
AN ELEMENTARY PROOF OF FERMAT LAST THEOREM

THEOPHILUS AGAMA

Abstract. We provide an elementary proof of Fermat’s last theorem using

the notion of olloids.

1. Introduction

Fermat’s Last Theorem (FLT), one of the most famous and long-standing con-
jectures in number theory, asserts that no three positive integers x, y, z can satisfy
the equation xn + yn = zn for n ≥ 3. The conjecture, first proposed by Pierre de
Fermat in 1637, was famously noted in the margin of his copy of an ancient Greek
text, where he claimed to have discovered a ”marvelous proof” but lamented the
narrow margin that prevented him from recording it. Despite Fermat’s assertion,
no proof was found during his lifetime, and the conjecture remained unproven for
over 350 years (Fermat, 1637).

For much of this time, FLT was considered one of the most elusive conjectures in
mathematics. Over the centuries, progress has been made by proving the theorem
for specific values of the indices n. For example, Fermat himself proved the case
for n = 4, and Euler demonstrated the result for n = 3 in the eighteenth century.
Dirichlet and Legendre later proved the case for n = 5 in the 19th century (Fermat,
1637). Despite these partial results, the general case of FLT remained unsolved.

A crucial breakthrough occurred in the 1990s with the work of Sir Andrew Wiles.
After years of solitary work, Wiles presented his proof of FLT in 1994, utilizing
advanced techniques from algebraic geometry, modular forms, and elliptic curves
(Wiles, 1995). Central to Wiles’ approach was the Taniyama-Shimura-Weil conjec-
ture (now a theorem), which posits a deep connection between elliptic curves and
modular forms. Wiles’ proof hinged on showing that a particular type of elliptic
curve could not exist, which in turn implied the truth of FLT. Although Wiles’
initial proof contained a gap, it was later corrected in 1995, solidifying the result
and ending centuries of speculation on the validity of the theorem [1].

The work of several mathematicians played a critical role in the eventual proof.
Ribets theorem in the 1980s was pivotal, showing that the truth of FLT was equiv-
alent to a special case of the Taniyama-Shimura-Weil conjecture [2]. Ribet’s insight
linked modular forms to the problem of Fermat’s Last Theorem, providing a crucial
step toward the proof. The contributions of Frey, Nron, and others in the study of
elliptic curves also formed the mathematical backdrop against which Wiles worked
[4].

Moreover, the work of Pierre Deligne, whose proof of the Weil conjectures in the
1970s revolutionized algebraic geometry, laid the groundwork for understanding the
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deep structure of modular forms and elliptic curves. These results were essential
for Wiles’ later work on FLT, showing that the connection between elliptic curves
and modular forms could be used to prove the theorem [3].

Wiles’ proof is regarded as a milestone in modern mathematics, combining mul-
tiple areas of study that had not previously been linked in such a direct manner.
Despite the highly technical nature of the proof, which draws upon structures such
as elliptic curves, modular forms, and algebraic geometry, its resolution of FLT
has had profound implications for number theory and related fields. The rigorous
and highly non-elementary nature of the proof means that it is far removed from
Fermat’s original, elementary conjecture, but it provides a deep insight into the
structures underlying number theory.

In this paper, we revisit Fermat’s Last Theorem from an elementary perspective.
Although Wiles proof remains definitive, we provide an elementary proof in this
paper that uses the notion of the olloid.

2. The notion of the olloid

In this section we launch the notion of the olloid and prove a fundamental
lemma, which will be relevant for our studies in the sequel.

Definition 2.1. Let Fk
s :=

{
(u1, u2, . . . , us) ∈ Rs |

s∑
i=1

uk
i = 1, k > 1

}
. Then we

call Fk
s an s-dimensional olloid of degree k > 1. We say g : N −→ R is a generator of

the s-dimensional olloid of degree k if there exists some vector (v1, v2, . . . , vs) ∈ Fk
s

such that vi = g(i) for each 1 ≤ i ≤ s.

Question 2.2. Does there exists a fixed generator g : N −→ R with infinitely many
olloids?

Remark 2.3. Although it may be difficult to provide a general answer to question
2.2, we can, in fact, provide an answer by imposing certain conditions for which
the generator of the olloid must satisfy. In particular, we launch a basic and a
fundamental principle relevant for our studies in the sequel.

Lemma 2.4 (Expansion principle). Let Fk
s be an s-dimensional olloid of degree

k > 1 for a fixed k ∈ N. If g : N −→ R+ is a generator with continuous derivative
on [1, s] and decreasing on R+ such that

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N then g : N −→ R+ is also a generator of the olloid Fk+r
s of degree k + r.

Proof. Suppose g : N −→ R+ is a generator of the olloid Fk
s with continuous

derivative on [1, s]. Then there exists a vector (v1, v2, . . . , vs) ∈ Fk
s such that vi =

g(i) for each 1 ≤ i ≤ s, so that we can write

s∑
i=1

g(i)k+1

g(i)
:=

s∑
i=1

g(i)k = 1.

Let us assume to the contrary that there exists no r ∈ N such that g : N −→ R+

is a generator of the olloid Fk+r
s . By applying the summation by parts, we obtain
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the inequality

1

g(s)

s∑
i=1

g(i)k+1 ≥ 1−
s∫

1

g′(t)

g(t)2
dt(2.1)

by using the inequality

s∑
i=1

g(i)k+1 <

s∑
i=1

g(i)k = 1.

By applying summation by parts on the left side of (2.1) and using the contrary
assumption, we obtain further the inequality

1

g(s)2

s∑
i=1

g(i)k+2 ≥ 1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt.(2.2)

By induction we can write the inequality as

1

g(s)r

s∑
i=1

g(i)k+r ≥ 1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt− · · · − 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for any r ≥ 2 with r ∈ N. Since g : N −→ R+ is decreasing, it follows that

1−
s∫

1

g′(t)

g(t)2
dt− 1

g(s)

s∫
1

g′(t)

g(t)2
dt− · · · − 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt > 1

and using the requirement

1− 1

g(s)r
>

s∫
1

g′(t)

g(t)2
dt +

1

g(s)

s∫
1

g′(t)

g(t)2
dt + · · ·+ 1

g(s)r−1

s∫
1

g′(t)

g(t)2
dt

for r ∈ N, we have the inequality

1 =

s∑
i=1

g(i)k ≥
s∑

i=1

g(i)k+r > 1

which is absurd. This completes the proof of the Lemma. �

Remark 2.5. It is worth noting that the extra condition in Lemma 2.4 can be
rewritten in the form

1

g(s)r
− 1 <

r−1∑
i=0

1

g(s)i

(
1

g(s)
− 1

g(1)

)

3. The elementary proof

In this section, we provide an elementary proof of Fermat last theorem by ap-
plying Lemma 2.4.

Theorem 3.1. The equation xn+yn = zn for n ≥ 3 has no solution in the positive
integers.

3.1. Proof.
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3.2. Step 1. We rewrite Fermat’s equation xn + yn = zn (n ≥ 2) fixed in the form(
1

z/x

)n

+

(
1

z/y

)n

= 1.

This is therefore a 2-dimensional olloid of degree n ≥ 2. Since the equation has a
solution for n = 2 there exists a generator g(t) of the 2-dimensional olloid F2

2 of
degree 2. The generator g(t) := 1

t of this olloid is unique. In fact, with tx,z = z
x

and ty,z = z
y , we see that g(tx,z)n + g(ty,z)n = 1. Hence g(t) := 1

t is indeed the

unique generator of this 2-dimensional olloid Fn
2 of degree n = 2.

3.3. Step 2. It is easy to check that the generator g(t) := 1
t of the 2-dimensional

olloid F2
2 is decreasing on (0,∞) and continuously differentiable on [1, s].

3.4. Step 3. We now verify the validity of the inequality to be satisfied by the
generator g(t) = 1

t . This is the most crucial part of the argument. This requirement,

if satisfied by the unique generator g(t) = 1
t , will extend the status of g as a

generator of the olloid F2
2 to an arbitrary degree. Suppose that for r ∈ N with

r ≥ 1, we have

1

g(2)r
− 1 <

r−1∑
i=0

1

g(2)i

(
1

g(2)
− 1

g(1)

)
.

Given that g(t) := 1
t , this inequality reduces to 2r − 1 <

r−1∑
i=0

2i = 2r − 1, which is

absurd. Thus, the unique generator g(t) := 1
t of the 2-dimensional olloid F2

2 cannot
be extended to any degree n + r ≥ 3.

3.5. Step 4. Since the unique generator g(t) := 1
t of the 2-dimensional olloid

satisfies the condition in the Lemma but cannot be extended to 2-dimensional
olloids Fn+r

2 of degree n + r ≥ 3, it follows that the 2-dimensional olloid Fn
2 of

degree of n ≥ 3 has no generator. This implies the equation xn +yn = zn for n ≥ 3
does not have a non-trivial solution over positive integers.
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