
Tokenization is not the problem

Danil Kutny
danil.kutny@gmail.com

Abstract
This paper introduces a modification to standard GPT-like models by incorporating character-
level encoding. The model uses an LSTM to process individual characters within tokens, which
are then embedded into the original token embedding space. This allows the model to maintain
token-level processing while adding character-level information to each token. Trained on the
BookCorpus dataset, the model was evaluated on tasks requiring character-level manipulation,
such as counting letters and reversing words. Surprisingly, the modified model performed
similarly to the baseline GPT model, with no significant improvements, suggesting that GPT-like
models may inherently learn character-level representations from tokenized inputs. The code is
available at [Github].

1. Introduction

Large Language Models (LLMs), such as GPT, have become the standard for a variety of NLP
tasks [1], however, these models rely on tokenization schemes to process input text, which
abstract away the finer details of character-level information. Tokenization, while efficient,
involves splitting text into discrete tokens (e.g., words or subword units), which abstracts away
individual character details [2]. This limitation has led to the common belief that LLMs are not
well-suited to tasks requiring fine-grained manipulation of text at the character level.

In this study, we investigate the potential of enhancing LLMs by integrating a character-level
encoding mechanism. The primary goal is to explore whether this additional encoding allows the
model to process characters within tokens without sacrificing the benefits of token-based
models. We hypothesize that by incorporating this new encoding, the model could perform
better on tasks that involve manipulation at the character level, such as counting letters or
reversing strings, which are typically challenging for standard LLMs.

2. Related Work

In recent years, several approaches have been proposed to improve LLMs' ability to handle
character-level tasks. These approaches generally fall into two categories: (1) models that
incorporate character-level information directly into their tokenization process [3], and (2)
models that apply post-tokenization methods to reintroduce character-level understanding [4].
While tokenization remains the default method for LLMs, some research has shown that hybrid

https://github.com/Danil-Kutnyy/gpt_char_encoder

models, which combine token-level and character-level processing, can yield improvements on
specific tasks [5].

3. Base Model Architecture

The architecture proposed in this paper consists of a standard GPT-like transformer model with
two key modifications: the introduction of a character-level encoding and an alternative token
embedding mechanism. Figure 1 illustrates the standard process of tokenization and
embedding.

3.1 Character-Level Encoding

To address the issue of tokenization, we introduce a character-level encoding that is
incorporated into the model’s embedding and positional encoding layers.

Figure 1. Traditional embeddings

Figure 2. LSTM character-level embeddings

In this design (figure 2), each token is split into original characters and first passed through an
LSTM [6] that processes the individual characters of the token in a sequential manner. The last
hidden state of the LSTM, which represents the sequence of characters, is then embedded into
a character encoding space with an additional linear layer. This character encoding is combined
with the original token embeddings and positional embeddings, allowing the model to retain
character-level information, along with token embedding and its position.

3.2 Additional Embeddings Model

As a baseline comparison, we also introduce a second model that incorporates additional
parameters in the embedding layer (figure 3). Instead of using an LSTM, this model passes the
token one-hot representation through a fully connected layer, which maps the tokens into a
higher-dimensional vector space. The resulting representation is then embedded into the
original transformer embedding space. Such a secondary embedding layer should not alter the
behavior compared to the original model, but additional embedding is used to add parameters to
a transformer in the embedding layers of neural network to match the parameter count in the
LSTM version, while leaving the GPT transformer blocks architecture untouched. This ensures
that if the LSTM model exhibits any improvement in metrics, it is not merely due to a higher
parameter count but reflects genuine model enhancement, but done in an equal comprising.

4. Tokenization and Dataset

Given the limitations in computational resources, a custom tokenization scheme was developed
for this experiment. The tokenizer is based on GPT-4's approach but is limited to a vocabulary of
only 512 tokens [7]. This tokenization scheme was applied to the subset of BookCorpus dataset
[8]. Full dataset also is available with the code in repository.

Figure 3. Additional standard embedding for parameters equality

https://github.com/Danil-Kutnyy/gpt_char_encoder

5. Experimental Setup

5.1 Training Procedure

Both models were trained on the custom tokenized lite version of the BookCorpus dataset. The
training procedure followed standard practices for transformer models, including gradient
descent optimization and the use of appropriate meta-parameters. Andrej Karpathy Nano-GPT
was taken as a reference starting point [10]. For evaluation models were fine-tuned on a set of
character-level tasks, which included:

● Counting the number of specific letters in a word
● Reversing the order of letters in a word
● Find the first index of exact letter in a word
● Swap a specific letter in a word with another one.

These tasks were selected because they require fine-grained control over individual characters
and should making them particularly challenging for standard token-based models. All questions
were answered in natural language.

6. Results

6.1 Performance Comparison

Figure 4. Language modeling training

Surprisingly, both the LSTM-based, or Char Encode model and the baseline, or Original model
performed nearly identically on the core language tasks.(figure 4). Despite the addition of
character-level encoding in the newly proposed model, the improvements on standard tasks
were negligible, suggesting that the baseline transformer model was capable of learning
standard language-modeling tasks without explicit character encoding [1].

6.2 Character-Level Task Performance

When fine-tuned on the character-level tasks, the results were unexpected (figure 5). Although
we anticipated that the LSTM-based model, which processes individual characters, would
outperform the baseline transformer model, it did not. In fact, the baseline transformer slightly
outperformed the character-aware models in all tasks though by an insignificant margin. This
suggests that the basic GPT model, through its tokenization and internal representations, is
already capable of learning the necessary character-level information to perform well on these
tasks. Character encoding offered no significant advantage; in some cases, the additional
complexity introduced by the LSTM marginally hindered performance.

7. Discussion

The results of this study provide an intriguing insight into the capabilities of GPT-like models.
Despite their reliance on tokenization, these models appear to have an inherent ability to learn
the necessary character-level information when trained on a sufficiently large corpus. This
challenges the traditional view that LLMs are fundamentally limited by their inability to process
individual characters. The simplicity of the standard embedding layer suggests that character-
level representations can be learned through the model's existing architecture without the need
for complex modifications like LSTM networks.

Figure 4. Synthetic character-level tasks fine-tuning

8. Conclusion

In this paper, we explored the hypothesis that large language models could benefit from a
character-level encoding mechanism, designed to allow the model to "see" individual
characters. While the results did not show a clear improvement over the baseline GPT-like
transformer model, the findings suggest that hypothesis is incorrect and LLMs can learn the
necessary character-level representations on their own, even in tokenized form. This insight
challenges the need for explicit character-level processing in many cases, opening up new
directions for future research and model optimization.

References

1. Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems
(2017).

2. Sennrich, Rico. "Neural machine translation of rare words with subword units." arXiv preprint
arXiv:1508.07909 (2015).

3. Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level convolutional networks for text
classification." Advances in neural information processing systems 28 (2015).

4. Dai, Zihang. "Transformer-xl: Attentive language models beyond a fixed-length context." arXiv
preprint arXiv:1901.02860 (2019).

5. Kim, Yoon, et al. "Character-aware neural language models." Proceedings of the AAAI
conference on artificial intelligence. Vol. 30. No. 1. 2016.

6. Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997).
7. OpenAI. GPT-4 Technical Report. OpenAI, 2023. Available at: https://openai.com/research/gpt-4
8. Bejan, Matei. 15000 Gutenberg Books Dataset. 2021, Kaggle, https://www.kaggle.com/datasets/

mateibejan/15000-gutenberg-books.
9. Karpathy, A. (2023). nanoGPT: A PyTorch implementation of GPT from scratch. GitHub repository.

Retrieved from https://github.com/karpathy/nanoGPT

https://openai.com/research/gpt-4
https://www.kaggle.com/datasets/mateibejan/15000-gutenberg-books
https://www.kaggle.com/datasets/mateibejan/15000-gutenberg-books
https://github.com/karpathy/nanoGPT

	1. Introduction
	2. Related Work
	3. Base Model Architecture
	3.1 Character-Level Encoding
	3.2 Additional Embeddings Model
	4. Tokenization and Dataset
	5. Experimental Setup
	5.1 Training Procedure
	6. Results
	6.1 Performance Comparison
	6.2 Character-Level Task Performance
	7. Discussion
	8. Conclusion
	References

