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Abstract  
This paper introduces a modification to standard GPT-like models by incorporating character-
level encoding. The model uses an LSTM to process individual characters within tokens, which 
are then embedded into the original token embedding space. This allows the model to maintain 
token-level processing while adding character-level information to each token. Trained on the 
BookCorpus dataset, the model was evaluated on tasks requiring character-level manipulation, 
such as counting letters and reversing words. Surprisingly, the modified model performed 
similarly to the baseline GPT model, with no significant improvements, suggesting that GPT-like 
models may inherently learn character-level representations from tokenized inputs. The code is 
available at [Github]. 

1. Introduction 

Large Language Models (LLMs), such as GPT, have become the standard for a variety of NLP 
tasks [1], however, these models rely on tokenization schemes to process input text, which 
abstract away the finer details of character-level information. Tokenization, while efficient, 
involves splitting text into discrete tokens (e.g., words or subword units), which abstracts away 
individual character details [2]. This limitation has led to the common belief that LLMs are not 
well-suited to tasks requiring fine-grained manipulation of text at the character level. 

In this study, we investigate the potential of enhancing LLMs by integrating a character-level 
encoding mechanism. The primary goal is to explore whether this additional encoding allows the 
model to process characters within tokens without sacrificing the benefits of token-based 
models. We hypothesize that by incorporating this new encoding, the model could perform 
better on tasks that involve manipulation at the character level, such as counting letters or 
reversing strings, which are typically challenging for standard LLMs. 

2. Related Work 

In recent years, several approaches have been proposed to improve LLMs' ability to handle 
character-level tasks. These approaches generally fall into two categories: (1) models that 
incorporate character-level information directly into their tokenization process [3], and (2) 
models that apply post-tokenization methods to reintroduce character-level understanding [4]. 
While tokenization remains the default method for LLMs, some research has shown that hybrid 
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models, which combine token-level and character-level processing, can yield improvements on 
specific tasks [5]. 

3. Base Model Architecture 

The architecture proposed in this paper consists of a standard GPT-like transformer model with 
two key modifications: the introduction of a character-level encoding and an alternative token 
embedding mechanism. Figure 1 illustrates the standard process of tokenization and 
embedding. 

3.1 Character-Level Encoding 

To address the issue of tokenization, we introduce a character-level encoding that is 
incorporated into the model’s embedding and positional encoding layers. 

Figure 1. Traditional embeddings

Figure 2. LSTM character-level embeddings



In this design (figure 2), each token is split into original characters and first passed through an 
LSTM [6] that processes the individual characters of the token in a sequential manner. The last 
hidden state of the LSTM, which represents the sequence of characters, is then embedded into 
a character encoding space with an additional linear layer. This character encoding is combined 
with the original token embeddings and positional embeddings, allowing the model to retain 
character-level information, along with token embedding and its position. 

3.2 Additional Embeddings Model 

As a baseline comparison, we also introduce a second model that incorporates additional 
parameters in the embedding layer (figure 3). Instead of using an LSTM, this model passes the 
token one-hot representation through a fully connected layer, which maps the tokens into a 
higher-dimensional vector space. The resulting representation is then embedded into the 
original transformer embedding space. Such a secondary embedding layer should not alter the 
behavior compared to the original model, but additional embedding is used to add parameters to 
a transformer in the embedding layers of neural network to match the parameter count in the 
LSTM version, while leaving the GPT transformer blocks architecture untouched. This ensures 
that if the LSTM model exhibits any improvement in metrics, it is not merely due to a higher 
parameter count but reflects genuine model enhancement, but done in an equal comprising. 

4. Tokenization and Dataset 

Given the limitations in computational resources, a custom tokenization scheme was developed 
for this experiment. The tokenizer is based on GPT-4's approach but is limited to a vocabulary of 
only 512 tokens [7]. This tokenization scheme was applied to the subset of BookCorpus dataset 
[8]. Full dataset also is available with the code in repository. 

Figure 3. Additional standard embedding for parameters equality
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5. Experimental Setup 

5.1 Training Procedure 

Both models were trained on the custom tokenized lite version of the BookCorpus dataset. The 
training procedure followed standard practices for transformer models, including gradient 
descent optimization and the use of appropriate meta-parameters. Andrej Karpathy Nano-GPT 
was taken as a reference starting point [10]. For evaluation models were fine-tuned on a set of 
character-level tasks, which included: 

● Counting the number of specific letters in a word 
● Reversing the order of letters in a word 
● Find the first index of exact letter in a word 
● Swap a specific letter in a word with another one.  

These tasks were selected because they require fine-grained control over individual characters 
and should making them particularly challenging for standard token-based models. All questions 
were answered in natural language. 

6. Results 

6.1 Performance Comparison 

Figure 4. Language modeling training



Surprisingly, both the LSTM-based, or Char Encode model and the baseline, or Original model 
performed nearly identically on the core language tasks.(figure 4). Despite the addition of 
character-level encoding in the newly proposed model, the improvements on standard tasks 
were negligible, suggesting that the baseline transformer model was capable of learning 
standard language-modeling tasks without explicit character encoding [1]. 

6.2 Character-Level Task Performance 

When fine-tuned on the character-level tasks, the results were unexpected (figure 5). Although 
we anticipated that the LSTM-based model, which processes individual characters, would 
outperform the baseline transformer model, it did not. In fact, the baseline transformer slightly 
outperformed the character-aware models in all tasks though by an insignificant margin. This 
suggests that the basic GPT model, through its tokenization and internal representations, is 
already capable of learning the necessary character-level information to perform well on these 
tasks. Character encoding offered no significant advantage; in some cases, the additional 
complexity introduced by the LSTM marginally hindered performance. 

7. Discussion 

The results of this study provide an intriguing insight into the capabilities of GPT-like models. 
Despite their reliance on tokenization, these models appear to have an inherent ability to learn 
the necessary character-level information when trained on a sufficiently large corpus. This 
challenges the traditional view that LLMs are fundamentally limited by their inability to process 
individual characters. The simplicity of the standard embedding layer suggests that character-
level representations can be learned through the model's existing architecture without the need 
for complex modifications like LSTM networks. 

Figure 4. Synthetic character-level tasks fine-tuning



8. Conclusion 

In this paper, we explored the hypothesis that large language models could benefit from a 
character-level encoding mechanism, designed to allow the model to "see" individual 
characters. While the results did not show a clear improvement over the baseline GPT-like 
transformer model, the findings suggest that hypothesis is incorrect and LLMs can learn the 
necessary character-level representations on their own, even in tokenized form. This insight 
challenges the need for explicit character-level processing in many cases, opening up new 
directions for future research and model optimization. 
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