in  up to the 6th order, eq. (12) for the 

 Hamiltonian takes the form 
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where we have also used eq. (11).   Now use eq. (20) in eq. (21) and using the relations for 𝐩2,  

𝐄2 and m2 we find 
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where we have ignored non-linear field terms and used the relation 

 
1

m2
n =

1

m′n
cn

(1 +
nq

mm′c3 𝐩𝛚 ⋅ 𝐁) where n is a positive integer.  Notice that if  E =  = 0 then  

eq. (22) agrees with the power series expansion of the exact solution, eq. (16).   It is interesting 

that in eq. (22) the E and B expansions have similar terms, and because the expansion for 

the B part can be calculated to any precision it is possible to guess what the expansion of the 

E part might be to any precision.  

 

IV. Quantization 

   For quantization we replace  by 𝛑̂ = −iℏ𝛁 −
q

c
𝐀 and, following Bopp and Haag [11], 𝐩𝛚 by  

−iℏ𝐃̂𝛚 where 
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+  

sin(ϕ)

sin(θ)
(

∂

∂ψ
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        + 𝐳
∂
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and a hat indicates an operator.    

    The Hamiltonians we are dealing with have the form 

 

    H = ∑ (anp𝛚
2n + (𝐛n ⋅ 𝐩𝛚)p𝛚

2n)∞
n=0                                                                                      (24) 



where the terms an and 𝐛n depend upon .   

   We have the Schrodinger type equation 

 

   iℏ
∂Ψ

∂t
= ĤΨ                                                                                                                              (25) 

 

where Ĥ is H turned into an operator.  The wavefunction  is a function of the particle position,  

time and the Euler angles, and for spin 1/2 can be written in the form 

 

   Ψ = ∑ ∑ χm1m2
Ψm1m22

m2=1
2
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where the χm1m2
 are elements of the matrix  given by 
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1
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and Ψm1m2 is a function of the particle position and time.   We also have the relations 
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2
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2
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2

χm1m2
= 𝐃̂𝛚 ⋅ 𝐃̂𝛚χm1m2

=  −
3

4
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where the 𝛔   m2

p
 represent the elements of the Pauli spin matrices  in vector form.   Using 



eq. (26), eq.(28) and eq. (29) in eq. (24) and eq. (25) we have 

 

  iℏ ∑ ∑ χm1m2

∂
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2
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∞
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2
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3

4
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2
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3

4
ℏ2)n𝐛n ⋅ ∑ 𝛔     p

m22
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The χm1m2
 are independent so these equations represent two identical equations for m1 = 1  

and 2.    If we drop the m1 idici then Ψm2 represents the components of a 2x1 matrix which we  

will represent by , so that eq. (30) becomes   

 

  iℏ
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∂t
= ∑ {an(

3

4
ℏ2)n∞

n=0 +
1

2
ℏ(

3
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   Now we have terms in the Hamiltonian of the form 

 

   m′−n
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1

2Ic2
p𝛚

2)−n = m0
−n(1 +

1

2Im0c2
p𝛚
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for some positive integer n.  If we assume that p𝛚
2 is much smaller than 2Im0c2 then we can 

make an expansion of eq. (32) so that 

 

   m′−n
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−n ∑ cp
∞
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1

2Im0c2
)pp𝛚

2p                                                                                      (33) 

 



for some constants cp.   When we make an operator out of this and put it in the wave equation we 

will obtain the expression 

 

  m′−n
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∞
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1
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p
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3

4
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3ℏ2

8Ic2)−n                (34) 

 

   Now consider the exact case with only a magnetic field.   In that case from eq. (15) we have 

 

  H = m′c2(1 + Π)1/2 = m′c2 ∑ dpΠp∞
p=0         
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1
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π2(p−1)m′𝐩𝛚 ⋅ 𝐁 )∞
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for some constants dp.  We are also only keeping linear fields.   Using eq. (34) in eq. (35), the 

Schrodinger like equation (25) then becomes 

 

  iℏ
∂Ψ

∂t
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8Ic2)
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            = (m0 +
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q
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)c2{1 + (m0 +
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q
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           = {(m0 +
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8Ic2)2c4 + π̂2c2 −
q

m
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keeping only linear fields. 

    Now consider the case of no magnetic field so that B = A = 0.  In that case eq. (36) becomes 

 

   iℏ
∂Ψ

∂t
= {(m0 +

3ℏ2

8Ic2)2c4 − ℏ2c2∇2}1/2Ψ                                                                                (37)                                 

 

A solution to eq. (37) is Ψ = exp(i(𝐩 ⋅ 𝐱 − Et)/ℏ) where p is the momentum, x the particle  

position, and  

 

  E2 = (m0 +
3ℏ2

8Ic2)2c4 + p2c2                                                                                                     (38) 

 

In the case of p = 0, E can be taken as the rest energy and m0 +
3ℏ2

8Ic2 as the rest mass, so 

set m = m0 +
3ℏ2

8Ic2  .   In this case eq. (36) becomes 

 

   iℏ
∂Ψ

∂t
= {m2c4 + π̂2c2 − qcℏ𝛔 ⋅ 𝐁}1/2Ψ                                                                                 (39)                                    

 

which is the equation for a constant B field derived by the Foldy-Wouthuysen method from the  

Dirac eq.  See Case [14] and for example Silenko [15] . 

    Now consider the case of including a non-zero electric field and using an expansion.  For  

quantization m' gets replaced by m,   by 𝛑̂, and 𝐩𝛚 by 
1

2
ℏ𝛔 in the Hamiltonian given by  

eq. (22).   So the corresponding quantum equation is 

 

 

 



  iℏ
∂Ψ

∂t
= [mc2 (1 +

1

2
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1
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+

1
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           +
q
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1

2
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3

8
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5
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           − 
1

4

q
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(1 −

3

4
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+

5

8

π̂4
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) ℏ𝛑 ⋅ (𝛔 × 𝐄) + qΦ]Ψ                                                     (40)                                     

  

    Now compare eq. (40) to the Foldy-Wouthuysen transformation of the Dirac equation.   

Jentschura [16] carries the transformation out to the 8th order and if we take his result for linear 

constant fields we obtain 

  

ĤFW = m +
π̂2

2m
−

π̂4

8m3 +
π̂6

16m5 −
5π̂8

128m7 + (−
1

2m
+

1

4

π̂2

m3 −
3

16

π̂4

m5 +
5

32

π̂6

m7) e𝛔 ⋅ 𝐁  

    

           − (
1

4m2 −
3

16

π̂2

m4 +
5

32

π̂4

m6) e𝛑 ⋅ (𝛔 × 𝐄) + V                                                                      (41) 

 

Note that he has set ℏ = c = 1 and has used e for q and V for qΦ.  We have also only 

written out the top part of the Foldy-Wouthuysen transformation.   As can be seen we get 

agreement to the orders which have been calculated.    

 

V.  Alternate method 

   This method follows the ideas of Chen and Chiou [9] and gives the same results that we obtain 

 following Bopp and Haag [11].  For g = 2 we can write eq. (2) as 

 

   
d𝐬

dt
=  

q

mc
𝐬 × {

1

γ
𝐁 −

1

γ+1
𝛃 × 𝐄}                                                                                                 (42) 



and following Jackson [10] we can associate an energy U with eq. (42) 

 

  U =  −
q

mc
𝐬 ⋅ {

1

γ
𝐁 −

1

γ+1
𝛃 × 𝐄}                                                                                                 (43) 

 

When we include the translational energy and the potential energy associated with the scalar 

potential  we have for the total energy 

 

  E = mγc2 −
q

mc
𝐬 ⋅ {

1

γ
𝐁 −

1

γ+1
𝛃 × 𝐄} + qΦ                                                                             (44) 

 

Now define a conjugate momentum p based on only the translational Lagrangian which, based  

on eq. (10) with no spin, takes the form 

 

  𝐩 = mcγ𝛃 +
q

c
𝐀                                                                                                                        (45) 

 

Then setting 𝛑 = 𝐩 −
q

c
𝐀 we have the relationship 

 

  γ = (1 − β2)−1/2 = (1 −
π2

m2c2γ2
)−1/2                                                                                      (46)  

 

Solving for  we find 

 

  γ = γπ = (1 +
π2

m2c2)1/2                                                                                                            (47) 

 

where we have defined γπ by the eq. (47).   The total energy then takes the form 



  E = mγπc2 −
q

mc
𝐬 ⋅ {

1

γπ
𝐁 −

1

mc

1

γπ+1

1

γπ
𝛑 × 𝐄} + qΦ                                                              (48) 

 

using mcγ𝛃 = 𝛑.    

  To quantize the system replace  by 𝛑̂ = −iℏ𝛁 −
q

c
𝐀 and s by 

1

2
ℏ𝛔, so that using the energy E  

for the Hamiltonian we obtain the quantum equation 

 

  iℏ
∂Ψ

∂t
= EΨ = [mγ̂πc2 −

qℏ

2mc

1

γ̂π
𝛔 ⋅ 𝐁 −

qℏ

2m2c2

1

γ̂π+1

1

γ̂π
𝛑̂ ⋅ (𝛔 × 𝐄) + qΦ]Ψ                            (49) 

 

where γ̂π = (1 +
π̂2

m2c2)1/2.  If we expand eq. (49) in a power series in 
π̂2

m2c2 using our 

relation for γ̂π we obtain eq. (40) plus higher order terms.   It is interesting that we get the same  

relativistic corrections by two different methods.           

 

Conclusion 

   We have only considered the spin 1/2 case and compared our results to the Foldy-Wouthuysen 

transformation of the Dirac equation.  In principle higher order spins could be considered and 

compared to non-relativistic expansions of higher order relativistic spin equations.   It would be 

interesting if  this method could also be extended to non-constant fields. 

   The fact that we get agreement with the Foldy-Wouthuysen transformation to the 6th order in 

1/c indicates that, at least for constant linear fields, the Dirac equation is equivalent to the 

canonical quantization of a classical spinning charge to that order of approximation.  It would be 

interesting to expand this to higher orders to see if we continue to get agreement with the higher  

order Foldy-Wouthuysen terms. 
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