Pi is Irrational Using One Trig Identity

Timothy Jones

December 22, 2024

Abstract

We prove the contrapositive of π is rational implies $\lim_{n\to\infty} \sin n!$ converges to show π is irrational.

Introduction

There are many proofs of the irrationality of π , but none seem to use the periodicity of trigonometric functions [3, 4]. Here's a proof that uses a standard trigonometric identity, a difference to product [2], with an implication of periodicity to show π is irrational. Some rudimentary limit ideas are also used [1], but nothing that seems beyond the grasp of a beginning calculus student.

Proof

Lemma 1. π is rational if and only if there exist natural numbers n and m, $n \neq m$ such that $\sin n = \sin m$.

 $\begin{array}{l} \textit{Proof.} \ \Rightarrow \\ \text{If} \ \pi = p/q \text{ then} \end{array}$

$$q!\frac{p}{q} = 2k\pi$$

and

$$(q+1)!\frac{p}{q} = 2k'\pi,$$

where $k \neq k'$. This shows the existence of n and m, $n \neq m$ such that $\sin n = \sin m$.

 \Leftarrow

If $\sin n = \sin m$ and $n \neq m$ then,

$$\sin n - \sin m = 2\sin\frac{n+m}{2}\cos\frac{n-m}{2} = 0.$$

This implies that

$$\frac{n+m}{2} = k\pi$$
 or $\frac{n-m}{2} = k\frac{\pi}{2}$ with k odd.

In either case $k \neq 0$. Thus either

$$\pi = \frac{n+m}{2k}$$
 or $\pi = \frac{n-m}{2k}$

giving that π is rational.

Theorem 1. π *is irrational.*

Proof. We prove the contrapositive of $\lim_{n\to\infty} \sin n!$ converges implies π is rational. Assume π is irrational and

$$\lim_{n \to \infty} \sin n! = L.$$

Then

$$\lim_{n \to \infty} \sin(n+1)! = L \text{ and } \lim_{n \to \infty} \sin(n-1)! = L$$

and

$$\sin(n+1)! - \sin(n-1)! = 0$$

and using Lemma 1 this implies that π is rational, a contradiction.

Conclusion

The periodicity of sin is embedded in Lemma 1.

References

- [1] Apostol, T. M. (1974). *Mathematical Analysis*, 2nd ed. Reading, Massachusetts: Addison-Wesley.
- [2] Blitzer, R. (2010). Algebra and Trignometry, 3rd ed., Pearson.

- [3] L. Berggren, J. Borwein, and P. Borwein, *Pi: A Source Book*, 3rd ed., Springer, New York, 2004.
- [4] P. Eymard and J.-P. Lafon, *The Number* π , American Mathematical Society, Providence, RI, 2004.