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Abstract. The persistence of spurious features in machine learning mod-
els remains a significant challenge. To address this issue, we identify sev-
eral future directions that require attention. Firstly, we highlight the
need for a new dataset that allows researchers to control the types and
levels of spurious features, as this resource is currently lacking. Secondly,
we emphasize the importance of addressing spurious features in natu-
ral language processing, where more attention is needed compared to
vision-related tasks. We also stress the need for addressing spurious cor-
relations at the core algorithmic level, rather than relying on complex,
task-specific solutions that may not generalize well. Finally, we advo-
cate for the development of weakly-supervised or unsupervised methods
that reduce reliance on group labels, making the approaches more widely
applicable. Our review aims to provide a comprehensive overview of ex-
isting work and guide future research in creating more robust machine
learning models.
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1 Introduction

The rise of machine learning has expanded its use across fields like computer
vision, NLP, healthcare, and finance. However, this growth has highlighted a key
challenge: spurious correlation. This occurs when a model mistakenly identifies a
false correlation between variables, leading to unreliable predictions, especially in
critical applications. While spurious correlation is not new, it has become more
prominent with the increasing complexity of models. Traditional approaches like
regularization and feature selection often fall short. As a result, new methods
have been developed to enhance model robustness against spurious correlations.
This paper provides a comprehensive survey of these methods, categorized into
six main domains:

– Mitigation Methods: Papers that introduce a way to mitigate spurious
correlation, such as regularization techniques or algorithmic modifications.
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Method 1 2 3 4 5 6 7
DFR [23] 88.3 92.9 74.7 70.1 N/A N/A 64.5
JTT [37] 81.1 86.7 72.6 69.3 74.5 N/A 64.2
CNC [81] 88.8 88.5 N/A 68.9 77.4 N/A N/A
SCILL [6] N/A 86.5 N/A N/A N/A N/A N/A
SMM [78] N/A 90.5 N/A N/A N/A N/A N/A
PDE [12] 89.0 94.5 75.5 71.2 N/A N/A N/A
AFR [50] 95.1 84.7 N/A 67.1 N/A N/A 70.1
SELF [66] 83.9 93.0 70.7 79.1 N/A N/A N/A
BAM [34] 83.5 89.2 71.2 79.3 N/A N/A N/A
BAM + ClassDiff [34] 80.1 89.1 70.8 79.3 N/A N/A N/A
EIIL [9] N/A N/A N/A N/A 72.8 N/A N/A
LfF [45] 77.2 78.0 N/A 78.8 N/A N/A N/A
IRM [2] N/A N/A N/A N/A N/A 66.9 N/A

Table 1: Worst Group Accuracies for various methods across datasets. Here is the list
of datasets; 1: CelebA, 2: Waterbirds, 3: MultiNLI, 4: CivilComments, 5: ColorMnist,
6: CorruptedMnist, 7: Chest X-Ray

– Benchmarks and Datasets: Papers that introduce a new benchmark or
dataset for evaluating spurious correlation, providing a common ground for
comparing different methods.

– Surveys and Reviews: Papers that provide a comprehensive overview of
the field, summarizing existing methods and techniques.

– Evaluation Metrics: Papers that introduce new evaluation metrics or re-
fine existing ones to assess the robustness of machine learning models to
spurious correlation.

– Theoretical Hypotheses: Papers that propose new theoretical hypotheses
or frameworks for understanding the causes and consequences of spurious
correlation.

– Practical Hypotheses: Papers that propose practical solutions or methods
for mitigating spurious correlation in specific applications or domains.

Understanding these methods helps in designing more reliable machine learn-
ing models, which is crucial given the significant impact of accurate predictions.

The classical approach in machine learning consists of training a classifier on
a training dataset Dtr with the same distribution of test dataset Dte which we
call the ERM classifier which aims to minimize:

E(x,y)∼Dtr [ℓ(f(x), y)]

This may dramatically fail since training distribution may confront shifts. A
spurious correlation is a special case of this distribution shift where an attribute
may spuriously be correlated with the label in training distribution but this
correlation may be absent or reversed in the testing distribution resulting in
poor performance.



Robustness to Spurious Correlation: A Comprehensive Review 3

Methods

Training and Validation
Supervision Validation Supervision Without Supervision

Data Manipulation Feature
Manipulation Data Manipulation

Date Reweighting Group Performance
Balancing

Counterfactual
Generation

Feature
ManipulationData Manipulation Feature

Manipulation

Fig. 1: Categorization of Methods

To formulate this problem we add this spurious attribute to the problem
formulation i.e. The training distribution will consist of {xi, yi, ai}n where ai is
the spurious attribute associated with the i’th attribute. To correctly formulate
our goal we define the following objective function instead of the ERM objective
function:

max
a′,y′

E(x,y)∼Dtr|a,y=a′,y′ [ℓ(f(x), y)]

The training data is split into groups based on values of (a, y), hence we are
minimizing the Worst group accuracy (WGA). Groups more apparent in the
data are called majority groups on which we usually perform well. On the other
hand groups less apparent in the data are called minority groups on which we
usually perform poorly. Hence the general goal of WGA can be summarized as
boosting the performance of minority groups while preserving the performance
of majority groups.

1.1 Related Works

To our knowledge, there are only two survey and review papers in this field. We
will discuss these papers, highlighting their advantages and limitations.

The paper [62] offers a basic overview of spurious correlations across medical
imaging, NLP, and computer vision. It examines detection methods like ad-
versarial training, representation learning, and interpretability techniques, and
discusses challenges in these areas. However, it lacks depth, missing specific meth-
ods, problem definitions, datasets, evaluation metrics, and other crucial details.

The survey by [79] categorizes methods but does not account for the amount
of group information needed, leading to incomplete or overlapping categories.
It also provides limited insight into datasets, lacking clarity on their motiva-



4 M.J. Maheronnaghsh, T. Akbari Alvanagh

tions. The paper briefly mentions methods within categories without a detailed
investigation into their workings.

2 Methods

Methods for mitigating spurious correlations differ mainly in their supervision
levels. Since labeled data is costly, methods with less supervision are preferred.
Supervised learning needs large training sets, making group annotation-based
methods expensive. Methods without group annotations can still suffer from
spurious correlations. Most use group annotations only for hyperparameter tun-
ing. They fall into three categories: no group annotations, annotations in val-
idation only, and annotations in both training and validation. They also vary
by data handling approach—augmenting to capture features or avoiding spuri-
ous attributes. Data manipulation methods for group fairness (WGA) include
reweighting, accounting for group performance, and generating counterfactual
data.

2.1 Training & Validation Supervision

Data Manipulation
Group Distributionally Robust Optimization (GDRO) [52] The pa-

per makes three key contributions: it shows that DRO [10] struggles with over-
parameterized networks and suggests using stronger regularization; it introduces
group-adjusted DRO, which reduces generalization gaps by scaling as 1√

n
; and

it presents a training algorithm that alternates between adjusting group distri-
butions and optimizing model parameters to minimize worst-case loss.

Deep Feature Reweighting (DFR) [23] The DFR method is widely used
in the field. It involves training a network on standard data without group super-
vision and then retraining only the last layer on group-balanced data, keeping
the earlier layers fixed. Some papers incorrectly claim DFR doesn’t need group
supervision during training [23] [84], but it does require it for the last layer.
Essentially, the feature extractor retains both spurious and core features, while
the classifier focuses solely on core features.

Progressive Data Expansion (PDE) [12] This method shows that mod-
els learn spurious features when they are easier to learn, especially if spurious
correlations exceed 50%, causing slower learning of core features. To address this,
the method suggests starting with a balanced dataset and gradually expanding
to the full training data.

Feature Manipulation
Learning with explanatory interaction (LWEI) [29] This paper explores

spurious correlations in concept drift, noting that models relying on these corre-
lations may fail because spurious features often remain unchanged. To address
this, the paper studies drift in explanations and encourages users to correct
spurious correlations in these explanations.
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Category Index Method Venue Keywords

TVD
1 GDRO [52] ICLR (2020) Distributional robustness, Generalization
2 DFR [23] arXiv (2022) Last-layer retraining, Group-balanced
3 PDE [12] NeurIPS (2024) Data expansion, Spurious features

TVF 4 LWEI [29] arXiv (2024) Concept drift, Explanations

VD

5 JTT [37] PMLR (2021) Misclassification, Upsampling
6 SCILL [6] NeurIPS (2022) Group invariant, Conditional independence
7 BPA [57] CVPR (2022) Clustering, Pseudo-groups
8 AFR [50] PMLR (2023) Feature reweighting, Confidence-based
9 SELF [28] NeurIPS (2023) Last-layer retraining, Class-balanced
10 BAM [34] TMLR (2024) Bias amplification, Auxiliary variables

VF

11 IRM [2] arXiv (2019) Invariant risk, Domain generalization
12 REX [27] PMLR (2021) Risk extrapolation, Robustness
13 StableNet [82] CVPR (2021) Sample reweighting, Shifts
14 SSA [47] ICLR (2022) Semi-supervised, Pseudo-Labeling
15 CNC [81] arXiv (2022) Contrastive learning, Unsupervised
16 CIU [68] CL (2022) Counterfactuals, Causal inference
16 DivDis [33] ICLR (2023) Diversify, Disambiguation
17 SIFER [66] PMLR (2023) Feature sieving, Forgetting loss
18 SMM [78] ICML (2023) Multi-modal, Spurious features

WDD

19 LfF [45] NeurIPS (2020) Biased classifier, Debiased model
20 Rebias [3] PMLR (2020) Biased representations, Independent
21 LWBC [22] NeurIPS (2022) Biased ensemble, Reweighting
22 SELF [28] NeurIPS (2023) Last-layer retraining, Class-balanced
23 BAM [34] TMLR (2024) Bias amplification, Auxiliary variables

WDG
24 GEORGE [60] NeurIPS (2020) Clustering, Pseudo-labeling
25 EIIL [9] PMLR (2021) Invariant learning, Environment inference
26 FACTS [80] CVPR (2023) Bias discovery, Clustering
27 DISC [75] PMLR (2023) Concept-aware, Pseudo-labels

WDC
28 AGC [73] AAAI (2021) Counterfactuals, Causal words
29 GICL [41] CVPR (2021) Generative interventions, Causal learning
30 CGKR [43] ACM (2022) Counterfactuals, Reinforcement

WF

31 IdMNLP [71] arXiv (2021) Cross-dataset, Semantic analysis
32 NuRD [48] arXiv (2021) Nuisance-randomized, Independence
33 CIM [65] PMLR (2021) Perceptual similarity, Contrastive
34 Cobias [56] AAAI (2022) Bias measurement, Noise injection
35 LBC [84] arXiv (2024) Spurious detection, Vision-language

Table 2: Methodologies categorized by combined taxonomy. Here are the abbrevi-
ations; TVD: Training Supervision & Validation Supervision & Data Manipulation,
TVF: Training Supervision & Validation Supervision & Feature Manipulation, VD:
Validation-only Supervision & Data Manipulation, VF: Validation-only Supervision
& Feature Manipulation, WDD: Without Supervision & Data Manipulation (Data
Reweighting), WDG: Without Supervision & Data Manipulation (Group Performance
Balancing), WDC: Without Supervision & Data Manipulation (Counterfactual Gener-
ation), WF: Without Supervision & Feature Manipulation
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2.2 Validation Only Supervision

Data Manipulation
Just Train Twice (JTT) [37] JTT aims to handle spurious correlations

using group info from a small validation set. It trains an identifier network and
treats misclassified examples as proxies for minority groups. A second network
is then trained by upsampling these misclassified examples. Contrary to some
sources [84], JTT does require group labels during validation.

Spurious-correlation-strata Invariant learning with Label-balance
(SCILL) [6] This paper introduces a theoretical framework for group-IR meth-
ods and highlights the flaws in current approaches. It proposes SCILL, which
splits labels into groups to make spurious attributes conditionally independent
of labels. The method reweights each sample based on group label proportions,
with group labels inferred by the proposed algorithm.

Bias Pseudo-Attribute (BPA) [57] This paper observes that for a model
trained sufficiently, samples with similar spurious correlations fall into the same
cluster. Hence it uses a clustering approach to make pseudo-groups. Based on
the created group it up-weights groups with a small number of samples to make
a group-balanced training.

Automatic Feature Reweighting (AFR) [50] AFR builds on JTT [37]
and CNC [81] but differs in how it identifies minority and majority groups. It
trains an ERM classifier until convergence, without regularization or early stop-
ping. Then, it reweights samples, giving less weight to high-confidence examples,
and retrains the last layer for improved robustness.

Selective Last-Layer finetuning (SELF) [28] First, the paper makes a
practical observation that class-balanced datasets suffice for last-layer retraining
for being robust to spurious correlations. It demonstrates that class-balanced
datasets work well even if they are not group-balanced.

Bias Amplification (BAM) [34] This method introduces a trainable aux-
iliary variable for each sample, adding it to the logits. For hard samples, this
variable learns the label, while for easy samples, the model’s learning dominates.
This amplifies errors in the majority samples group, up-weights them, and trains
a new model to reduce reliance on spurious correlations. Hyperparameters, in-
cluding up-weighting, are selected via WGA.

Spread Spurious Attribute (SSA) [47] The paper proposes a method
to best use spurious attribute data by combining labeled and unlabeled data. A
classifier is trained using cross-entropy loss on both, with predictions evaluated
on remaining labeled data. High-confidence points are selected with different
thresholds to balance the dataset, which is then used for final training.

Feature Manipulation
Invariant Risk minimization (IRM) [2] Invariant Risk Minimization aims

to find a representation that is optimal for standard ERM [69] and across differ-
ent environments. To achieve this, it minimizes the following loss function:
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min
ϕ:X→Y

∑
e∈εtr

Re(ϕ) + λ||∇w|w=1.0R
e(w.ϕ)||2 (1)

The first term ensures optimal performance in the ERM setting [69], while the
second term enforces optimality across all environments.

Risk Extrapolation (REX) [27] The paper’s main idea is that a robust
classifier must meet two criteria: it should have low risk across all domains
and low risk in each domain. To address this, they propose two loss functions:
Minmax-re and Variance-re, which account for these criteria.

StableNet [82] This paper discusses sample reweighting as a way to dis-
associate the spurious and core features. Since we do not have any supervision
on the spurious correlation it disassociates on all features. With disassociated
features, we achieve stable models under distribution shifts.

Correct-N-Contrast (CNC) [81] CNC learns core features without su-
pervision, unlike GRDO [52], which requires group labels. It performs compa-
rably to GDRO despite being unsupervised. The method involves training an
ERM classifier [69] with cross-entropy loss and then applying a contrastive loss
to remove spurious correlations while maintaining prediction accuracy with a
weighted average of these losses, with weights tuned using validation data.

Counterfactual Inference Understanding (CIU) [68] NLU models [4]
often rely on biased predictions and spurious shortcuts due to repetitive patterns
and annotation artifacts. The paper defines causal relationships to assess these
artifacts and uses counterfactual inference to reduce spurious correlations. This
inference-focused approach is effective even for out-of-distribution data.

Diversify and Disambiguate (DivDis) [33] The Diversifying step trains
a neural network with multiple heads, each minimizing loss on training data but
producing different outputs on test data. The Disambiguate step chooses the
most suitable head for each test data point based on its label.

Spuriousity Mitigator in Multi-modals (SMM) [78] SMM aims to
reduce spurious features in multi-modal data. It uses GradCAM [55] to identify
which parts of the feature map are attended to and then fine-tunes the model to
focus more on core features. GradCAM is used only for qualitative evaluation,
not directly in the method. SMM also employs CLIP and Vocabulary Open
Detector to detect images with or without spurious features.

Sieving Features for Robust learning (SIFER) [66] This approach
has two stages: first, a neural network is trained on standard data. Then, a
classifier is built on the network’s initial layers to focus on challenging features,
using a forgetting loss to remove easy, spurious features. One version uses group
annotations during validation, while the other does not.

2.3 Without Supervision

Data Manipulation: Data Reweighting
Learn from Failure (LfF) [45] The approach is similar to JTT [37]. It

trains a biased classifier with Generalized Cross-Entropy loss [83] to focus on
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easier examples. At the same time, a debiased model is trained, assigning weights
to data points based on the loss difference between the biased and debiased
models.

Rebias [3] This method trains a biased classifier with an ERM model [69]
using regularization and early stopping. It then trains a second model to make in-
dependent predictions, hoping the first model captures spurious attributes while
the second focuses on predicting the label.

Learning with biased committee (LWBC) [22] This paper designs an
ensemble learning method to mitigate spurious correlations. To do so they train
a biased ensemble so that the data of each classifier is a bootstrapped sample.
Then this biased ensemble is used to weight the samples in the training dataset
so that to train the actual classifier the minority group gets more weight.

Avoiding Spurious Correlations via Logit Correlation (ASCLC) [38]
This approach uses a neural network with two heads the first head is used to
train the model with generalized cross-entropy loss so that it becomes more
dependent on the spurious correlation. The second head is then based on the
first head to correct the logits and make a robust classifier.

Selective Last-Layer finetuning (SELF) [28] This method is similar to
the SELF approach with validation supervision, but it selects a subset of training
data, such as by misclassification, as a proxy for the majority group.

Bias Amplification (BAM) + ClassDiff [34] This method is like BAM
but does not use validation data supervision. Instead, it uses the difference in
class accuracy as a proxy for worst-group accuracy and aims to minimize this
difference without group annotations.

Data Manipulation: Group Performance Balancing
Environment inference for invariant learning (EIIL) [9] Invariant

learning methods typically require environment labels to find invariant features.
This paper proposes a two-stage approach: first, it identifies partitions to max-
imize an invariant learning penalty with a soft, differentiable split, and then it
trains a model using the invariant learning objective.

First Amplify Correlations and Then Slice to Discover Bias (FACTS)
[80] This paper uses an ERM-based model [69] with regularization to extract
biased representations, which are then fed into a Gaussian mixture model [51]
as a proxy for group annotations.

Discover and Cure (DISC) [75] The paper proposes a multi-modal ap-
proach [69] to address spurious correlations by preprocessing data, creating a
concept-sensitive environment, and balancing the dataset using a concept bank
and cluster pseudo-labels. It calculates concept sensitivity for each cluster and
generates 200 images per concept using a text-to-image model.

GEORGE [60] The paper proposes training an ERM classifier [69], clus-
tering the resulting data to identify subclasses, and then using GDRO [52] to
minimize worst-group accuracy in these clusters.

Data Manipulation: Counterfactual Generation
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Automatically Generating Counterfactual (AGC) [73] The paper
augments a review dataset with counterfactuals by identifying causal words,
replacing them with antonyms, and flipping sentence labels.

Generative Interventions for Causal Learning (GICL) [41] In this
paper generative models are exploited for generating interventions for data, they
use BigGan to model the data and further make interventions on them. Then a
discriminative model is fit to data with mixed coefficients of original data loss
and intervented data loss.

Counterfactual Generator Knowledge-aware Recommender (CGKR)
[43] The paper mitigates spurious correlation in recommendation systems using
two counterfactual generators for positive and negative classes. These generators
use reinforcement learning with a Markov reward process to create high-quality
samples.

Feature Manipulation
Identify and Mitigate Spurious Correlations in NLP(IdMNLP) [71]

This paper classifies important words as spurious or genuine using cross-dataset
stability instead of labeled data. It extracts domain-specific synonyms and ana-
lyzes semantic differences in sentences.

Nuisance-Randomized Distillation(NuRD) [48] This algorithm aims
to find a classifier where the label and spurious attribute are independent in
datasets with balanced spurious correlations. It begins by creating a nuisance-
randomized distribution, either by modeling p(x|y, z) and varying p(y) and p(z),
or by reweighting samples to match this distribution. Then, it identifies features
r(x) that make y and z independent given r(x), while maximizing prediction
accuracy. This is achieved by maximizing:

max
θ,γ

Ep̂⊥(x,y,z) log pθ(y|rγ(x))− λIp̂⊥(y; z|rγ(x)) (2)

The objective is to find features that predict y without relying on the spurious
attribute z.

Robust Representation Learning via Perceptual Similarity Metrics
(CIM) [65] This paper uses the SSIM metric [18] to align representations with
human perception. It applies a contrastive loss to the embeddings, combining this
with cross-entropy loss to ensure high classification performance while reducing
spurious features.

Bias Measurement with Conditional Mutual Information (Cobias)
[56] The paper introduces a theoretical algorithm for measuring feature-level
bias and proposes two debiasing frameworks: Bias Regularization, using a cobias
loss, and Label Noise Injection, which adds synthetic label noise. It fits into
"Spurious Correlation Mitigators" and "Evaluation Metrics," with a focus on
debiasing.

Robust Classifier Learner (LBC) [84] LBC detects attributes using a
Vision-Language model, selects relevant nouns and words, and creates an at-
tribute set. It then calculates spurious features in each class, then clusters and
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balances these features for training. This method automatically balances features
without needing group labels during training or validation.

Research on methods requiring group annotations for both training and val-
idation is nearly complete, with Group DRO [52] being a leading approach and
benchmark. In contrast, methods that avoid group annotations during training
typically have performance limited by those that use annotations only for val-
idation. In such cases, annotations are usually for retraining the last layer or
tuning hyperparameters, leading to some performance degradation. The DFR
method [23] serves as a baseline for approaches using validation data for retrain-
ing, while AFR [50] is a baseline for those using it solely for hyperparameter
tuning. Methods that completely avoid group supervision are relatively new,
with BAM [34] and SELF [66] being notable examples in this emerging field.

3 Datasets

Vision Datasets

Synthetic Natural

Decoupled Coupled Selective Bias Inherent Bias

Fig. 2: Categorization of vision datasets

3.1 Vision Datasets

We classify vision task datasets into two main types: natural images and syn-
thetic images. Synthetic datasets are further divided into coupled and decoupled
types. Coupled datasets link core and spurious features, like a digit and its
color, while decoupled datasets separate them, such as the foreground and back-
ground. For natural images, we distinguish between inherently biased datasets,
where bias is intrinsic (e.g., swimming usually happens in pools), and intention-
ally biased datasets, where bias is deliberately introduced (e.g., cats with a grass
background).
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Taxonomy Index Dataset Size Year

Vision

S

CF
1 CMNIST [32] 60,000 2021
2 Corrupted CIFAR10 [32] 60,000 2021
3 SpuCoMnist [20] 118,100 2023

DF
4 Waterbirds [52] 11,788 2019
5 Imagenet-9 [77] 5,495 2020
6 Spawrious [40] 152,064 2023

N

SB

8 Imagenet-A [11] 7,500 2009
9 ISIC [8] 3,694 2019
10 NICO [17] 24,214 2021
11 Meta Shift [35] 12,868 2022

IB
12 Fmow 1,047,691 2017
13 CelebA [52] 202,599 2019
14 BAR [46] 2,595 2020

NLP - - 16 MultiNLI [52] 206,175 2019
17 CivilComments [5] 1,999,514 2019

Table 3: Overview of Datasets. Here are the abbreviations; S: Synthetic, N: Natural,
CF: Coupled Features, DF: Decoupled Features, SB: Selective Bias, IB: Inherent Bias,
ISIC: Skin lesions classification

Synthetic datasets: Coupled features

– Colored MNIST (CMNIST) [32]: The Colored MNIST dataset consists of
MNIST digits [31] colored spuriously with the labels. So the model will
predict the digit using colors instead of the actual digit.

– Corrupted CIFAR10 [32]: The Corrupted CIFAR10 consists of images of
the CIFAR10 [26] dataset corrupted so that there is a spurious correlation
between the label and the kind of corruption.

– SpuCoMnistT [20]: This dataset consists of MNIST dataset images [31] where
the color is spuriously correlated with the digit.

Synthetic datasets: Decoupled Features

– Waterbirds [52]: Waterbirds is a dataset consisting of waterbirds and land-
birds on various backgrounds. It was artificially generated by bird images
from the CUB dataset [70] and background from the Places dataset [85]. In
this case, the background is a spurious correlation for predicting whether the
bird is a landbird or a waterbird.

– Imagenet-9 [77]: This dataset consists of a subset of the Imagenet [11] dataset
with 9 labels such that the background is spuriously correlated with the
foreground.

– Spawrious [40]: This dataset consists of images of dogs to classify into differ-
ent categories where the background is spuriously correlated with the type
of dog. This dataset consists of 152,064 images. This dataset brings a new
paradigm for spurious correlation which is many to many spurious correla-
tions.
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Natural datasets: Selective Bias
– Imagenet-A [11]: This dataset consists of a subset of the Imagenet dataset

that ResNet models [16] misclassify.
– ISIC [8] involves classifying skin lesions as benign or melanoma. It includes

multiple train-test splits, each designed to highlight a specific type of spuri-
ous correlation.

– NICO [17] features object images in various contexts, allowing spurious cor-
relations to be created by adjusting the proportions of contexts and objects.

– Meta Shift [35]: The Meta Shift dataset includes images of various objects in
different contexts, using the Visual Genome dataset’s metadata [25] to intro-
duce spurious correlations. It clusters images based on context and provides
annotations on the types of shifts caused by this metadata.

Natural datasets: Inherent Bias
– Fmow [7]: The Fmow dataset consists of satellite images comprised of differ-

ent geographical locations that contribute to potential spurious correlations
for predicting the functional purpose of the building.

– CelebA [52]: CelebA dataset consists of images of celebrities and the task is
to predict attributes of faces. In this case, gender has a spurious correlation
with hair color prediction.

– BAR [46] is designed for action recognition, where backgrounds are spuri-
ously correlated with actions. For example, swimming is often associated
with water backgrounds, creating a spurious correlation between the water
background and the swimming action.

NLP Datasets
– MultiNLI [52]: This dataset consists of pairs of sentences labeled as either

"entailed", "neutral" or "contradictory". The spurious features are "No nega-
tion" or "negation" where the existence of the negation word spuriously
correlates with the sentences being contradictory

– CivilComments [5]: This dataset consists of comments and different at-
tributes for predictions. It exhibits demographic information like gender,
race, etc. as spurious correlations.

Datasets with spurious correlations include a core feature essential for the
task and a spurious feature that, while correlated with the label, is not causally
related. This correlation is strong in training data but weaker in validation and
test data. Synthetic datasets like Domino, C-MNIST [32], and Waterbirds [52]
allow control over spurious correlations, showing that increased spurious cor-
relation typically reduces model performance. The spurious feature is usually
simpler than the core feature, leading models to rely on it due to simplicity bias.

Current datasets lack controls for feature complexity, which is a research
gap. Future work should focus on designing datasets with adjustable spurious
feature complexity and explore scenarios with multiple simultaneous spurious
correlations, particularly in vision tasks. Most datasets are vision-based, with
synthetic or biased samples used to introduce spurious correlations.
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4 Benchmarks

The following benchmarks have been proposed to evaluate the robustness of
models against spurious correlations:

[20] introduces the SPUCO benchmark, which includes a dataset and a
method to identify minority groups. The paper also highlights the importance
of considering spurious features in text data.

[15] proposes a benchmark to evaluate the robustness of visual transform-
ers against spurious correlations. The benchmark consists of three datasets and
evaluates the impact of fine-tuning and pretraining on mitigating spurious cor-
relations.

[40] introduces a new benchmark, Spawrious, which includes a dataset of
152K images and evaluates the performance of models in various scenarios. The
paper also highlights the low accuracy of state-of-the-art models on the bench-
mark.

[67] proposes a benchmark to evaluate the robustness of large language
models against spurious correlations. The study shows that pre-trained datasets
increase robust accuracy, but are inconsistent across benchmarks and datasets.

[76] introduces two datasets, DSNLI and DMNLI, which are created using
a method to generate data for training. The paper also proposes a filtering
algorithm to remove spurious examples.

[30] proposes a simple benchmark to evaluate the effectiveness of Deep Fea-
ture Reweighting (DFR) [23] against spurious correlations. The paper evaluates
DFR on a realistic medical dataset and investigates why it works.

5 Evaluation Metrics

The effectiveness of post-hoc explanations for spurious correlation has been eval-
uated in several papers. For example, [1] found that post-hoc explanations, such
as feature attribution, concept activation, and training point ranking, may not
be as effective as expected in detecting unknown spurious correlations. They con-
sidered three types of post-hoc explanations: feature attribution (Input-Gradient
[58], SmoothGrad [59], Integrated Gradients [49], Guided Backprop [61]), con-
cept activation (TCAV) [21], and training point ranking (Influence Functions)
[24].

Another approach to enhancing model robustness and fairness to spurious
correlations is through regularization. [74] proposed a regularization approach
that extracts a set of features with high importance and labels them as spurious
or genuine. The model is then regularized using different weights for spurious
and genuine features to ensure that spurious features are given lower weights.

6 Theoretical and Empirical Hypothesis

The relationship between spurious features and out-of-distribution detection has
been studied in several papers. For example, [42] found that the existence of
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spurious features can make OOD detection difficult. [53] showed that overpa-
rameterization can exacerbate spurious correlations, and that regularization can
help mitigate this issue.

Other papers have explored the importance of regularization for worst-case
generalization [52]. [13] proposed a robust reinforcement learning algorithm that
can eliminate the effect of spurious correlations.

The importance of human annotations in mitigating spurious correlations
has also been explored [63]. The paper introduced a new optimization objective,
UV-DRO, which uses multiple annotations to reduce noise and improve accuracy.

Other papers have discussed the limitations of dataset balancing [54] and
the importance of understanding the failure modes of out-of-distribution gen-
eralization [44]. The paper also discussed the importance of mechanistic mode
connectivity [39].

The paper on informativeness and invariance [14] explores two perspectives
on spurious correlations in NLP. [36] demonstrates that invariant learning with-
out environment partition is infeasible due to different generative models produc-
ing identical distributions with varied causal features. [19] argues that spurious
correlations should not be treated uniformly, as some methods may fail with
specific datasets. Lastly, [64] assesses interpretable ML methods for handling
spurious correlations, and [72] focuses on extracting keywords for text classifica-
tion based on classifier weights.

7 Future Directions

To address the issue of spurious features in machine learning, we propose the
following future directions:

– Develop a comprehensive dataset that enables researchers to control the
types and levels of spurious features, bridging the current gap in this area.

– Shift the focus towards natural language processing tasks, where spurious
feature mitigation has received less attention compared to vision-related
tasks.

– Concentrate on core algorithmic solutions that can generalize across tasks,
rather than relying on complex, task-specific solutions that may not gener-
alize well.

– Explore weakly-supervised or unsupervised approaches that reduce reliance
on group labels, making the approaches more widely applicable and robust.

8 Conclusion

In this comprehensive review, we have examined the current state of spurious
features in machine learning, including both published and unpublished works.
Our analysis highlights the importance of addressing this issue, which can have
different types and origins. By identifying key areas for future research, we aim
to provide a foundation for developing more robust machine learning models
that can accurately generalize across various tasks.
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