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Abstract

If s=a+bi, proving that the absolute value of the imaginary part of £ (s)={_ (s) T (s/2) z (-
s/2) is not 0 for 0<a<0.5, 0.5<a<1, -co<b< is equivalent to proving that the Riemann
hypothesis is true. When searching for 0<b<x (x is near 0) for 0<a<0.5, 0.5<a<1 using a
computer, it was confirmed that the absolute value of the integral term of [Im(& (s))] is
smaller than the absolute value of the additional term of [Im( £ (s))| and that the polarities of
the two are the same. It was shown that even when b— 0, the absolute value of the integral
term of |Im(& (s))| remains smaller than the absolute value of the additional term of
ITm( £ (s))| and converges. The polarities of the two are the same. As a result, the Riemann

hypothesis was proven correct.
Contents
The analytically continued zeta function  (s) has poles at s=0 and s=1, trivial zeros at

negative even points, and non-trivial zeros along the s=1/2 line (the Riemann hypothesis is

that there are no non-trivial zeros other than on this s=1/2 line).




The non-trivial zero point is related to the famous Riemann hypothesis. The Zeta function is
a function that takes a complex number and outputs a complex number. Let s be a complex
number, and let s=a+bi. The only zero points that can be found are on the line a=0.5 on the
a,b complex plane, where c=0,d=0 when the given complex number is given and the output
complex number is c+di. These points are called zero points, but the Riemann hypothesis is
that there may be no such zero points, non-trivial zero points. If we know all of these infinite
zero points, we can use calculations to draw a graph of the prime number staircase that
represents all prime numbers. If we take an infinite number of them, we can certainly draw
them, but this is hypothetical, and we cannot take an infinite number of them. A trivial zero
point is one where the given complex number is a negative even number, and this is irrelevant. .
What is the Xi function £ (s)? It is a function defined as & (s)=T (s/2) x ~(-s/2) £ (s). £ (s),
or the Zeta function, is difficult to handle, so for the proof we use & (s)={ (s) x (-
s/2)T (s/2). T (s) is an analytically continued gamma function, an extension of the factorial.
It has poles at the negative integer points, and no zeros or poles elsewhere. & "(-s/2) is z (-
(a+jb)/2)=x "(-a/2) x "(-jb/2)= 7 “(-a/2)exp(-jb * log(7)/2)=a"(-
a/2)*(cos(b*log(x )/2)-i*sin(b*log(x )/2)) and has no zeros or poles. T (s/2) is T (s)
stretched twice along the real axis and twice along the imaginary axis. Therefore, T (s/2)  (s)
is a finite value because the zeros at the negative even points of { (s) and the poles of T (s/2)
cancel each other out. The reason why it becomes a finite value is because the function
multiplied and the function multiplied are each a first-order pole and zero, and this is written
on pages 128 to 130 of What is the Riemann Hypothesis (Bluebacks). Furthermore, if you
multiply it by x”"(-s/2), T (s/2) x"(-s/2) { (s) becomes point-symmetric at the point
s=1/2+j - 0. Riemann expressed this as a functional equation. Therefore, T (s/2)x " (-
s/2) { (s) has poles at s=0, s=1, and the only other singular points are non-trivial zeros.
Therefore, by investigating the locations of the non-trivial zeros of T' (s/2) x ~(-s/2) { (s), in
other words & (s), you will have investigated the non-trivial zeros of £ (s). Some of you may
have noticed that the poles at s=0 and s=1 disappear when multiplied by s(1-s). In fact, this
is correct. The real Riemann Xi function is (1/2)s(s-1) & (s). This function has only non-
trivial zeros as singular points. It can be expressed as a product of factorizations of (1-s/non-
trivial zeros), called the Hadamard product. However, I thought I would use the Xi function
that is not multiplied by 1/2*s(s-1) to prove the Riemann hypothesis. In Riemann's paper on
the number of primes less than a given number, it shows that the Xi function & (s) can be
rewritten as follows: E(s)=J  (1—00)(t"(s/2)+t"((1-5)/2) Z (n=1—00)exp(-
an20)*(1/t)dt-1/(s(1-s)) By the way, (1/2)s(s-1) & (s) is (1/2)s(s-1) & (s)=(1/2)s(s-
D S (1—00)(t"(s/2)+tN((1-5)/2) T (n=1—)exp(- 7 n"2t)*(1/t)d t+1 Then the term

1/(s(1-s)) which creates the pole becomes 1 and the pole disappears. To prove the Riemann



hypothesis, it is sufficient to state that the absolute value of the Xi function | £ (a+ib)| is
greater than 0 for all b, i.e. 0<a<1/2, 1/2<a<1. If we substitute s for a+bi and substitute it
into the following equation, & (s)=J (1—00)(t"(s/2)+t"((1-5)/2)Z ( n=1—)exp(-
an20)*(1/t)dt-1/(s(1-s)) £ (a+ib)=J (1—00)tNa/2+1b/2) +t"((1-a)/2-
ib/2) ¥ (n=1—)exp(- 7 n"2t)*(1/t)dt-1/((a+bi)((1-a)-bi))

= [ (1—>)t"(a/2) (exp(ib*log(t))/2)+t"((1-a)/2 )exp(ib*log(t))/2) = (n=1—00)exp(-
an2t)*(1/t)dt-1/((a+bi) ((1-a)-bi)) By substitution integral If you set logt=u
£ (a+ib)= J (0— ) (exp(au/2)*exp(ibu/2)+exp((1-a)u/2)*exp(-

ibu/2))* X (n=1—)exp(- ¥ *n"2*exp(u)) du-1/((a+bi)((1-a)-bi))
= J (0—0)(exp(au/2)*(cos(bu/2)+i*sin(bu/2))+exp((1-a)u/2)*(cos(bu/2)-

i*sin(bu/2))* X (n=1—)exp(- 7 *n"2*exp(u))du-1/((a+bi) ((1-a)-bi))

= J (0—o)(exp(au/2)+ exp((1-a)u/2))*cos(bu/2)+i*(exp(au/2)-exp((1-
a)u/2))*sin(bu/2))* X (n=1—0)exp(- 7 *n"2*exp(u))du-1/((a+bi) ((1-a)-bi))

= J (0—)(exp(au/2)+exp((1-a)u/2))*cos(bu/2)* X (n=1—0)exp(- 7 *n

A2*exp(u))du+i* [ (0— ) (exp(au/2)-exp((1-a)u/2))*sin(bu/2))* X (n=1—0)exp(-

7 *n"2*exp(u))du-1/((a+bi) ((1-a)-bi)) If we set u/2=2xu'
£ (a+ib)=J (0— )4 7 *(exp(2 w u'a)+exp(2(1-a) 7 u'))*cos(2x  bu)*Z (n=1—00)exp(-
7 *n"2*exp(4 wu'))du'+i* [ (0— )4 7 *(exp(2 7w u'a)-exp(2(1-a)

xu'))*sin(2xbu'))* X (n=1—00)exp(- 7 *n"2*exp(4 wr u'))du'-1/((a+bi)((1-a)-bi)) Here, if
we calculate 1/((a+bi)((1-a)-bi)), 1/((a+bi) ((1-a)-bi))=((a-bi) ((1-
a)+bi))/((a"2+b"2)((1-2)"2+b"2)) =a(1-a) +b"2+i*(-b(1-a)+ab)/((a"2+b"2) ((1-
2)"2+b"2)) =(a(l-a)+b"2+i*(2ab-b))/((a”2+b"2)((1-a)"2+b"2)) =(a(l-a)+b"2+i*(2a-
1)b)/((a"2+b"2)((1-a)"2+b"2)) To show that | £ (a+ib)| is greater than 0, simply state that
the imaginary part of £ (a+ib) is not 0. Even if the imaginary part is 0, if the real part is not
0, or even if the real part is 0, if the imaginary part is not 0, then the absolute value is not 0.
Here, we will prove in stronger terms that the imaginary part is not 0. So, if we take out just
the imaginary part of £ (a+ib), we get [ (0—)4x*(exp(2xu'a)-exp(2(1-
a)ru'))*sin(2xbu'))* X (n=1—)exp(- 7 *n"2*exp(4 r u'))du'-((2a-1)b)/((a”2+b"2) ((1-
a)"24+b”2)) If we define the integral part as S(b), then S(b) becomes
S(b)=J (0— )4 7 *(exp(2 ru'a)-exp(2(1-a) 7 u'))* X (n=1—00)exp(-

7 *n"2*exp(4 ru'))*sin(2 x bu')du' and is in the form of a sinusoidal transformation. If we
define  G(u')=4 7 *(exp(2 7 u'a)-exp(2(1-a) 7 u'))* X (n=1—00)exp(- ¥ *n"2*exp(4d 7 u')),
S(b)=J (0—)G(u")sin(2 x bu')du' By computer calculation, G(u') is 0 at a=1/2, and
converges to 0 atb— even at a=1, and converges faster and faster towards a=1/2, becoming
0 overall at a=1/2. Also, even if a=0, it converges to 0 as b—, and the convergence becomes

faster toward a=1/2, and the whole becomes 0 at a=1/2. If H(u") is defined as follows



|G(u') (u'>=0)
H(u)= |

|-G(-u") (u'<0)
Therefore S(b)= S (0—)G(u")sin(2x bu')du'=(1/2)*RE( [ (-
o0 —00)H(u')exp(i*2 & bu')du")
This [ (-c0o—o)H(u)exp(i*2zbu')du' is the Fourier transform of the negative odd-
symmetric expansion of the sine transform of S(b), and since [ |H(u')|du is a finite value,
this Fourier transform converges. Therefore, S(b) also converges. Also, from
http://www.maroon.dti.ne.jp/koten-kairo/works/fft/converge6.html,
K(u)= J (0—)f(x)sin(ux)dx converges to 0 as u— if f(x) is continuous and does not
diverge. (Riemann-Lebesgue theorem) The imaginary part of & (a+ib) s
J(0—)4 7 *(exp(2xu'a)-exp(2(1-a) wu'))*sin(2x bu'))* X (n=1—00)exp(-
7 *n"2*exp(4 wru'))du'-((2a-1)b)/((a"2+b"2) ((1-a)"2+b"2)) When considering the
Maclaurin expansion, it turns out that what determines the speed of convergence is the
differential terms from the second term onwards.
Therefore, when the limit value of f(x)/g(x) as x— 0 cannot be determined, L'Hépital's rule
focuses on the second and subsequent terms of the Maclaurin expansion. In other words, if
f'(x)/g'(x) has a limit value, then the limit value of f(x)/g(x), which was indefinite, will also
be determined, and if the limit of (a function that becomes f(x) when differentiated)/(a
function that becomes g(x) when differentiated) is also indefinite, it will have the same limit
value. Consider the function f(x)=exp(-x)/((2x+1)/(3x*2)). If you wonder what
lim (x— ) f(x) is, it becomes indefinite because lim (x— o0 )exp (-
x)=0,lim(x—0)(2x+1)/(3x"2)=0. In this case, consider a function that becomes exp(-x)
when differentiated. The answer is -exp(-x). Let h(x) be a function that becomes
(2x+1)/(3x"2) when differentiated. Consider this. The answer is that h(x) is O(In|x|) and
lim(x— ) is . So lim(x— ) (-exp(-x)/h(x))=0. (0/=0). In this way, even if the limit of
a function with a denominator of O(x*(-1)) is indefinite, if the limit of a function with the
integrated denominator as the denominator and the integrated numerator as the numerator
is determined, the limit of the original function will also be the same as that limit. In the usual
L'Hépital rule, the denominator is O(x) or O(x"2), and the parentheses of O() do not contain
a negative power. If the denominator is O(x) or O(x"2), and the denominator is the
differentiated denominator and the numerator is the differentiated numerator, once the value
of (numerator limit) /(denominator limit) is determined, the limit of the original function will
be the same as that value. Therefore, if the denominator is O(x*(-n)), n>0, even if the limit
cannot be determined as it is, there are cases where the limit of a function with the integrated

denominator as the denominator and the integrated numerator as the numerator can be



determined. This case appears in the proof of the Riemann hypothesis. In L'Hopital's rule, if
something that has been differentiated becomes a constant, its differentiation is not
considered. This is because if something becomes a constant, it becomes 0 when it is
differentiated, so it is not considered. L'Hopital's rule states that the limit where the limit is
indefinite is the same as the limit when you differentiate the numerator divided by the
denominator, or the limit when you integrate the numerator divided by the denominator.
When the limit becomes a finite value in differentiation or integration, the limit is determined.
For the limit of sin(x)/x as x — 0, consider L'Hépital's rule, and the limit of cos(x)/1 as x —
0 becomes 1. If it is differentiated further, cos(x) becomes -sin(x), and when 1 is differentiated,
it becomes 0, making it meaningless. Therefore, L'Hopital's rule does not consider functions
that have been differentiated any further once the limit has been determined. L'Hopital's rule
does not determine the limit of sin(x)/x, but by considering the limits of the numerator and
denominator differentiated respectively, we can see that it is 1. Therefore, when the
denominator is O(x"n) n>0, once the limit of the function obtained by differentiating the
numerator divided by the function obtained by differentiating the denominator is determined,
the limit of the original function will be determined even if the limit is undefined. If the
denominator is O(x"n) n<0, once the limit of the function obtained by integrating the
numerator divided by the function obtained by integrating the denominator is determined,
the limit of the original function will be the same even if the limit is undefined. This is the
essence of L'Hépital's rule.
f"(b)=J (0—)4 7 *(exp(2 x u'a)-exp(2(1-a) xu'))*sin(2 x bu'))* X (n=1—0)exp(-
7 *n"2*exp(4 7 u'))du’ g"'(b)=((2a-1)b)/((a"2+b"2) ((1-a)"2+b"2)) Then
Im( & (a+bi))=f""(b)-g"'(b) g"(b) is 0 at a=0.5, but the sign is reversed at the border of a=0.5.
Since g"'(b) is o(b"(-3)), g(b) becomes o(In|b|) and is © when b—oo. f(b) is
J(0—)d7*(1/(2xu")"3)*(exp(2 x u'a)-exp(2(1-
a)wu'))*cos(2xbu'))*X (n=1—)exp(- 7 *n"2%*exp(4ru'))du' The reason it can be
integrated is because b is included in cos in the form of a linear function. If you differentiate
three times, 1(27u')"3) disappears. f(b)=J (0—0)(1/(2x u')"3)*(exp(2 x u'a)-exp(2(1-
a)wu'))*cos(2xbu'))*X (n=1—)exp(- 7 *n"2%exp(4ru'))du’ If we only look at
(1/(2xu')"3), it diverges to infinity as u'—0, so the Riemann-Lebesgue theorem does not
hold and it seems that lim(b—)f(b) = 0 does not hold. However, if we consider
1/(2zxu')"3)*cos(2xbu') and consider it together with cos(2zxbu'), and let
m(u')=cos(2x bu') and n(u')=(2 7 u')"3, then we get 1/(2 7 u')"3)*cos(2 x bu')=m(u')/n(u').
lim(u'—0)(m{")/n")) =1/0 Cannot be divided by zero
lim(u'—0)(m'(u")/n'(w"))=lim(u'—0) (-2 7 b*sin(2 x bu"))/((2 x )*3*3*u'2)=0/0
lim(u'—0)(m"(u")/n"(u")=lim(u'—0) ((2 2 b)*2*cos(2 x bu"))/((2 x )"3*3*2*u)= 0/0



lim(u'—0)(m"' (u'")/n"" (")) =lim(u'—0)(-
(2xb)"3*sin(2xbu'))/((22)"3*3*2)=0/((22)"3*3*2)=0 and by L'Hopital's rule
lim(u'—0)(1/(2 7 u)"3)*cos(2 7 bu'))=0. Therefore, we can see that
47*(1/(2xu')"3)*(exp(2xru'a)-exp(2(1-a) wu'))* X (n=1—0)exp(-

7 *n"2*exp(4 ru'))*cos(2wbu')) does not diverge to © when u'—0, but converges to 0.
When we calculate (exp(2 7 u'a)-exp(2(1-a) 7 u'))* X (n=1—)exp(- ¥ *n"2*exp(4 ru')) on
a computer, we find that it is a function that has extreme values but does not diverge. The
calculation program is attached in the Appendix. Also, from a qualitative perspective,
(exp(2wu'a)-exp(2(1-a) xu')) is a hyperbolic function and therefore diverges, but since
Y (n=1—00)exp(- ¥ *n"2*exp(4d wu')) has a decay term of an exponential function to the
power of an exponential function, it may have an extreme value, but this is more dominant,
and  (1/(2xu")"3)*(exp(2wru'a)-exp(2(1-a) ru'))* X (n=1—00)exp(- 7 *n"2*exp(4d 7 u'))
will not diverge, so according to the Riemann-Lebesgue theorem it converges to 0 as
b— oo, Also, if  you repeatedly differentiate (exp(2 wu'a)-exp(2(1-
a)ru')*Z (n=1—)exp(- 7 *n"2*exp(4 7 u')) with respect to u', it will converge to 0. In
other words, it is equivalent to a rapidly decreasing function. The Fourier transform of a
rapidly decreasing function becomes a rapidly decreasing function. What is true for the
Fourier transform is also true for the sine transform. Therefore, since the result is a rapidly
decreasing function, the polarity does not change.Therefore,
lim(b— ) ((f(b))/(g(b))=0/00=0. From the previous discussion,
lim(b—)(f"'(b)/g""(b))=0. f"(b) is a higher infinitesimal. f'"'(b) converges faster. f"'(b) is
an integral term and g"'(b) is an additional term, so the absolute value of the additional term
is greater than the absolute value of the integral term untilb—o0. f"'(b) is a rapidly decreasing
function, so it does not converge while oscillating around 0, and it can be said that it converges
with the same polarity, so the imaginary part is not 0 until just before b— o0, -
In other words, if there exists N such that 0<N< e, O<=a<l1/2, 1/2<a=<]1, that is,
lim(b—o)[( f (0—)4 7 *(exp(2 wu'a)-exp(2(1-a) xu'))*sin(2 7 bu'))* X (n=1—)exp(-
7 *n"2*exp(4 xu'))du'-((2a-1)b)/((a”2+b"2) ((1-a)"2+b"2))) | > € is true.
In other words, when b is greater than a certain value, an additional term that becomes smaller
in proportion to o(b"(-3)) remains as b—0o0, and the imaginary part of & (a+bi) is always
nonzero. Therefore, there exists x where b>x, 0=<a<1/2, 1/2<a=<1, and | £ (a+bi)|>0. Also,
when the integral term and the additional term were calculated by a computer when a=0.75,
the absolute value of the additional term was already larger than that of the integral term from

b=0. It is necessary to use a computer to thoroughly calculate the range between 1/2<a<l1,



but it seems that the absolute value of the additional term is larger than that of the integral
term in all regions between 1/2<a<1. However, this is merely intuition, so it is necessary to
use a computer to thoroughly calculate the magnitude of the values of the integral term and
the additional term from b=0 from 1/2<a<1 and compare them. If the absolute value of the
additional term is large from near b=0, then the imaginary part is not 0 at that a until b—oo,
Otherwise, the computer searches for a point where the integral term-additional term=0 and
confirms whether that point is a zero point. (If the real part is not 0, it is not a zero.) Ata=1/2,
the additional term is 0, and the integral term is also 0, so the imaginary part of £ (a+jb) is 0,
and a zero can exist depending on the state of the real part. We know that there are an infinite
number of zeros on s=1/2, so the zeros of the & function can only be on s=1/2. Therefore,
the only non-trivial zeros of the { function are on the line at s=1/2. The proof is complete if
you use a computer to thoroughly search the magnitude of the values of the integral term and
additional term near b=0 between 0.5<a<=1. The result will probably be that the absolute
value of the additional term is greater than the absolute value of the integral term in the entire
range except a=1/2, and there will be no reversal of the absolute value of the integral term
and the absolute value of the additional term. You should be able to see a trend if you calculate
5 or 6 points. What we can say from L'Hopital's rule is that if the absolute value of the
additional term is greater than the absolute value of the integral term, there will be no reversal
of the magnitude of the absolute value even if b — infinity. The Riemann-Lebesgue theorem
seems to be correct. When a sine wave has an infinite frequency, it distributes equally between
positive and negative, so the integral value seems to converge to 0. Finally, if there is no zero
point in the computer search near b = 0, the proof of the Riemann hypothesis using a
computer is complete, so I calculated it.

The program is attached in the appendix. Calculate T (s/2) x"(-s/2) { (s). T (s/2) was
calculated using an algorithm by Oura of the Institute of Mathematical Sciences, Kyoto
University. { (s) was created by converting Junpei Tsuji's Ruby program into C. In this way,

the value of the Xi function is calculated and only the imaginary part of the Xi function is

extracted. Im[ & (a+ib)]= S (0—0)4 7 *(exp(2 7 u'a)-exp(2(1-
a)ru'))*sin(2xbu'))*X (n=1—)exp(- 7 *n"2*exp(4 r u'))du'-((2a-1)b)/((a”2+b"2) ((1-
a)"2+b"2)) Integral term = J(0—>x)4x *(exp(2 w u'a)-exp(2(1-

a)ru'))*sin(2xbu'))*X (n=1—)exp(- 7 *n"2*exp(4ru'))du' Additional term=((2a-
1)b)/((a"2+b"2) ((1-a)"2+b"2)) If we set it as such, Im[ & (a+ib)]=integral term-additional
term. The additional term can be calculated, so the value of the integral term can be obtained
by adding it to the calculated value of the original Xi function. Comparing the magnitude of
the integral term and the additional term, a computer calculation shows that the absolute value

of the integral term is already smaller than the absolute value of the additional term near b=0,



and the sign is the same. As b— 0, the magnitude of the absolute value of the integral term
and the additional term do not reverse, and it is clear that the sign does not change, so the
imaginary part of the Xi function does not become 0. Therefore, the Riemann hypothesis is

true. Proof complete.



Appendix

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include <math.h>

int main(int argc,char *argv[])

{

//

int 1,j,k;

FILE *fpw;

double F;

double erro,D,PI,aa,bb;

double *E;

aa=0.25;

bb=0.6;

E=(double*)malloc(sizeof(double)*10000):;

PI = atan(1.0)*4.0;

fpw = fopen(argv[1],"w");

for(i=0;i<10000;i++){
E[i] = 0.0;

}

for(i=0;i<10000;i++){
F=(double)i/10000;

D=1.0/*/pow((2.0*PI*F),4.0)*/*(pow(2.71828182846,2.0*PI*F*aa)-
pow(2.71828182846,2.0*PI*F*(1.0-aa)));

k=1;
erro = 1.0e64;
while(fabs(erro) > 1.0e-8){

€Iro

printf("k=%d,erro=%f¥n" k,erro);
E[i] += erro;

k++;

PI*(double)k*(double)k*pow(2.71828182846,4.0¥PI*F));

pow(2.71828182846,-



E[i] *= D;

}

for(i=0;i<10000;i+-+){
fprintf(fpw,"%f¥n" E[i]);

fclose(fpw);

return 0O;



#include <stdio.h>
#include <math.h>
#include <complex.h>
#include <stdlib.h>

#include <string.h>

#ifndef DCOMPLEX
struct dcomplex_ {
double re;
double im;
b
#define DCOMPLEX struct dcomplex_
#define DREAL(x) (x).re
#define DIMAG(x) (x).im
#define DCMPLX(x,y,z) (z).re =x, (z).im =y
#endif

DCOMPLEX cdgamma(DCOMPLEX x)

{
DCOMPLEX y;

double xr, xi, wr, wi, ur, ui, vr, vi, yr, yi, t;

xr = DREAL(x);
xi = DIMAG(x);

if (xr<0){
wr =1 - xr;
wi = -Xi;
}else {
WrI = XT;
wi = xi;
}

ur = wr + 6.00009857740312429;
vr =ur * (wr + 4.99999857982434025) - wi * wi;
vi=wi* (wr + 4.99999857982434025) + ur * wi;
yr = ur * 13.2280130755055088 + vr * 66.2756400966213521 +



0.293729529320536228;
yi=wi™* 13.2280130755055088 + vi * 66.2756400966213521;
ur = vr * (wr + 4.00000003016801681) - vi * wi;
ui = vi* (wr + 4.00000003016801681) + vr * wi;
vr = ur * (wr + 2.99999999944915534) - ui * wi;
vi=ui®* (wr + 2.99999999944915534) + ur * wi;
yr +=ur * 91.1395751189899762 + vr * 47.3821439163096063;
yi +=ui*91.1395751189899762 + vi * 47.3821439163096063;
ur = vr * (wr + 2.00000000000603851) - vi * wi;
ui = vi* (wr + 2.00000000000603851) + vr * wi;
vr = ur * (wr + 0.999999999999975753) - ui * wi;
vi=ui* (wr + 0.999999999999975753) + ur * wi;
yr +=ur * 10.5400280458730808 + vr;
yi +=ui * 10.5400280458730808 + vi;
ur = vr *wr - vi * wi;
ul = vi* wr + vr * wi;
t=ur *ur + ui * ui;
vr=yr *ur+yi *ui +t*0.0327673720261526849;
vi=yi*ur-yr*ui
yr =wr + 7.31790632447016203;
ur = log(yr * yr + wi * wi) * 0.5 - 1;
ui = atan2(wi, yr);
yr = exp(ur * (wr - 0.5) - ui * wi - 3.48064577727581257) / t;
yi=ui* (wr-0.5) + ur* wi;
ur = yr * cos(yi);
ui = yr * sin(yi);
yr =ur *vr - ui * vi;
yl=ul* vr + ur * vi;
if (xr<0){
wr = xr * 3.14159265358979324;
wi = exp(xi * 3.14159265358979324);
vi=1/wi
ur = (vi + wi) * sin(wr);
ui = (vi - wi) * cos(wr);
vr = ur *yr + ui * yi;

vi=ui*yr-ur*yi



ur = 6.2831853071795862 / (vr * vr + vi * vi);
yr = ur * vr;
yi=ur *vi;

}

DCMPLX(yr, yi, y);

returny;

int kaijyo(int 1)

{

nt m;

if(i==0){

return 1;

}

m=kaijyo(i-1);

return 1*m;
}
int combi(int i ,int j)
{

return kaijyo(i) /kaijyo(i-j) /kaijyo(j);
}
double kaijyo1(double 1)
{

double m;

if(i>-0.5 && i< 0.5){

return 1.0;

}

m=kaijyol(i-1.0);

return 1*m;
}
double combil(double i ,double j)
{

return kaijyol(i)/kaijyol(i-j) /kaijyol(j);
}

double combi2(double i ,double j)



int k,m,];

double m1,m2,n;

if((j<0.5 &&j > -0.5) |[(i<0.5 && 1> -0.5)){
return 1.0;

} else if ((int) (i+0.5) == (int) (j+0.5) ) {
return 1.0;

}else {
k=(int) (j+0.5);
ml=i;
n=ml;
for(1=0;1<k-1;1++){

n =n-1.0;
// printf("nn=%f¥n",n);

ml *= n;

n= 1.0;
m2 = n;
for(1=0;1<k-1;1++){
m2 = m2 + 1.0;
n *= m2;
}
// printf("m1 = %f,n =%f¥n",m1,n);

return m1/n;

int main(int argc,char *argv[])

{
int 1,j,k,1,m,n;
double complex A;
double complex B;
double complex Z,**GAMMA,ZZ,;
double PI = (double)atan(1.0)*4.0;
double RE,IM;



//
//

//

//
//
//

//

//

double complex **ZETA;

ZETA = (double complex**)malloc(sizeof (double complex*)*300);
GAMMA = (double complex**)malloc(sizeof (double complex*)*300);
for(i=0;i<300;1++){

ZETAL[i] = (double complex*)malloc(sizeof (double complex)*300);
GAMMALi] = (double complex*)malloc(sizeof(double complex)*300);

double si,sr;
if(argc |= 2){exit(1);}
FILE *fpw;
fpw = fopen(argv[1],"w");
st = atof(argv[1]);
si = atof(argv[2]);
//printf("%f¥n",sr);while(1);
double outer_sumr;// = 0.0;
double outer_sumi;// = 0.0;
double inner_sumr,inner_sumi,inner_sumrl,inner sumil,clr,c2r,c3r,cli,c21,c31,re,im;
double prevr = 1000000000.0;
double previ =0.0;
int m,j,n;
for(k=0:k<80/*300*/:k++){
printf("k=%d¥n",k);
sr = (double) (k-40/%150*/)/10.0;

si = 0.0;
FILE *fpw;
fpw = fopen(argv[1],"w");
for(n=0;n<80/*300*/:n++){
outer_sumr = 0.0;
outer_sumi = 0.0;
printf("n=%d¥n",n);
si = (double) (n-40/*150%/)/10.0;
for(m = I;m <=300;m++){

printf("m=%d¥n",m);



inner_sumr = 0.0;
inner_sumi = 0.0;
for(j=1;j<=m;j++){
// printf("j=%d¥n",j);
clr=((j-1)%2==0) ? 1.0 : -1.0;
c2r= combi2((double) (m-1),(double) (-1));

// printf("combi=%f¥n",combi2(7.0,4.0));while(1);
// printf("c2r=%f¥n",c2r);
c11=0.0;
c21=0.0;
// c3r =pow(2.71828182846,5i*1.57079633) *cos(sr*1.57079633);
// c3i = pow(2.71828182846,51*1.57079633)* (-sin(sr*1.57079633));

c3r = pow((double)j,-sr)*cos(si*log((double);));
c3i = -pow((double)j,-sr)*sin(si*log((double)j));
inner_sumr += clr*c2r*c3r;
inner_sumi += clr*c2r*c3i;
// printf("ir=%f,ii=%f¥n",c1r*c2r*c3r,clr*c2r*c3i);
}
// printf("sumr=9%f¥n,sumi=%f¥n",outer_sumr,outer_sumi);
re= 1.0-pow(2.71828182846,(1-
st)*log(2.0))*cos(si*log(2.0));
im= pow(2.71828182846,(1-
st)*log(2.0))*(sin(si*log(2.0)));
inner_sumrl = (inner_sumr*re+inner_sumi*im)*pow(2.0,(double) (-

m))/(re*re+im*im);

inner_sumil (-inner_sumr*im+re*inner_sumi)*pow(2.0,(double) (-
m))/(re*re+im*im);
outer_sumr += inner_sumrl;

outer_sumi += inner_sumil;

inner_sumr = inner_sumrl;

inner sumi = inner_sumil;

//printf("or=%f,0i=%f¥n",outer_sumr,outer_sumi);

if(sqrt((prevr - inner_sumr)*(prevr - inner_sumr)+(previ - inner_sumi)*(previ -
inner_sumi)) < 1.0e-8){

//  printf("tootta¥n");
break;



if(sqrt(outer_sumr*outer_sumr+outer_sumi*outer_sumi) > 1.0e+22){
break;

}
prevr = inner_sumr;

previ = inner_sumi;

}

ZETA[k][n] = outer_sumr + outer_sumi*I;//fprintf(fpw,"%f¥n",outer_sumr);
//fprintf(fpw,"%f¥n",outer_sumi);

}//for n loop end

// printf("%f+j*%f¥n",outer_sumr,outer_sumi);
}//for k loop end

// A= 0.0+1.0*T;
// B=1.0+0.0*I;
//  C=A+B;
//  printf("%f+j*%f¥n",creal(C),cimag(C));
// if(argc != 3){exit(1);}
// RE = atof(argv[1]);
// IM = atof(argv[2]);
DCOMPLEX Z1;
for(k=0:k<80/*300*/:k++){
for(i=0;1<80/*300*/:14++){
Z = /*sr/2.0%*/(double) (k-40/*150*/)/10.0/2.0  + (double) (i-
40/*150%/)/10.0/2.0*1;
A = /*sr*/(double) (k-40/*150*/)/10.0 + (double)(i-40/*150*/)/10.0*1;
Z1l.re = creal(Z);
Z1.im = cimag(Z);
// GAMMALi] = sqrt(2.0*PI)*cexp(-Z)*cpow(Z,Z-
0.5)*(1.0+1.0/(12.0*Z)+1.0/(288.0*Z*Z)-139.0/(51840.0*Z*Z*Z)-
571.0/(2488320.0*Z*Z*Z*7)+163879.0/(209018880.0*Z*Z*Z*7*7) +5246819.0/ (7524679



6800.0*Z*Z*Z*2*7*7)-534703531.0/(902961561600.0¥Z*Z*Z*Z*Z*2*7));
GAMMAk][i] = cdgamma(Z1).re + cdgamma(Z1).im * I;
//printf("%f+j*%f¥n",creal (GAMMA),cimag(GAMMA) );
GAMMA[k][i] = /*A*(A-1.0)* */GAMMA[k][i] * cpow(PL,-Z)*ZETA[k][i] +
1.0/(A*(1.0-A))/** 2.0%/;
fprintf(fpw,"%f,",cimag(/*1.0/(A*(1.0-A))*/GAMMAk][i]));
}
fprintf(fpw,"¥n");
}
fclose(fpw);

return 0O;



