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Abstract

A method named ‘motional construction’ is introduced in this ar-
ticle. Questions involving continuum hypothesis and incompleteness
theorems of formal systems are answered, but a major concern of this
article is a nature of infinity: Infinity implies paradoxes.

Many conclusions contradicting orthodox mathematics are proved,
such as: a set of real numbers does not exist, Lebesgue measure of
any set is zero, ZF axioms are not logically consistent, etc. Unreliable
results are common in sub-fields of mathematics where infinite sets are
used intensively.

A valid mathematical conclusion describes finiteness in essence.
When infiniteness is clear, the third mathematical crisis shall be

over.
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1 Introduction

Given that many misunderstandings have been lasting for a long time and
are so deceptive that even deceived many gifted minds, five paradoxes are
prepared in the fist few sections including: real numbers can generate para-
doxes without axiom of choice (AC), there is no smallest infinite set, con-
tinuum hypothesis is about invalid concepts, the set of real numbers is not
a power set of the set of natural numbers, the set of natural numbers is
uncountable.

Obstacles in dealing with infinite numbers are caused by methods of de-
scriptions, e.g., a definition of a set {x : x meets conditions . . . }. A simple
method for mathematical description is shown and named as ‘motional con-
struction’ (MC) because of a motional view. AC and MC are the only tools
available by now to handle infinity. Any axioms designed for infinity shall
be consistent with AC and MC.

Despite of the inconsistency implied by infiniteness, a consistent mathe-
matics could be built with paradoxes bypassed. An updated understanding
of infinity leads to inevitable updates of set theory, logic, analysis etc. In
this article, symbol N denotes the set of positive natural numbers, Z denotes
the set of integer numbers, Q denotes the set of rational numbers, R denotes
the set of real numbers, C denotes the set of complex numbers, the power
set of a set S is denoted by 2S rather than P(S).

2 Extending rod paradox

A rod can be extended by finite steps of separations, rotations, translations
and contractions. Remainder operation ‘mod’ for real numbers is used in
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this section, i.e., ∀a, b ∈ R, b ̸= 0, a mod b = a − b
⌊
a
b

⌋
. Every ‘n’ in this

paradox denotes an integer number, i.e., n ∈ Z.
Let L be a line section of length

√
2:

L =
{
x ∈ R : 0 ≤ x ≤

√
2
}

Separate L into three parts L0, L1 and L2:

L0 = {0}

L1 =

{
x ∈ R :

x√
2
/∈ Q, 0 < x ≤

√
2

}
L2 =

{
x ∈ R :

x√
2
∈ Q, 0 < x ≤

√
2

}
Process L1 as follows:
Step1: Rotate L1 anticlockwise 45◦ around original point (0, 0) to obtain

L′
1:

L′
1 =

{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = y

}
Step2: Because ∀y /∈ Q, ∀n1, n2 ∈ Z, n1 ̸= n2 =⇒ 2n1y ̸≡ 2n2y (mod 1),

so every element in every following set is uniquely specified by ‘n’.
Besides, it can be checked that any sets to be merged in following
steps are disjoint. Suppose we have a draft plane rather than the
plane containing L1. On the draft plane, define A1 as:

A1 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 1, n ̸= 0

}
Move L′

1 onto the draft plane and keep its coordinate position to
obtain A2 = A1 ∪ L′

1:

A2 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 1

}
(1)

Step3: Separate A2 into two parts A3 and A4:

A3 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 2, x ≤ 1

}
A4 =

{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 2− 1, x > 0

}
Then move A4 along positive direction of x-axis by 1 to obtain A5:

A5 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 2, x > 1

}
So A6 = A3 ∪A5 is obtained:

A6 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 2

}
3
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Step4: Separate A6 into two parts A7 and L′′
1:

A7 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2ny) mod 2, n ̸= 1

}
L′′
1 =

{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = 2y

}
Move L′′

1 back to the plane which L1 initially belongs to.
Step5: Compress A7 along negative direction of x-axis by ratio 1/2 to get

A8:

A8 =
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = ((2ny) mod 2)/2, n ̸= 1

}
=
{
(x, y) ∈ R2 : y /∈ Q, 0 < y ≤ 1, x = (2(n−1)y) mod 1, n ̸= 1

}
Because Z contains infinitely many integers, so {n− 1: n ∈ Z, n ̸= 1}
and {n ∈ Z : n ̸= 0} are the same set. So A8 = A1.

Step6: Rotate L′′
1 around original point (0, 0) clockwise by angle arctan(1/2)

to obtain L3:

L3 =

{
x ∈ R :

x√
5
/∈ Q, 0 < x ≤

√
5

}
After six steps, A1 on the draft plane is unchanged, but L1 becomes

L3. The only operation which is not a separation, rotation or translation
is Step5, which reduces or keeps distances between any two points, so is a
contraction.

Next, we alter L2 first and then do similar operations. Separate L2 into
two parts L4 and L5:

L4 =

{
x ∈ R :

x√
2
∈ Q, 0 < x ≤ 1

}

L5 =

{
x ∈ R :

x√
2
∈ Q, 1 < x ≤

√
2

}
Then move L4 along positive direction of x-axis by

√
2−1 to obtain L′

4, and
move L5 along negative direction of x-axis by 1 to obtain L′

5:

L′
4 =

{
x ∈ R :

x− (
√
2− 1)√
2

∈ Q,
√
2− 1 < x ≤

√
2

}

=

{
x ∈ R :

x+ 1√
2

∈ Q,
√
2− 1 < x ≤

√
2

}
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Figure 1: Steps of extending rod paradox

L′
5 =

{
x ∈ R :

x+ 1√
2

∈ Q, 0 < x ≤
√
2− 1

}
So L6 = L′

4 ∪ L′
5 is obtained:

L6 =

{
x ∈ R :

x√
2
+

1√
2
∈ Q, 0 < x ≤ 1

}
Because x/

√
2 + 1/

√
2 ∈ Q =⇒ x/

√
2 /∈ Q, so former six steps applied to

L1 can also be applied to L6. Just replace all the ‘/∈ Q’ with ‘+1/
√
2 ∈ Q’,

we will get six steps suitable for L6. It can be checked that everything on
the draft plane after these steps is also unchanged, and we can obtain L7:

L7 =

{
x ∈ R :

x√
5
+

1√
2
∈ Q, 0 < x ≤

√
5

}
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Then divide L7 into two parts L8 and L9:

L8 =

{
x ∈ R :

x√
5
+

1√
2
∈ Q, 0 < x ≤

√
5−

√
5√
2

}

L9 =

{
x ∈ R :

x√
5
+

1√
2
∈ Q,

√
5−

√
5√
2
< x ≤

√
5

}
Then move L8 along positive direction of x-axis by

√
5/
√
2 to obtain L′

8,
and move L9 along negative direction of x-axis by

√
5 −

√
5/
√
2 to obtain

L′
9:

L′
8 =

{
x ∈ R :

x−
√
5/
√
2√

5
+

1√
2
∈ Q,

√
5√
2
< x ≤

√
5

}

=

{
x ∈ R :

x√
5
∈ Q,

√
5√
2
< x ≤

√
5

}

L′
9 =

{
x ∈ R :

x+
√
5−

√
5/
√
2√

5
+

1√
2
∈ Q, 0 < x ≤

√
5√
2

}

=

{
x ∈ R :

x√
5
∈ Q, 0 < x ≤

√
5√
2

}
So L10 = L′

8 ∪ L′
9 is obtained:

L10 =

{
x ∈ R :

x√
5
∈ Q, 0 < x ≤

√
5

}
Finally we get L̂ = L0 ∪ L3 ∪ L10:

L̂ =
{
x ∈ R : 0 ≤ x ≤

√
5
}

After finite steps of separations, rotations, translations and contractions,
a line segment is extended to a longer one. This process is replicable, con-
sequently we get a paradox of extending line. If every point in the process
is assigned with a line section vertical to the concerned plane, we would get
a paradox of extending strap. If every point in the process is assigned with
a plane face vertical to the point’s plane in a 4-dimensional space, we would
get a paradox of extending rod.

The process can be carried out in a reverse manner, i.e., by finite steps
of separations, rotations, translations and expansions, a line, a strap or a
rod can be compressed to a shorter and shorter one.
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The step3 alone is a persuasive paradox. A2 proportionally turns into
a longer A6 by displacement and could turn into 2n times long by n dis-
placements. This is not an expansion by increasing distances among points,
since A2 is not a set of disjoint points. The dimension of set A2 along the
extending direction is at least 1 (consider the diagonal). In a reverse way,
the length of A2 could be reduced to 2−n by n displacements.

Every paradox similar to the Banach-Tarski paradox[1] involves three
crucial features:

� Irrational numbers in 1st mathematical crisis.
� Infinite series in 2nd mathematical crisis.
� Set concepts in 3rd mathematical crisis.

3 Countable cardinality paradox

This paradox shows that there is no smallest infinite cardinal number.
Partition of a set is used in this paradox, so its definition is recalled: Let

P be a set formed by nonempty subsets of set S. If any two elements in P
do not intersect, and a union of all elements in P equals S, then P is called
a partition of S.

Definition 3.1. (Larger Than) A set S1 is larger than a set S2 if and only
if there is no bijection between S1 and any subset of S2.

Lemma 3.1. An infinite set exists that its power set is no larger than the
set of natural numbers.

Proof. This is a constructive proof. Let a set sequence D1, D2, D3, · · · be

Di =
{
x ∈ N : (x− 1) mod 2i < 2i−1

}
Let E be a set consisting of a finite number of Di. Let 2

E be the power set
of E.

Define a mapping f : 2E 7→ f(2E) as

f(α) =
(⋂

β∈α β
)
∩
(⋂

β∈E,β /∈α β
c
)
, α ∈ 2E

where βc represents the complementary set of β.
It follows the above definition that f(2E) is a partition of N. A detailed

proof is included here. But this proof can be skipped, just consider that a
binary notation of every natural number exists and is unique.

∀α ∈ 2E , let I1 = {i : Di ∈ α} denote all the indexes of β in α, let I2 =
{i : Di ∈ E,Di /∈ α} denote all the indexes of β in E but not in α. Choose a
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natural number x∗ = 1 +
∑

i∈I2 2
(i−1). ∀β ∈ 2E , suppose β = Dj . If β ∈ α,

then j ∈ I1 =⇒ (x∗ − 1) mod 2j =
∑

i∈I2,i≤j 2
(i−1) =

∑
i∈I2,i≤j−1 2

(i−1) ≤∑
i≤j−1 2

(i−1) = 2(j−1) − 1 < 2(j−1) =⇒ x∗ ∈ Dj =⇒ x∗ ∈ ⋂
β∈α β. If

β /∈ α, then j ∈ I2 =⇒ (x∗ − 1) mod 2j =
∑

i∈I2,i≤j 2
(i−1) ≥ 2(j−1) =⇒

x∗ /∈ Dj =⇒ x∗ ∈ βc =⇒ x∗ ∈ ⋂
β/∈α β

c. So x∗ ∈ f(α) =⇒ f(α) ̸= ∅.

Therefore, ∀f(α) ∈ f(2E), f(α) ̸= ∅.
∀α1, α2 ∈ 2E , α1 ̸= α2, ∃β∗ ∈ E, satisfying β∗ ∈ α1, β

∗ /∈ α2, or β
∗ /∈

α1, β
∗ ∈ α2, therefore

f(α1) ∩ f(α2) =
( ⋂
β∈α1

β
)
∩
( ⋂
β∈E
β/∈α1

βc
)
∩
( ⋂
β∈α2

β
)
∩
( ⋂
β∈E
β/∈α2

βc
)

= β∗ ∩ β∗c ∩
( ⋂
β∈α1∪α2
β ̸=β∗

β
)
∩
( ⋂

β∈E
β/∈α1∩α2
β ̸=β∗

βc
)
= ∅

∀x ∈ N, consider α∗ = {β ∈ E : x ∈ β}, so ∀β ∈ E, β /∈ α∗ =⇒ x /∈ β, so
x ∈

(⋂
β∈α∗ β

)
∩
(⋂

β∈E,β /∈α∗ βc
)

=⇒ x ∈ f(α∗), therefore
⋃
γ∈f(2E) γ = N.

Now we have proved that f(2E) is a partition of N.
In the proof, ∀α ∈ 2E , f(α) ̸= ∅ and ∀α1, α2 ∈ 2E , α1 ̸= α2, f(α1) ∩

f(α2) = ∅ implies f is a bijection.
Then we proceed to define a set E which cannot be defined in an ordinary

form like {x : x meets · · · }. Let’s begin with an empty set E = ∅, and
process as follows: Check D1, D2, D3, · · · one by one in sequence. Let E′ =
E ∪ {Di}. if E′ meets all the following conditions, then Add Di into set E
(i.e., make E′ the new E). Otherwise, stop the process. The conditions are:
(I) f is a bijection.
(II) f

(
2E

′)
is a partition of N.

(III) Other conditions needed to make this paradox more convincing . . .
Then we ask a question: Does this process of adding elements to E have

to be stopped at some finite step?
Assume this process fails when trying to add Dn. Then n − 1 elements

D1, D2, . . . , Dn−1 have been successfully added to E, so it can be checked
that all the conditions are also satisfied by E ∪{Dn}, which contradicts our
step-n-stop assumption. So, we have to accept that this process can be done
infinitely, to get at least one set E consisting of infinitely many elements.

Then we ask a second question: Does this infinite set E meet all the
conditions?

Assume E does not meet one of the conditions. Then we should have
stopped before obtaining E, since our process is to check all the conditions
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Figure 2: Partition of the set of natural numbers

prior to altering E. So, we did not get E, which contradicts the set-E-got
assumption. So, we have to accept that the infinite set E meets all the
conditions.

Since f(2E) is a partition of N, we can define a mapping1

p : f(2E) 7→ N

that ∀S ∈ f(2E), p(S) = the smallest number in S. Because f is a bijection
and f(2E) is a partition of N, so ∀α1, α2 ∈ 2E , α1 ̸= α2 =⇒ f(α1) ̸=
f(α2) =⇒ f(α1) ∩ f(α2) = ∅ =⇒ p◦f(α1) ̸= p◦f(α2), i.e., p◦f is a
bijection from (2E) to a subset of N. Therefore, by Definition 3.1, E is an
infinite set whose power set is no larger than the set of natural numbers.

Let card() denote a cardinality. Since p◦f is a bijection from 2E to a
subset of N, we have card(2E) ≤ card(N). According to Cantor’s theorem
about cardinality of power set: the cardinality of a power set of any set is
larger than the cardinality of the set itself, so

card(E) < card(2E) ≤ card(N)

Hence the cardinal number of E is smaller than N. Name this E as

log2N

The cardinality of log2N is not the smallest either, because we can repeat
this process to obtain:

· · · log2 log2 log2N
Besides, ∀m ∈ N, we can define logmN through a similar process.

1Alternatively the existence of mapping p could be added to the conditions in the
process defining E.
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4 Continuum hypothesis paradox

This is a proof of continuum hypothesis[2].
The former section shows that there is no smallest infinite cardinal num-

ber, but it is not answered whether there exists a third cardinal number
between cardinality of an infinite set and cardinality of its power set. Con-
tinuum hypothesis guesses that there is no other cardinal number between
the cardinality of the set of natural numbers and cardinality of its power
set.

If we assume that any cardinal number no greater than the cardinality
of a set can be represented by a subset of it, then it is sufficient to check
cardinality of every subset of the power set of set of natural numbers, namely,
check all the subsets of 2N.

An idea of this proof is to find a bijection from a subset of 2N to a second
subset of 2N, and make sure the second subset meets: If a set S comprising
some natural numbers is in it, then the power set of S is a subset of it. The
bijection to be obtained cannot be defined by an ordinary expression like
f(x) = expression(x).

For convenience of statement, five kinds of sets are used in this proof:
primitive set composed of some natural numbers, subscript set composed of
some natural numbers, set of some subscript sets, parting set composed of
some primitive sets, set composed of some parting sets.

Definition 4.1. (Counted-Binary Order of Finite Sets of Natural Num-
bers) Let S1 and S2 be two different sets comprising finitely many natural
numbers. A counted-binary order between them is decided by: If one set
contains less natural numbers than the other, then it is prior to the other. If
they contain the same number of natural numbers, then compute

∑
n∈S1

2n

and
∑

n∈S2
2n, the set with a smaller result is prior to the other.

Lemma 4.1. ∀J ⊆ 2N, ∃J∗ which is a set of sets, there exists a bijection
between J and J∗, and ∀η ∈ J∗, 2η ⊆ J∗.

Proof. (Proofs of required lemmas are nested inside this proof.)
∀J ⊆ 2N, try to separate J into many sets {Jξ}, where every index ξ is

a subscript set consisting of some natural numbers. Name Jξ as parting set.
Name ξ as subscript set. Begin with {Jξ} = {J}, i.e., initially {Jξ} contains
only J , of which the subscript set ξ is an empty set. Process {Jξ} step by
step. In the ith step (i = 1, 2, 3, · · · ), process {Jξ} as follows:
(1) (Process 1) Obtain two parting sets from every parting set in {Jξ} ac-

cording to number ‘i’:
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Let Jη be a parting set currently dealt with. One set obtained is Jη0 .
Specify its subscript set as

η0 = η

From Jη select every primitive set which does not contain number ‘i’ to
form this parting set Jη0 , that is

Jη0 = {ζ : ζ ∈ Jη, i /∈ ζ}

The other set obtained is Jη1 . Specify its subscript set as

η1 = η ∪ {i}

From Jη select every primitive set which contains number ‘i’ to form
this parting set Jη1 , that is

Jη1 = {ζ : ζ ∈ Jη, i ∈ ζ}

It can be verified that: If Jη = ∅, then Jη0 = Jη1 = ∅. If Jη ̸= ∅, then
at most one of Jη0 and Jη1 might be empty set.
After every parting set in {Jξ} was processed, a new set formed by all
the new parting sets is obtained and denoted by {Jξ′}.

(2) (Process 2) Process all the parting sets in {Jξ′} one by one in counted-
binary order of their subscript sets in following way:
Let Jη be a parting set currently dealt with.
If Jη = ∅, then do nothing.
If Jη ̸= ∅, then from {Jξ′} select all the parting sets whose subscript
set is a subset of η, to form a set of parting sets. Let K denote this set
of parting sets temporarily, i.e.,

K = {Jσ : Jσ ∈ {Jξ′}, σ ⊂ η}

Then search in this temporary K in counted-binary order of subscript
sets to find one empty parting set. If no empty parting set could be
found in K, then do nothing. If a first empty parting set is found,
then stop searching, note this empty parting set as Jη′ , and move all
the contents of Jη into Jη′ (i.e., Jη becomes empty, and Jη′ becomes
a parting set consisting of all the primitive sets originally in Jη). The
Figure 3 illustrates an example of this Process 2.

(3) Check whether {Jξ′} meets all the following conditions:
(a) (Condition 3a) All the nonempty parting sets in {Jξ′} form a parti-

tion of J .
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Figure 3: Example of Process 2

(b) (Condition 3b) ∀Jη ∈ {Jξ′}, ∀σ ⊂ η =⇒ σ is subscript set of a
parting set in {Jξ′}, i.e., Jσ ∈ {Jξ′}.

(c) (Condition 3c) ∀Jη ∈ {Jξ′}, Jη ̸= ∅, ∀σ ⊂ η =⇒ Jσ ̸= ∅.
(d) Other conditions needed to make this proof more convincing . . .
If all the conditions are satisfied, then replace {Jξ} with {Jξ′} and pro-
ceed to the next step. If any condition is violated, then stop the process.

Now we prove that every condition is guaranteed in any finite step:

Proof. Proof of Condition 3a
During every step, the only possible maneuver operated on any primitive

set is moving it from one parting set to another. So all the nonempty parting
sets in {Jξ′} always form a partition of J .

Proof. Proof of Condition 3b
According to process 1 up to the ith step, let I = {m ∈ N : m ≤ i},

then all the subscript sets form a power set of I, i.e., every subset of I is a
subscript set. Therefore, ∀Jη ∈ {Jξ′} =⇒ η ⊆ I =⇒ ∀σ ⊂ η, σ ⊂ I =⇒
Jσ ∈ {Jξ′}, i.e., any subset of a subscript set is also a subscript set.

12
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Proof. Proof of Condition 3c
This condition is guaranteed by Process 2. Let Jη be a nonempty parting

set currently dealt with in process 2.
(i) If no empty set is found in the temporary K.

(A) According to Condition 3b, ∀σ ⊂ η, Jη ∈ {Jξ′} =⇒ Jσ ∈ {Jξ′}.
According to Definition 4.1, σ ⊂ η =⇒ σ is prior to η.
According to Process 2, Jσ ∈ {Jξ′}, σ is prior to η =⇒ Jσ ̸= ∅.

(B) Because ∀σ ⊂ η =⇒ σ is prior to η, so Jσ has been processed
before this stage and would not be changed to empty set after-
wards. And Jη itself would not be changed afterwards. Therefore,
Jη ̸= ∅ and ∀σ ⊂ η, Jσ ̸= ∅ holds afterwards.

(ii) If a first empty set Jη′ is found in the temporary K. Then Jη would
become empty, and Jη′ would be filled with all the primitive sets orig-
inally in Jη.
(A) (Reason iiA) Replace every ‘η’ with ‘η′’ in the first part of above

proof, then a similar conclusion could be derived: ∀σ ⊂ η′ =⇒
Jσ ̸= ∅.

(B) (Reason iiB) Because η′ ⊂ η, so ∀σ ⊂ η′ =⇒ σ ⊂ η =⇒ σ is
prior to η, so Jσ has been processed before this stage and would
not be changed to empty set afterwards. And Jη′ itself would not
be changed afterwards. Therefore, Jη′ ̸= ∅ and ∀σ ⊂ η′, Jσ ̸= ∅
holds afterwards.

(C) Jη becomes empty set. Suppose it will be changed later, according
to above Reason iiA and Reason iiB, it is supposed to be filled
with contents of some other parting set to meet Jη ̸= ∅,∀σ ⊂
η, Jσ ̸= ∅. And after that, Jη and ∀σ ⊂ η, Jσ are supposed to keep
unchanged. Therefore, at this point, a definite conclusion could
already be got that either Jη = ∅ or Jη ̸= ∅,∀σ ⊂ η, Jσ ̸= ∅
holds afterwards.

Since every parting set would be processed to meet either Jη = ∅ or Jη ̸=
∅, ∀σ ⊂ η, Jσ ̸= ∅, and this status would be maintained afterwards, we
conclude that Condition 3c is guaranteed.

Now that every condition is guaranteed at every finite step, we ask a
question: Can this process be executed for all finite steps? Assume this
process cannot be executed for all finite steps, then there should be some
finite step at which this process has to stop, suppose it is the nth step.
Then the process has been successfully executed for n− 1 steps, but fails at
the nth step. But after checking all the conditions, no condition could be
violated in the nth step, which contradicts the step-n-stop assumption. So,

13
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we have to accept that this process can be executed for all finite steps to
obtain a {Jξ}.

Then we ask a second question: Does the {Jξ} obtained meet all the
conditions? Assume {Jξ} violates some condition. Then we should have
stopped before obtaining {Jξ}, since our process is to assure all the condi-
tions satisfied before updating {Jξ}. So, we do not get {Jξ}, which contra-
dicts our set-{Jξ}-got assumption. So, we have to accept that {Jξ} meets
all the conditions.

Moreover, since {Jξ} is obtained after processes of all finite steps, fol-
lowing four conclusions can be proved:

(I) For any primitive set in J , the subscript set of the parting set it
belongs to is definite.

Proof. For some primitive set in J , let the subscript set of the parting
set containing it be denoted by η. Then it can be checked that the
process might only add ‘i’ into η at the ith step. Other than that,
an only operation the process might perform is to remove natural
numbers from η. So that ∀i ∈ N, the relationship between ‘i’ and η
falls into three possible cases:

� ‘i’ is never added to η.
� ‘i’ is added to η at the ith step and remains in η.
� ‘i’ is added to η at the ith step and removed from η at some later
step.

No matter which possibility, ‘i’ in η or not in η is definite after finite
steps. So η is a definite set.

(II) Every nonempty parting set in {Jξ} contains only one primitive set.

Proof. For any two different primitive sets in J , suppose the smallest
natural number in one of them but not in another is ‘m’, then the
two primitive sets would be moved into distinct parting sets during
the mth step. Therefore, any two different primitive sets are in dis-
tinct parting sets, i.e., every nonempty parting set contains only one
primitive set.

(III) According to Condition 3a, all the nonempty parting sets in {Jξ} form
a partition of J , therefore for any primitive set ζ ∈ J , there exists a
unique Jη ∈ {Jξ}, ζ ∈ Jη. Therefore, a mapping from primitive sets
to subscript sets can be defined:
Definition 4.2. A mapping g : J 7→ g(J) is defined by an equivalent
relation:

g(ζ) = η ⇐⇒ ζ ∈ Jη, Jη ∈ {Jξ}

14
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It has been proved that every nonempty parting set in {Jξ} contains
only one primitive set, so ∀ζ1, ζ2 ∈ J, ζ1 ̸= ζ2, g(ζ1) = η1, g(ζ2) =
η2 =⇒ ζ1 ∈ Jη1 , ζ2 ∈ Jη2 =⇒ ζ2 /∈ Jη1 =⇒ Jη1 ̸= Jη2 =⇒
η1 ̸= η2 =⇒ g(ζ1) ̸= g(ζ2), therefore the mapping g is a bijection.
In addition, Jη ∈ {Jξ}, Jη ̸= ∅ ⇐⇒ ∃ζ ∈ J, ζ ∈ Jη, Jη ∈ {Jξ} ⇐⇒
∃ζ ∈ J, g(ζ) = η ⇐⇒ η ∈ g(J). In short, we have

Jη ∈ {Jξ}, Jη ̸= ∅ ⇐⇒ η ∈ g(J)

(IV) ∀η ∈ g(J), 2η ⊆ g(J).

Proof. Use Condition 3b, Definition 4.2, Condition 3c, and Defini-
tion 4.2 in sequence, ∀η ∈ g(J), ∀σ ⊂ η =⇒ η ∈ g(J), σ ⊂ η, Jσ ∈
{Jξ} =⇒ Jη, Jσ ∈ {Jξ}, Jη ̸= ∅, σ ⊂ η =⇒ Jσ ∈ {Jξ}, Jσ ̸=
∅ =⇒ σ ∈ g(J). In short, we have

∀η ∈ g(J), ∀σ ⊂ η =⇒ σ ∈ g(J)

which is equivalent to ∀η ∈ g(J), 2η ⊆ g(J).

This g(J) is a J∗ satisfying Lemma 4.1.

Then we ask a question: Is there a subscript set η ∈ J∗ containing
infinitely many natural numbers?

Suppose there exists such a subscript set, then card(η) = card(N). So
η ∈ J∗ =⇒ 2η ⊆ J∗ =⇒ card(J∗) ≥ card(2η) = card(2N) =⇒ card(J) ≥
card(2N). On the other hand, J ⊆ 2N =⇒ card(J) ≤ card(2N), therefore

card(J) = card(2N) = ℵ1

Suppose there is no such a subscript set, in other words, ∀η ∈ J∗, η con-
tains at most finitely many natural numbers, then count J∗ according to a
sequence:

First count subscript sets in
{
η ∈ J∗ : 0 =

∑
m∈ηm

}
,

then count subscript sets in
{
η ∈ J∗ : 1 =

∑
m∈ηm

}
,

then count subscript sets in
{
η ∈ J∗ : 2 =

∑
m∈ηm

}
,

...

So J∗ is countable. Therefore, J is also countable, which means

card(J) = card(N) = ℵ0

Hence the cardinality of any subset of the power set of the set of natural
numbers is either ℵ0 or ℵ1, the continuum hypothesis is proved.
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5 Real number cardinality paradox

This paradox states that the set of real numbers could be larger than the
power set of set of natural numbers. A lemma is proved first, in which a
mathematical object in a sequence is called a ‘bit’.

Lemma 5.1. Let S be a set consisting of infinitely long sequences. Let s̄ be
an infinitely long sequence. If ∀n ∈ N,∃s ∈ S, the first n bits of s and s̄ are
the same, then s̄ ∈ S.

Proof. Let s∗ be a sequence. Initially, let s∗ equal to an arbitrary sequence
in S. Then process s∗ step by step:

At the ith step (i = 1, 2, 3, . . . ), check in S whether there is a sequence s
that at least the first i bits are the same with s̄. If such a sequence s exists,
update s∗ with s. If there is no such a sequence, then stop the process.

Then we ask a question whether this process can be carried out for all
finite steps? Assume this process cannot be carried out for all finite steps, it
has to stop at some finite step. Let the step stopped be the nth step, then
n − 1 steps have been executed, but the nth step fails. A cause of failure
must be: In S there is no sequence with the first n bits the same as s̄. But
this contradicts the premise. So, we have to accept that this step do not
need to stop at any finite step.

Now s∗ is a string obtained after all finite steps. Is this s∗ in S? We have
to accept s∗ ∈ S, because at every step, s∗ equals to a sequence in S.

Because s∗ is obtained after all the finite steps, so ∀i ∈ N the first i bits
of s∗ and s̄ are the same, namely s∗ = s̄. Therefore, s̄ ∈ S.

The above Lemma 5.1 contradicts mainstream mathematical intuition,
which judges infinite series by convergence. But it is a true result. S includes
s̄ is an inevitable consequence of that S contains sequences with arbitrary
many first bits the same as s̄. If we accept Lemma 5.1, then it will be shown
that R could be larger than 2N.

Henceforth in this proof, symbols ‘i’ and ‘j’ denote natural numbers
1, 2, 3, . . . Let H be a set formed by 2-parameter sequences (or tables) com-
prising infinitely many ‘0’, ‘1’:

H =
{
ψ : ψ = {hij} , hij ∈ {0, 1}, j ≤ 2i

}
Define a mapping f1 : H 7→ f1(H) such that ∀ψ ∈ H,

f1(ψ) =
∞∑
i=1

2i∑
j=1

hij3
−2i−j
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in which hij ∈ ψ. As hij ∈ {0, 1}, so

f1(ψ) ≤
∞∑
i=1

2i∑
j=1

3−2i−j =
∞∑
i=1

1

2

(
3−2i − 3−2i+1

)
=

1

2
3−21 =

1

18

Therefore, ∀ψ ∈ H, f1(ψ) is defined by a bounded monotonic series, so
f1(ψ) ∈ R, i.e., f1(H) ⊆ R.

∀bi1j1 , bi2j2 ∈ ψ, i1 < i2 =⇒ 2i1 + j1 − 2i2 − j2 < 2i1 + 2i1 − 2i2 − 0 =
2i1+1 − 2i2 ≤ 0. And i1 = i2, j1 ̸= j2 =⇒ 2i1 + j1 − 2i2 − j2 = j1 − j2 ̸= 0.
So

i1 ̸= i2 ∨ j1 ̸= j2 =⇒ 2i1 + j1 ̸= 2i2 + j2

Therefore, in definition of f1(ψ) the exponents of ‘3’ never repeat.
∀ψ1, ψ2 ∈ H,ψ1 ̸= ψ2, note ψ1 = {hij}, ψ2 = {ℏij}. Compare bits of ψ1

and ψ2 in order of
(
2i + j

)
, assume index of the first different bit is i∗, j∗,

so

f1 (ψ1)− f1 (ψ2) =
∞∑
i=1

2i∑
j=1

(hij − ℏij) 3−2i−j = (hi∗j∗ − ℏi∗j∗) 3−2i
∗−j∗ + rst.

in which
(hi∗j∗ − ℏi∗j∗) 3−2i

∗−j∗ = ± 3−2i
∗−j∗

|rst.| ≤
∞∑

n>2i∗+j∗

3−n =
1

2
· 3−2i

∗−j∗

so f1 (ψ1)− f1 (ψ2) ̸= 0. Therefore, f1 is a bijection.
∀W ⊆ 2N, assume there exists a bijection f2 : f1(H) 7→W . Then f2 ◦ f1

is a bijection from H to W , note f3 = f2 ◦ f1.
Definition 5.1. ∀ζ ∈W , if ∀hij ∈ f−1

3 (ζ), j = 1+
∑m≤i

m∈ζ 2
m−1 =⇒ hij = 1,

then call ζ as coded. Otherwise, call ζ as non-coded.

Lemma 5.2. ∀i, ∀ζ ⊆ N, 0 ≤ 1 +
∑m≤i

m∈ζ 2
m−1 ≤ 2i.

Lemma 5.2 ascertains the hij in Definition 5.1 always exists. Therefore,

ζ is non-coded ⇐⇒ ∃hij ∈ f−1
3 (ζ), j = 1+

∑m≤i
m∈ζ 2

m−1, hij ̸= 1∨∄hij ⇐⇒

∃hij ∈ f−1
3 (ζ), j = 1 +

∑m≤i
m∈ζ 2

m−1, hij = 0

Let F be a set consisting of all the non-coded ζ in W :

F =
{
ζ : ζ ∈W, ∃hij ∈ f−1

3 (ζ), j = 1 +
∑m≤i

m∈ζ 2
m−1, hij = 0

}
17
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Because of Lemma 5.2, we can construct a ψ∗ ∈ H such that

ψ∗ =
{
hij : hij = 1 ⇐⇒ ∃ζ ∈ F, j = 1 +

∑m≤i
m∈ζ 2

m−1, otherwise hij = 0
}

It is evident that f3(ψ
∗) ∈ W , because f3 is a bijection. Then we ask a

question about whether f3(ψ
∗) is in F?

Assume f3(ψ
∗) ∈ F , then according to the definition of F ,

∃hij ∈ f−1
3 (f3(ψ

∗)), j = 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1, hij = 0

but according to the definition of ψ∗, because f3(ψ
∗) ∈ F , so

∀hij ∈ ψ∗, j = 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1 =⇒ hij = 1

This is a contradiction.
Assume f3(ψ

∗) /∈ F , then f3(ψ
∗) is coded, according to Definition 5.1,

∀hij ∈ f−1
3 (f3(ψ

∗)), j = 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1 =⇒ hij = 1

And by definition of ψ∗,

∀hij ∈ ψ∗, hij = 1 =⇒ ∃ζ ∈ F, j = 1 +
∑m≤i

m∈ζ 2
m−1

therefore

∀hij ∈ ψ∗, j = 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1 =⇒ ∃ζ ∈ F, j = 1 +

∑m≤i
m∈ζ 2

m−1

By definition of H, the above relation is equivalent to

∀i,∀j ≤ 2i, j = 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1 =⇒ ∃ζ ∈ F, j = 1 +

∑m≤i
m∈ζ 2

m−1

By Lemma 5.2, the above relation is equivalent to

∀i, j = 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1 =⇒ ∃ζ ∈ F, j = 1 +

∑m≤i
m∈ζ 2

m−1

which is equivalent to

∀i =⇒ ∃ζ ∈ F, 1 +
∑m≤i

m∈f3(ψ∗) 2
m−1 = 1 +

∑m≤i
m∈ζ 2

m−1

which is equivalent to

∀i,∃ζ ∈ F,
∑m≤i

m∈ζ 2
m−1 =

∑m≤i
m∈f3(ψ∗) 2

m−1
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which is equivalent to

∀i,∃ζ ∈ F, {m : m ∈ ζ,m ≤ i} = {m : m ∈ f3(ψ
∗),m ≤ i}

which means ∀n ∈ N, ∃ζ ∈ F , the first n bits of ζ and f3(ψ
∗) are the same,

then according to Lemma 5.1, f3(ψ
∗) ∈ F . This contradicts the assumption.

Therefore, ∀W ⊆ 2N there is no bijection between f1(H) andW , so there
is no bijection between R and W . According to Definition 3.1, R is larger
than 2N.

The reason why Lemma 5.1 is needed in this paradox is that a set like
22

N
is required which is difficult to be constructed otherwise.

6 Natural numbers uncountable paradox

It will be shown in this section that natural numbers are larger than any set
and therefore uncountable.

Lemma 6.1. A set containing all the finite natural numbers contains an
infinite number.

Proof. Let Ḡ be the set concerned. Construct a set G from finite natural
numbers step by step. Let G be an empty set initially. At the ith step
(i = 1, 2, 3, · · · ), check G ∪ {i} by the following conditions:
(I) The maximum number in G∪{i} equals to the number of elements of

G ∪ {i}.
(II) Other conditions needed to make this paradox more convincing . . .
If all the conditions are satisfied, then add ‘i’ into G, proceed to the next
step. If any condition is violated, stop the construction.

After all the allowed steps, is G a finite set or not? Assume G is a finite
set, then let m be the number of its elements. Because its maximum number
equals to the number of its elements, so that the max number in G is m.
Because G∪{m+1} meets all the conditions, so m+1 could be added to G
to make G a set with m+ 1 elements. This contradicts m-number-elements
assumption. So that G cannot be a finite set. G must be an infinite set with
infinite number of elements, so that the maximum number in G is infinite.

Because at every step, the finite number added to G belongs to Ḡ, so
that G ⊆ Ḡ. Therefore, the infinite number in G is also in Ḡ.

Theorem 6.2. The set of natural numbers is larger than any infinite set.
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Proof. Because N contains all the finite natural numbers, by Lemma 6.1,
there exists an infinite number in N. Let N∗ be a set2 comprising all the
infinite numbers in N.

Assume N is not larger than a set S. Then by Definition 3.1 there is a
bijection f∗ to N from a subset of S, this mapping is also a bijection between
N∗ and another subset (denoted by S∗) of S. Then

f∗ : S∗ 7→ N∗

Because N−N∗ contains all the finite natural numbers, it follows Lemma 6.1
that N−N∗ contains an infinite number n∗. And

n∗ ∈ N−N∗ =⇒ n∗ /∈ N∗ =⇒ n∗ /∈ f∗ (S∗)

which contradicts f∗ is a bijection between S∗ and all the infinite numbers of
N. The assumption that N is not larger than a set leads to a contradiction,
so that N is larger than any set.

7 Cause of paradoxes

The previous five paradoxes account for a small portion of paradoxes hidden
in mathematics. Before explaining the cause, four definitions are given.

Definition 7.1. (Motional Construction) If a process on a mathematical
object satisfies:
(I) The process is carried out step by step.
(II) At each step, only finite number of attributes of the mathematical

object is processed.
(III) There are finite number of conditions. At each step the process satisfies

these conditions.
then this process is a motional construction.

Definition 7.2. (Set) A collection is a set if and only if: For any element,
conclusions about the element belonging to it or not are the same through
all reasoning paths.

Definition 7.3. (Class) A collection is a class if and only if: For any el-
ement, a conclusion about the element belonging to it or not is definite
through any reasoning path.

2This set N∗ can also be constructed from N by removing all finite numbers one by
one.
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Definition 7.4. (Infinite) In mathematics, if an attribute is larger than any
finite number, then it is infinite.

In an ordinary definition of a set ‘{x : x meets conditions . . . }’ or ‘S =⋃
i Si’, every property of every element is defined ‘locally’ such that every

element is described with predefined elements, while elements defined after-
wards are not mentioned. When discussing a finite set, such kind of ‘locality’
does not cause problems, because there must be a final element dominating
the whole scope. But while dealing with an infinite set, there is no such
a final element at hand. Thus, we are trapped in a dilemma that on one
hand whole-scope properties are questioned, on the other hand all the tools
available are local.

In order to overcome this difficulty, some assumptions were conjectured
as axioms, such as counting infinite set by one-to-one correspondence of
finite elements (Hilbert’s hotel) and Cantor’s infinite cardinality[3]. But
as previous sections showed, such assumptions about infiniteness produces
confusions rather than methods.

Consider to weigh a large carpet with a small carat scale. Even if weigh-
ing it region by region, data got is still meaningless. A task of weighing a
carpet requires a scale large enough. In the motional construction (Defini-
tion 7.1), all the properties are assured globally at each step, so the difficulty
caused by the locality of the ordinary set definition does not exist.

Infinity sometimes appears as magnitude, sometimes as fineness. An
ordinary form defining a mapping or function like ‘f(x) = formula(x)’ is
also powerless for infinite problems. To describe all the relationships between
infinitely many elements with expressions with finite symbols in finite length
is like trying to measure circuits on a CPU chip with an ordinary ruler. A
structure of nanoscale fineness cannot be measured with a ruler of millimeter
resolution. Tools fine enough are required, such as the AC or MC, to identify
relations between infinitely many elements.

Mathematical expressions are inventions for convenience, but not con-
straints. As long as every step is well-defined, a mathematical sequence is
built successfully.

A theorem about infinity explains all the five paradoxes:

Theorem 7.1. Any mathematical collection with infinitely many elements
is not a set.

Proof. Let X be a mathematical collection with infinitely many elements.
Then by Motional Construction, an injection f from all the finite natural
numbers to X can be established. Let X∗ be all the elements in X mapped
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from finite natural numbers. Then f−1(X∗) consists of all the finite numbers.
According to Lemma 6.1, there exists an infinite number n∗ in f−1(X∗),
therefore f(n∗) exists and f(n∗) ∈ X∗.
(I) f(n∗) ∈ X∗ =⇒ f(n∗) ∈ X.
(II) n∗ is infinite and ∀x ∈ X∗, f−1(x) is finite =⇒ n∗ /∈ f−1(X) =⇒

f(n∗) /∈ X∗. Because f(n∗) ∈ X∗ =⇒ f(n∗) /∈ X−X∗, so f(n∗) /∈ X.
Since the conclusions about f(n∗) in X or not in X are different through
different reasoning paths, X is not a set.

Corollary 7.2. A set is finite.

Corollary 7.3. The collection of real numbers is a class but not a set, so
is the collection of rational numbers, integer numbers or natural numbers.

Conclusions involving infinity are path-dependent. Reasoning by contra-
diction could be used, but it is only responsible for itself. Some equivalent
statements or expressions in set math are not equivalent in class math, e.g.,
following statements about a class are not equivalent:

� x meets conditions Ω.
� x ∈ {x : x meets conditions Ω}.
� x /∈ {x : x does not meet conditions Ω}.
Set implies finiteness. Not surprisingly a lot of infinite classes treated as

sets in orthodox math would cause problems. A strictness of mathematics
assumed for a long time has never been established. In order to show respect
to work of predecessors, false ideas are interpreted herein as enlightening
jokes intentionally devised for thorough understandings.

Definition 7.5. (Joking) A mathematical concept or result is called ‘joking’
in this article if it is defined or derived by strict reasoning, but with an invalid
premise.

8 Set theory

There are many joking concepts and conclusions in set theory. Take the
‘countable’ as an example. In fact, every proof claiming that real numbers
are uncountable presupposes the class of real numbers to be a power class
(typically 3N) of the class of natural numbers. A relation between sizes of
any two infinite classes entirely depends on how the comparison is specified.
If we represent real numbers with binary-decimals with digits indexed by
log2 log2N, then the class of natural numbers is a power class of the class of
real numbers. ‘Countable’ is a joking concept.
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By Theorem 6.2, the class of natural numbers could be not only larger
than the class of real numbers but also larger than itself. It is meaningless to
discuss the size of an infinite class, because it could be larger than, smaller
than or of the same size of any other infinite class at the same time.

The proof of continuum hypothesis in §4 is a paradox, because cardinality
of infinity itself is a joking concept.

‘Ordinal number’ introduced by Gödel, is also a joking concept not only
because of its infinite nature. An order between infinite classes inevitably
implies a multidimensional structure which cannot be dealt in Gödel’s way.

Forcing method[4] is an instance of the motional construction. The forc-
ing method is logically valid and sound, but because of the class nature of
objects in its implementations, results derived could only be joking.

Efforts executed in finding some hierarchy of infinite numbers could only
yield joking results. In set theory, any two infinities are not distinguishable.
In terms of size, ‘∞’ is unique.

8.1 ZF axioms

ZF-axioms system[5, 6] is not logically consistent, since it contains an axiom
of infinity. By Theorem 7.1 we claim:

Corollary 8.1. Any logical system involving infinite elements is not con-
sistent.

ZF-axioms system is a local definition of sets, and even more local than
a naive set theory. Due to this weakness when facing infinity, ZF-axioms
system avoids some paradoxes by resisting mentioning them.

Axiomatic set theories attempt to eliminate paradoxes by imposing re-
strictions on math, but paradoxes are not caused by the approach towards
infinity but by infinity itself. Hence these axiom systems are generally jok-
ing.

8.2 Axiom of Choice

Many paradoxes are attributed to the axiom of choice (AC), but AC is not
needed for those paradoxes. Take the Banach-Tarski paradox as an example:
AC is used to select a point from every rotation-equivalent set. Here shows
a definite selection by motional construction without AC:

Let (r, x, y) be some coordinates of R3, for example the radical-spherical
coordinate. For a set of rotational equivalence S on a sphere with radius r,
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at ith step, divide S into 4 parts:
S ′
1 = {(r, x, y) ∈ S : x ∈ [x1, (x1 + x2) /2], y1, y ∈ [y1, (y1 + y2) /2]}

S ′
2 = {(r, x, y) ∈ S : x ∈ [x1, (x1 + x2) /2], y1, y ∈ [(y1 + y2) /2, y2]}

S ′
3 = {(r, x, y) ∈ S : x ∈ [(x1 + x2) /2, x2], y1, y ∈ [y1, (y1 + y2) /2]}

S ′
4 = {(r, x, y) ∈ S : x ∈ [(x1 + x2) /2, x2], y1, y ∈ [(y1 + y2) /2, y2]}

From these parts, select the one larger than the others as new S and update
x1, x2, y1, y2. If no one is larger than the others, select the one with the
smallest superscript as S and update x1, x2, y1, y2. This process must be
able to be carried out for all finite steps, and after all the finite steps, the S∗

obtained is not empty and contains only one point, otherwise contradictions
would be deduced. So, we select a point without AC. This process could be
applied for every paradox where elements are defined by parameters.

Such a selection was rejected by mathematicians because of a simple
reason, e.g., let Si =

{
x : x ∈ R, x /∈ Q, 1− 2−i ≤ x ≤ 1 + 2−i

}
, then ∀i,Si ̸=

∅, but
⋂∞
i=1 Si = ∅. But this is also a misconception of infinity.

A well-known form of AC is stated with mapping, but AC is not about
mapping. It poses a question:

A set can be constructed by adding elements in any order. Is it
allowed to pick an element at will from the set formed?

Just take a glimpse is enough to know AC is innocent.
AC provides a random but fine probe into infiniteness. For a ‘set’, the

only possible reason why AC derives a paradox is that: this ‘set’ is not a set
at all. For over a century, AC has been addressing that many mathematical
collections deemed as ‘sets’ are not sets, but its voice was ignored.

9 Logic

In mathematical logic, there are ‘theorems’ about completeness and con-
sistency of ‘formal systems’, such as Gödel’s 1st and 2nd incompleteness
theorem[7]. So a natural question is whether these conclusions revealed the
nature of infiniteness? The answer is no, because these theorems are not as
they alleged.

In Gödel’s proof, a set or relation S is strongly representable in a formal
system F if there exists a formula A(·) in F , ∀n ∈ N

n ∈ S ⇐⇒ F ⊢ A(n)
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A job of mathematics is to categorize propositions into equivalent collections,
but this definition of ‘representable’ messes up all the equivalent propositions
with each other by not distinguishing them. There is a third logic system
hiding in the ‘ ⇐⇒ ’ which involves extra work to link an arithmetic function
and a statement in the formal system. For instance, let

S1 = {n ∈ N : ∃a, b, c ∈ N, an + bn = cn}
Let A1(n) be n = 1 ∨ n = 2, then S1 is represented by formula A1(n), if
Fermat’s last theorem is right. Another example, let

S2 =
{
n ∈ N : n6 − 2n5 − 70n4 + 14n3 + 451n2 − 20n− 630 = 0

}
(the formula of n is an expansion of (n2 − 2)(n2 − 5)(n + 7)(n − 9)). Let
A2(n) be n = 9, then S2 is represented by formula A2(n), if it is verified
that n = 9 is the only natural number solution of n6 − 2n5 − 70n4 + 14n3 +
451n2 − 20n− 630 = 0.

The minimization operator ‘µ’ together with the primitive recursive func-
tion packs a searching process in a short statement. In the proof of lemma
of ‘recursive functions are all representable’, a time consuming statement
involving remainder operations is constructed in order to represent a recur-
sive function. The computational complexity increases rapidly with respect
to ‘n’ in that statement. If statements with abnormal length are not accept-
able, why such statements with abnormal time complexity is adopted?

Due to the packing ability of ‘µ’ operator, Gödel constructed a short
statement for every recursive function. Then by a ‘Gödel-numbering’, a
K(n) that cannot be represented in F is constructed. But actually, this
K(n) is representable with an expression of infinite length. Let g1, g2, g3, . . .
be a sequence of all the Gödel numbers satisfying K(n) in natural order,
then K(n) can be represented as:

n = g1 ∨ n = g2 ∨ n = g3 ∨ . . .
The PA system does not reject infinite deductions. ∀n ∈ N,K(n) is derivable
or not can be confirmed within finite steps of computations, so this statement
is computable and really represents K(n).

Gödel’s theorems shall be revised as:
(I) Gödel’s 1st incompleteness theorem: If F is consistent, then even if

taking a very loose definition of ‘representable’, there exist statements
unable to be represented with statements of finite length in F .

(II) Gödel’s 2st incompleteness theorem: If F is consistent, then even if
taking a very loose definition of ‘representable’, the consistency of F
is unable to be represented with statements of finite lengths in F .
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These theorems are about a particular kind of representability, but irrelevant
to properties of F . Whereas, even these conclusions about a loose definition
are not really obtained, because of the prerequisite ‘consistent’.

A formal system is a synonym of ordinary mathematical language. It
is exactly the math it symbolizes. Just like arithmetic notations and chess
moves in a chess game, which are the same thing in different appearances. If
a method adopted is included in the formal system, then this method should
be carried out by symbol calculation of this formal system. If any mathe-
matical method F ′ adopted is beyond the formal system F , then F ∪ F ′ is
studied indeed. With properties about F in question (e.g., the consistency
of F ), how could a result derived by F ∪ F ′ be trusted? The only method
allowed for studying a formal system is symbol calculation (methods of de-
ductions defined by the formal system).

Theorem 9.1. Consistency of any logical system could only be proved by
enumerating all its deduction paths.

Proof. Suppose there is a non-enumerating proof P0 of consistency of a
logical system F0. Then P0 is either in itself or in another larger logical
system F1. Suppose P0 is in F0 itself, then if F0 is inconsistent then the
non-enumerating proof P0 does not prevent a non-consistency proof through
other path.

Suppose P0 is in another larger logical system F1, then whether P0 pre-
vents a counter-proof depends upon the consistency of F1. Suppose there
is a non-enumerating proof P1 of consistency of F1, then the proof P1 is in
F1 or in some larger logical system F2. Maybe a logical systems sequence
F1, F2, F3, F4, . . . are concerned.

If there is no largest logical system, then this consistency question cannot
be answered, because there is no final answer to consistency of any system.
Even if there is a largest system F ∗, suppose F ∗ is inconsistent then a non-
enumerating proof P ∗ does not prevent a non-consistency proof through
other path.

In logical systems sequence F1, F2, F3, F4, . . . , only an enumerating proof
of consistency of some Fn could answer the consistency of F0. Because
F0 ⊂ Fn, so an enumerating proof of consistency of Fn is also an enumerating
proof of consistency of F0.

Consistency of any logical system rejects a proof like the one Gödel
provided. With the consistency of a logical system unknown, every theorem
does not prevent its counter-theorem. Therefore, in some sense, any theorem
in present mathematics might be a part of a paradox. And we cannot really
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know which one is or not, unless every deduction path has been enumerated.
Besides since the proof of Theorem 9.1 is not enumerating, the Theorem 9.1
itself could also be a part of paradox.

Even if we ignore Corollary 8.1, in an infinite mathematics, the consis-
tency of theorems without notion of infinity is likely unanswerable, because
deduction paths are practically not enumerable.

Definition 9.1. (Origins of Paradoxes) Origins of paradoxes are indepen-
dent paradoxes that cause all other paradoxes in a logical system.

Infinity implies paradoxes. But it does not mean everything of a non-set
class is in disorder. ‘P ∧ ¬P ⊢ all propositons’ is not a fact. In a non-
consistent logic system, whether a statement is derivable or not shall also be
verified by enumerating deduction paths. There could be many consistent
propositions in a non-consistent logical system, as long as the deduction path
bypasses all the origins of paradoxes. For example, the only paradox in the
class of natural numbers or integer numbers is that it contains numbers
which are both finite and infinite.

Undoubtedly, the proof of Gödel’s 1st and 2nd incompleteness theorems
are right. In general math, a convincing fact showed by these theorems are
that a particular kind of representability is incapable of representing every
proposition with finitely-long statement. But as far as mathematical logic
is concerned, these theorems are joking.

In fact, if we look over their proofs, the definition of Gödel number is too
causal, and the main lemma — Chinese remainder theorem is too weak. It
is unrealistic to expect to solve a sophisticate problem, like the consistency
or completeness of Peano arithmetic system, with causal and weak tools.

Representability shall be revised. Statement A in a formal system rep-
resents statement B in ordinary mathematics, only if symbols in A are one-
to-one mapped with expressions in B and some criterions are satisfied:
(I) A shall be of equivalent statement length with B.
(II) A shall be of equivalent computation complexity with B.
(III) Other criterion required.
With a revised representability concept, it can be proved that many func-
tions are not representable in PA system.

Lemma 9.2. Exponential function is not representable in PA.

Proof. Suppose A is a representation of an exponential function 2n. Because
A keeps equivalent computation complexity and there is no quantifier in 2n,
so there shall be no quantifier in A. Because A keeps equivalent statement
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length and 2n comprises three symbols, so A shall comprise finite symbols.
The largest number obtained in PA with m symbols is

n× n× · · · × n︸ ︷︷ ︸
(m+1)/2

For sufficient large n, 2n ≫ n(m+1)/2, therefore 2n is not representable in
PA.

Hyper operation is an extension of elementary operations, a natural way
to define a binary hyper operator ‘[i]’ by induction is cited here:

a[i]b = a[i− 1]a[i− 1] · · · [i− 1]a︸ ︷︷ ︸
b

In hyper operations, the augments operated are defined on N, and the binary
operations are right-associative by default, e.g., a[i]b[i]c = a[i](b[i]c). If
let [1] represents the plus operation ‘+’, then [2] represents the product
operation‘×’, [3] represents the exponential operation, [4] represents the
Knuth’s up-arrow notation ‘↑’. All the hyper operations other than [1], [2]
are not representable in PA system. A definition is given here to manifest
how complicate the arithmetic is.

Definition 9.2. (Tower of arithmetic Operations)
(I) First level: An operator ‘[i]’ is defined by

a[i]b = a[i− 1]a[i− 1] · · · [i− 1]a︸ ︷︷ ︸
b

(II) Second level: An operator [κ], that κ = {in, in−1, · · · , i2, i1}, ij , n ∈ N,
m = 0, 1, 2, · · · is defined by:

a[κ′, i]b = a[κ′, i− 1]a[κ′, i− 1] · · · [κ′, i− 1]a︸ ︷︷ ︸
b

a[κ′, i, 1, · · · , 1︸ ︷︷ ︸
m

]b = a[κ′, i− 1, b, · · · , b︸ ︷︷ ︸
m

]b

(III) Third level: An operator [µ], that µ = {κn;κn−1; · · · ;κ2;κ1}, κj =
{ij,nj , ij,nj−1, · · · , ij,2, ij,1}, ij,pj , pj , j, n ∈ N, m = 0, 1, 2, · · · is defined
by:

a[µ′;κ′1, i]b = a[µ′;κ′1, i− 1]a[µ′;κ′1, i− 1] · · · [µ′;κ′1, i− 1]a︸ ︷︷ ︸
b
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a[µ′;κ′1, i, 1, · · · , 1︸ ︷︷ ︸
m

]b = a[µ′;κ′1, i− 1, b, · · · , b︸ ︷︷ ︸
m

]b

a[µ′; i; 1; · · · ; 1︸ ︷︷ ︸
m

; 1]b = a[µ′; i− 1; b; · · · ; b︸ ︷︷ ︸
m

; b, · · · , b︸ ︷︷ ︸
b

]b

(IV) Fourth level: . . .
...

Another layer of levels . . .
...

Theorem 9.3. Arithmetic exhausts expressions.

Proof. No matter what form is used to express an arithmetic operation
sequence, an arithmetic operation of higher grade could be defined with
respect to some traits of the formalization. Therefore, a new form (such as
name, symbol, format, etc.) is needed.

Given a rear occurrence like xy
z
in present math, the math world we have

explored is at a preliminary stage of ‘[3]’. Rational numbers and algebraic
numbers are roots of arithmetic equations at stage ‘[1]’ and ‘[2]’ respectively.

The tower of arithmetic operations is so endless that a question about
whether it can be formalized is essentially a question about relative size of
two infinite classes. Whether formalizable or not is not answerable, not to
mention proving them with statements of finite length in PA.

The question about consistency of math cannot be answered, therefore
faith in math is based on intuitions. But it does not undermine the impor-
tance of formalization, because mind resource is precious and formalization
helps to lighten mathematicians’ intuition burden. Logic is a final ruler
which cannot be calibrated anymore, just like the light-speed meter. A real
responsibility of mathematical logic is to formalize concepts and methods
to make them computable and be learned in a deeper level. ‘Computabliza-
tion’ of math techniques is important, because we need to enumerate more
reasoning paths to understand the consistency of the whole math.

Definition 9.3. (Finite Proposition and Reasoning) A proposition or rea-
soning is finite if and only if it does not involve infiniteness.3

3This definition shall be explained. If a form like ∀x · · · can be represented as ‘for any
definite x which could be any number, there is a conclusion . . . ’, then this is still a finite
proposition, because it is a collection of finite propositions. If a reasoning involves steps
that increases with respect to some index, but this index is definite for fixed premises,
then this is still a finite reasoning, because it is a collection of finite reasonings.
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Definition 9.4. (Finitely Consistent and Finitely Complete) A logical sys-
tem (mathematics) is finitely consistent if and only if all the conclusions of
finite reasonings are consistent. A logical system (mathematics) is finitely
complete if and only if every finite proposition can be proved true or false
by a finite reasoning.

Conjecture 9.1. (Consistency and completeness of Mathematics) We can
have a finitely consistent and finitely complete math.

10 Analysis

Analysis is built on a concept called ‘limit’. A limit is defined in ϵ− δ lan-
guage, which provides a way to extract a set from the class of real numbers.
Thus, the paradox nature of real numbers is reined. ‘Limit’ is an example
of MC.

There is a viewpoint that ‘limit’ is not a moving concept. But I have
to point out that this is a misconception of not only ‘limit’ but also time.
Time is essentially the sequence of changes. In a description of ‘limit’, a
finite number of points are extracted from a class, all the other points are
ignored. This is the way ‘limit’ reins real numbers. If we reject an obvious
moving feeling of the ‘limit’ and take all the points into consideration, we
have to face a class with paradox nature, and the most valuable essence of
‘limit’ is discarded. So, it is the only proper way to consider ‘limit’ in a
motional view.

There are more properties about numbers in analysis than in set theory,
so we distinguish two concepts: ‘by motional construction (by MC)’ and
‘by specification (by SP)’. A concept by MC refers to that its meaning is
logically all-path, so that MC can be used in its interpretation. A concept by
SP refers to that its meaning shall be literally adhering to its description,
therefore reasonings permitted are not all-path. It is worth noting that
paradoxes revealed by MC are not caused by MC, but indeed implied by a
concept itself.

A class definition by MC is generally a closure of one by SP (possibly
with some paradox elements added).

XMC = XSP (2)

In orthodox math, however a class S is used, e.g., x ∈ S, . . . or S ∩ . . . ,
it would be interpreted back to the specification of S eventually, therefore a
notation in orthodox math are always by SP. In this article, default meanings
of statements and expressions are still by SP, unless otherwise specified.
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In this section, several present concepts like ‘metric space’, ‘Cauchy
sequence’, ‘limit point’, ‘completeness’, ‘Archimedean property’, ‘closed’,
‘open’, ‘inner point’, ‘compact’ and ‘measure’ are discussed, some are rede-
fined. Several new concepts are introduced.

10.1 Completeness of real numbers

Definition 10.1. (Metric Space4) For a class X, there exists a mapping
∥·, ·∥ : X ×X 7→ ∥X,X∥ and an operation ‘+’ on ∥X,X∥ satisfying:
(i) ∀d1, d2 ∈ ∥X,X∥ , d1 + d2 ∈ ∥X,X∥
(ii) ∃0 ∈ ∥X,X∥ , 0 + 0 = 0
(iii) ∀d1 ∈ ∥X,X∥ , d1 ≥ 0
(iv) ∀d1, d2, d3 ∈ ∥X,X∥ , d1 < d2 =⇒ d1+d3 < d2+d3, d3+d1 < d3+d2
(v) ∀d1, d2 ∈ ∥X,X∥ , d1 < d2 =⇒ ∃d3 ∈ ∥X,X∥ , d3 > 0, d1 + d3 = d2
(vi) ∀x1, x2 ∈ X,x1 = x2 ⇐⇒ ∥x1, x2∥ = 0
(vii) ∀x1, x2 ∈ X, ∥x1, x2∥ = ∥x2, x1∥
(viii) ∀x1, x2, x3 ∈ X, ∥x1, x2∥ ≤ ∥x1, x3∥+ ∥x2, x3∥
Then X is a metric space, and ∥·, ·∥ is a distance on X.

Several definitions identical with orthodox math[8] are cited here, then
a complete theorem is proved (X is a metric space. ϵ ∈ ∥X,X∥. i, i1, i2
denote natural numbers.):
(I) (Cauchy Sequence) Sequence {xi}i∈N is a Cauchy sequence inX, if and

only if {xi}i∈N ⊆ X and ∀ϵ > 0,∃N ∈ N, ∀i1, i2 ≥ N, ∥xi1 , xi2∥ < ϵ.
(II) (Limit Point) A point x∗ is a limit point ofX, if and only if ∃ {xi}i∈N ⊆

X,∀ϵ > 0, ∃N ∈ N,∀i ≥ N, ∥xi, x∗∥ < ϵ.
(III) (Complete) X is complete if and only if any Cauchy sequence in X

has a unique limit point in X.

Theorem 10.1. A metric space is complete.

Proof. Let {xi}i∈N be any Cauchy sequence in a metric space X. Apply
the motional construction with k and y. Begin the process with k = 1 and
y = x1. At the ith step, let i′ = i, check whether xi′ meets:
(I) i′ and xi′ exist.
(II) xi′ ∈ {xi}i∈N
(III) i′ ≥ i
if xi′ meets these conditions then replace k with i′, replace y with xi′ . Oth-
erwise stop the process. This process can be executed for all the steps that
i ∈ N, otherwise there would be contradictions. After all the steps, the k and

4This definition is summarized from the proof of Theorem 10.1.
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y obtained exist and meet y = xk ∈ {xi}i∈N and ∀i ∈ N, k ≥ i. {xi}i∈N is a
Cauchy sequence =⇒ ∀ϵ > 0, ∃N ∈ N,∀i1 ≥ N, ∥xi1 , xk∥ < ϵ. Therefore, y
is a limit point of {xi}i∈N.

Let x∗a, x
∗
b be two limit points of {xi}i∈N, ∀ϵ > 0,

If ∃ϵ1, ϵ2 ∈ ∥X,X∥ , ϵ1 > 0, ϵ2 > 0, ϵ = ϵ1 + ϵ2, then ∃N1 ∈ N, ∀i ≥
N1, ∥xi, x∗a∥ < ϵ1 and ∃N2 ∈ N, ∀i ≥ N2, ∥xi, x∗b∥ < ϵ2, then ∃N =
max(N1, N2),∈ N, ∀i ∈ N, i ≥ N, ∥x∗a, x∗b∥ ≤ ∥xi, x∗a∥+ ∥xi, x∗b∥ < ϵ1 + ϵ2 =
ϵ.

If ∄ϵ1, ϵ2 ∈ ∥X,X∥ , ϵ1 > 0, ϵ2 > 0, ϵ = ϵ1+ϵ2, then by Property v of Def-
inition 10.1, ∄ϵ′ ∈ ∥X,X∥ , 0 < ϵ′ < ϵ, then ∃N1 ∈ N, ∀i ≥ N1, ∥xi, x∗a∥ <
ϵ =⇒ ∥xi, x∗a∥ = 0 and ∃N2 ∈ N, ∀i ≥ N2, ∥xi, x∗b∥ < ϵ =⇒ ∥xi, x∗b∥ = 0,
then ∃N = max(N1, N2) ∈ N, ∀i ≥ N, ∥x∗a, x∗b∥ ≤ ∥xi, x∗a∥ + ∥xi, x∗b∥ =
0 + 0 = 0 =⇒ ∥x∗a, x∗b∥ < ϵ.

Therefore, in each case ∀ϵ ∈ ∥X,X∥ , ϵ > 0, ∥x∗a, x∗b∥ < ϵ =⇒ ∥x∗a, x∗b∥ =
0 =⇒ x∗a = x∗b . Therefore, {xi}i∈N has a unique limit point in X.

Containing the unique limit point is necessary for a metric space to contain
a Cauchy sequence. But the limit point might not satisfy the specification
of the metric space. In contrast with results in functional analysis, Theo-
rem 10.1 gives a definite conclusion that a metric space is not completable,
but always complete. The completeness in orthodox math actually refers
to that every limit point also satisfies the specification of the metric space,
which is a completeness by SP indeed.

Therefore, no matter what a class of real numbers is, it is complete as
long as it is a metric space. But the completeness of ordinary real numbers
R involves an extra property:

Axiom 1. (Archimedean property) ∀x ∈ R, ∃n ∈ N, n > x. (It is equivalent
to Euclidean statement ∀ϵ ∈ R, ϵ > 0, ∀m ∈ N, ∃n ∈ N, ϵn > m.)

Accepting Axiom 1 or not would lead to different real numbers. In this
article, real numbers are defined by rational numbers. Rational numbers
are obtained from natural numbers by elementary operations ‘+,−,×,/’. An
order on rational numbers is derived from the order of natural numbers. A
distance on rational numbers is the absolute value of difference which is also
a rational number.

Definition 10.2. (Class of Ordinary Real Numbers) Class R is a class of
ordinary real numbers if and only if
(I) MC is included in the specification of R, i.e., RSP = RMC .
(II) R ⊇ QSP .
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(III) R satisfies Axiom 1.

Definition 10.3. y keeps an order ‘<’ on a collection X if and only if:
(I) ∀x1, x2 ∈ X, y < x1 ∧ x1 < x2 =⇒ y < x2
(II) ∀x1, x2 ∈ X, y > x1 ∧ x1 > x2 =⇒ y > x2

By Theorem 10.1, R contains limit points of all the Cauchy sequences of
rational numbers. Moreover, two lemmas can be proved that

Lemma 10.2. A limit point of a Cauchy sequence containing limit points
of a Cauchy sequence of rational numbers is also a limit point of a Cauchy
sequence of rational numbers.

Lemma 10.3. A Cauchy sequence of rational numbers keeps the order on
rational numbers, and keeps the order inferred by elementary operations
‘+,−,×,/’.

Therefore, all that R contains are limit points of Cauchy sequences of
rational numbers5. But whether R contains all the numbers keeping rational
number order is a question of completeness of ordinary real numbers which
cannot be answered without Axiom 1.

Theorem 10.4. (Completeness of Class of Ordinary Real Numbers) The
class of ordinary real numbers by Definition 10.2 is complete, that is: ∀y, if
y keeps the order of rational numbers, then ∃yx ∈ R, |y − yx| is defined and
|y − yx| = 0.

Proof. Suppose there does not exist a rational number x meeting x < y,
then y = −∞. Suppose there does not exist a rational number x meeting
x > y, then y = ∞. Otherwise, there exist rational number a, b meeting
a < y < b. Suppose there exists a rational number x meeting |x− y| = 0,
then x is the yx required. If there does not exists a rational number xmeeting
|x− y| = 0, then begin with xa = a, xb = b, process xa and xb step by step.
At the ith step, if (xa + xb) /2 > y, then x′a = xa and x′b = (xa + xb) /2. If
(xa + xb) /2 < y, then x′a = (xa + xb) /2 and x′b = xb. Check whether x′a, x

′
b

meet conditions:
(I) x′a ∈ R.
(II) |y − x′a| is defined.
(III) |y − x′a| < (b− a) /2i.

5Owing to MC, all the properties of rational numbers are naturally extended to real
numbers, because these properties could be simply added in the conditions of MC process
of Definition 10.2.
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If all these conditions are satisfied, then replace xa with x′a, replace xb with
x′b, otherwise stop the process. These steps can be carried out for all steps
i ∈ N, and after all the steps, the xa and xb obtained shall satisfy all the
conditions, otherwise there would be contradictions. So that xa is in R,
|y − xa| is defined and ∀i ∈ N, |y − xa| < (b− a) /2i. Because R meets
Axiom 1, so ∀ϵ ∈ R, ϵ > 0,∃i > (b− a) /(2ϵ) =⇒ |y − xa| < (2ϵi)/2i <
ϵ =⇒ |y − xa| = 0. Then xa is the yx required.

Therefore, y is really in R in terms of distance. The completeness of class
of ordinary real numbers means an interval between numbers could be small
enough but not too small that cannot be measured by rational numbers.

It seems that for ordinary real numbers, there are only two origins of
paradoxes: One is that there exist elements being both finite and infinite.
Another is that any limit point of a class is included in it no matter the limit
point satisfies the class specification or not. So, paradoxes are about magni-
tude abnormally large or small, which is a merit of ordinary real numbers.

From Definition 10.2 it is clear that a class of real numbers is defined by
Cauchy sequence in fact. Because any sub-sequence of a Cauchy sequence
converges to the same limit, so a definition by monotonic Cauchy sequences
or monotonic Cauchy sequences with monotonic increments up to any de-
grees is equivalent. Furthermore, if replace QSP in Definition 10.2 with any
QSP meeting QSP ⊆ QMC , QSP ⊆ QMC , the same real numbers would be
obtained.

If we reject Axiom 1, then we can get R∗ which contradicts Theorem 10.4.
∃ϵ ∈ R∗, ϵ > 0,m ∈ N,∄n ∈ N, ϵn > m =⇒ ∀n ∈ N, ϵn ≤ m =⇒ ∀q ∈
Q, q > 0, ϵ < q =⇒ ∀q, p ∈ Q, q > 0, p > 0, ϵp < q, so this ϵ is in a
dimension other than rational numbers. The ‘ϵ’ in limit definition represents
an ordinary number, but once an ϵ is defined explicitly, it is not an ordinary
number any more, because Axiom 1 is violated. This class of different real
numbers is the one adopted in nonstandard analysis, in which there are more
paradoxes. The extra dimensions could be a family {ϵα}. A question for
non-standard analysis is that why only one ϵ is added but not a family {ϵα}.

There are other definitions for ordinary real numbers in history (e.g.
Cantor’s and Dedekind’s) and several axioms about the completeness of
ordinary real numbers. Among them, some can be revised with the motional
construction, others are joking.

10.2 Point topology

Rules of operations for real numbers can be derived from Equation 2.

34



Infinite Numbers in Mathematics

Theorem 10.5. (Class Operations on Metric Space) ∀X1, X2 ⊆ R,∀x ∈ R,
within MC meaning:
(I) x meets conditions Ω =⇒ x ∈ {x : x meets conditions Ω}
(II) x ∈ X1 ∧ x /∈ X2 =⇒ x ∈ X1 −X2

(III) (X1 ∪X2)
c = Xc

1 ∩Xc
2

(IV) (X1 ∩X2)
c = Xc

1 ∪Xc
2

(V) Operations with no complementary operation involved are the same as
set operations.

The only difference from familiar set operations (or operations by specifi-
cations) is the complementary operation. ∀X ̸= ∅, X ̸= R =⇒ X∩Xc ̸= ∅,
because the boarder of X belongs to both X and Xc.

Now, a concise edition of the extending rod paradox can be stated:

Paradox 10.1. (Extending Rod 2nd Edition) Separate a rod

L = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 10}

into two parts: L1 = {(x, y, z) ∈ L : z ∈ Q} and L2 = {(x, y, z) ∈ L : z /∈ Q}.
Move L2 along z+ direction by 10 to obtain L3. Because every metric space
is closed, so L1 ∪ L3 = {L = (x, y, z) ∈ R3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 20} is
obtained, which is one time longer than L.

In fact in the extending rod paradox of §2, L1 = L2 = L and A3 = A4 =
A2 =

{
(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
. In the Banach-Tarski paradox,

every part of a sphere equals to the whole sphere. The cause of these para-
doxes is that a ‘set’ is defined by some specification, but because of an
‘infinite’ property of the specification, the ‘set’ defined means the entire
class indeed.

By Theorem 10.1, every metric space is closed. In orthodox math, a
concept of ‘closed’ is about specifications, ‘closed’ refers to that a class by
MC equals to the class by SP:

Definition 10.4. (Closed Specification) A specification Ω is closed if and
only if a class S = {s : s satisfies Ω}MC meets ∀x ∈ S, x satisfies Ω.

A statement like ‘. . . is a rational number’ is not a closed specification,
but class Q by MC is closed. Every class is closed by MC.

Definition 10.5. (Inner Point) In a metric space, a point x is an inner
point of a class C if and only if ∃ϵ > 0,∀x∗, ∥x∗, x∥ ≤ ϵ =⇒ x∗ ∈ C.

Open cover is not about what a class be covered by, but about how a
class be covered. An updated edition of open cover is given:
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Definition 10.6. (Open Cover) In a metric space, a class collection M is
an open cover of a class X, if and only if ∀x ∈ X,∃C ∈ M , x is an inner
point of C.

Hence the compactness could be defined in the same way as in orthodox
math:

Definition 10.7. (Compact) A class X is compact if and only if there is a
finite open cover of X in any open cover of X.

Compactness is finiteness of dimensions and values for real numbers. The
paradox about amount ‘there is some elements both finite and infinite’ does
not exist in a compact class. Paradoxes about dimensions in an infinite-
dimensional space do not exist in a compact class either. For instance, Z =
{z : z = {bi} , bi = 0 or 1, i ∈ N} is a infinite-dimensional space, a distance
on Z is defined as ∥z1 − z2∥ = max {|b1,i − b2,i| : b1,i ∈ z1, b2,i ∈ z2}. By
motional construction, a sequence

{1, 0, 0, 0, . . . }, {0, 1, 0, 0, . . . }, {0, 0, 1, 0, . . . } . . .

must have a limit point {bi : bi = 0, i ∈ N}. This more unacceptable paradox
does not exist in a compact class.

‘Open’ is not opposite to ‘closed’. ‘Open’ means that a dimension over
a class is the same as the dimension of the universal space, only in this way
can a class has an ‘inner’. It can be proved that the following definitions of
openness are equivalent:

Definition 10.8. (Open) A class X is open if and only if any following
criterion is satisfied within MC meaning:
(I) ∀x ∈ X,x is a limit point of inner points of X.
(II) Xcc = X
(III) Let Y (x, ϵ) = {y : ∥y, x∥ ≤ ϵ}, then X =

⋃
Y⊆X Y .

(IV) ∀x ∈ X,∀ϵ > 0, {y ∈ X : ∥y, x∥ ≤ ϵ}cc ̸= ∅.

Due to the paradox nature of the real numbers, every proof above does
not prevent a negative proof. Real numbers are complicate in nature. But
for realistic applications such as calculus, a discrete real space is enough.

10.3 Measure theory

The A2 (Equation 1) on the draft plane in §2 is a challenge for a measure
theory.
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Theorem 10.6. Any measure, which is countable additive and displacement
invariant, measures everything as zero or infinity.

Proof. Let the measure be M. Let the class measured be X. By Theo-
rem 6.2 and MC, we can construct a bijection from N to X. Let xi denote
an element in X mapped from i. M(X) =

∑∞
i=1M(xi) =

∑∞
i=1M(x0). If

M(x0) > 0 then M(X) = ∞. If M(x0) = 0 then M(X) = 0.

‘Countable’ is a joking concept, so a measure theory based on ‘countable’
is also joking. In order to reduce paradoxes, a measure should be defined by
counting open classes.

Definition 10.9. (Utmost Connectivity) A class X is utmost-connected if
and only if ∀S ⊆ X, S can be continuously contracted in X to a point.

Theorem 10.7. For any class X in a metric space, the following proposi-
tions are equivalent:
(I) X is utmost-connected.
(II) X can be continuously contracted in itself to a point.
(III) X is bounded, and there exists a continuous mapping f : X×[0, 1] 7→ X

satisfying ∀x ∈ X, f (x, 0) = x and ∀x1, x2 ∈ X, ∥f (x1, 1) , f (x2, 1)∥ <
∥x1, x2∥.

Definition 10.10. (Open Partition) An open partition of Rn is a class
collection T = {t} satisfying:
(I) ∀t ∈ T , t is open and utmost-connected.
(II)

⋃
t∈T t = Rn.

(III) ∀t1, t2 ∈ T, t1 ̸= t2 =⇒ t1 ∩ t2 has no inner point and t1 ∩ t2 is
utmost-connected.

Call every t as a box of T . If ∃λ > 0, the max distance of every box is no
greater than λ, then call that the resolution of T is no greater than λ.

Definition 10.11. (Box Cover) X ⊆ Rn. T is an open partition of Rn. A
box cover B of X in T is a collection of boxes: B(X) = {t ∈ T : t ∩X ̸= ∅}.

Definition 10.12. (Box Neighborhood) In an open partition, a neighbor-
hood of a box t is a set formed by all the boxes intersecting t.

Definition 10.13. (Inner Box and Border Box) Let B(X) be a box cover
of X, If all the boxes in neighborhood of t belong to B(X) then t is an inner
box. If a box t belongs to B(X) but at least one box in neighborhood of t
does not belong to B(X), then t is a border box. Note all the inner boxes
as B◦, note all the border boxes as ∂B.
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Definition 10.14. (Discrete Real Space) A discrete real space of Rn is an
open partition RnΛ =

{
t(k1,··· ,kn)

}
, in which Λ = (λ1, . . . , λn) , λi > 0 and

t(k1,··· ,kn) = {(x1, . . . , xn) ∈ Rn : kiλi ≤ xi ≤ kiλi + λi, ki ∈ Z}
Call Λ as a resolution of RnΛ. Call analysis in a discrete real space as ‘discrete
analysis’.

A proposition can be represented in discrete analysis if and only if a
concerned error tends to zero as the resolution Λ tends to zero. In discrete
analysis, the box cover of a class is manipulated instead of the class itself.
A box cover of a bounded class is a finite set which is closed, compact and
most importantly open. After a problem is solved, the resolution Λ could
be increased to a required level, so there would be no precision lost. Some
propositions cannot be represented in discrete analysis, such as the extending
rod paradox and Banach-Tarski paradox. It is a necessary condition for a
proposition to be a paradox that it cannot be represented in discrete analysis.
This gives a clue to find other paradoxes.

Definition 10.15. (Counting Measure 1) Let Rnλ be a discrete real space of
Rn with a resolution (λ, . . . , λ), in which λ > 0. A counting measure Mλ of
X is: Mλ(X) =

∑
t∈B(X) λ

n.

This counting measure can measure classes with different dimensions at
the same time, because dimensional information is kept.

Definition 10.16. (Max Dimension) A max dimension D of a class X is

D(X) = n− lim
λ→0

ln(Mλ(X))

lnλ

if the limit exists.

Definition 10.17. (Zero Measure) A class Z is a zero-measure class with

respect to a class X if and only if limλ→0
Mλ(Z)
Mλ(X) = 0.

Corollary 10.8. D(Y ) < D(X) =⇒ Y is a zero measure class with respect
to X.

The counting measure 1 is not rotation-invariant, so a counting measure
2 is given by increasing the resolution:

Definition 10.18. (Counting Measure 2) X ⊆ Rn. Rnλ1 and Rnλ2 are two
discrete real spaces of Rn with resolution (λ1, . . . , λ1) and (λ2, . . . , λ2) re-
spectively, in which λ1, λ2 > 0. Note the box cover of X in Rnλ1 and Rnλ2 as
B1 and B2 respectively. For every box t ∈ B1(X), calculate the measure Mt

of X ∩ t as follows:
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Figure 4: Counting Measure 2

(I) If every box in B2(X) intersecting t is an inner box, then Mt = λn1 .
(II) If among boxes in B2(X) intersecting t, there is a border box, then

note a set of all the border boxes in B2(X) intersecting t as Vt.
Calculate the n-dimensional inertia matrix of Vt relative to the mass
center of Vt. Then calculate an orthogonal matrix P for diagonaliza-
tion of the inertia matrix. Define a new open partition by rotation
and displacement of a copy of Rnλ2 : displace the origin of this copy at
the center of box t, then rotate this copy to align its coordinates with
vectors of P .
Note a box cover of X ∩ t in this open partition copy as Bt

2, then
Mt =

∑
τ∈Bt

2
λn2 .

A counting measure Mλ1−λ2 of X is: Mλ1−λ2(X) =
∑

t∈B1(X)Mt.

The Figure 4 illustrates the counting measure 2. In practice, the resolu-
tions shall meet λ2 ≪ λ1. The counting measure 2 is selected from several
candidates because of computation efficiency. Moreover, it keeps a dimen-
sional relation, e.g., Mλ1−λ2(a square) = (Mλ1−λ2(edge of the square))2.

Immeasurable classes manifest the inconsistency of a countable-additive
measure theory. A consistent measure allows only finite additivity with
errors. Even if a class is of infinite magnitude, its measure should be deemed
as an addition of finite but arbitrarily many parts.

Only a class by MC should have a measure. Every class is measurable.
But a measure of a class is also a class not a value. When the deviations
are small, we deem the class of measure values as a single value. Since every
class is closed by MC, errors could only be significant for non-open classes.

10.4 Calculus

Integral and differential are implementations of limit, so are all finite con-
cepts. We only have Riemann integral[9] by now, because other integrals
are more paradoxical.
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In orthodox math,
∫∞
1 x−2dx = 1, but this is not a definite result. If we

interpret this integral as an area of D = {(x, y) : x ≥ 1, 0 ≤ y ≤ x−2}, then
D1 = {(x, 0) : x ∈ [1,+∞]} is a subset of D. Because of Theorem 6.2, D1

contains more points than the whole x-y plane, so its area should be greater
than the whole x-y plane. Then

∫∞
1 x−2dx is also infinite. In fact, we adopt∫ ∞

1
x−2dx = lim

a→∞

∫ a

1
x−2dx

We have to specify the finite structure before altering a property to infinity.
This is the only way to present a definite proposition relating to infinity.

Every limit exists by MC. Every differential, integral, limit of series ex-
ists. For example, this limit equals a class: limx→+∞ x sin(x) = [−∞,+∞].
Another example is: limx→0 sin(1/x) = [0, 1].

The concept of limit existence in orthodox math actually refers to that
the limit is a single value not a class of multiple values. Take the following
limit as an example:

lim
x→a
y→b

f(x, y)

A sufficient condition of interchangeability of limit operations usually used
in orthodox analysis demands that the limit value is irrelevant to the way
(x, y) approaching (a, b). Properties of limits depend on the finite structure
they act on.

Consider a function similar to the Dirichlet function:

f12(x) =

{
1, if x is irrational

2, if x is rational

It seems that 1 ≤
∫ 1
0 f12(x)dx ≤ 2, because 1 ≤ f12(x) ≤ 2. Lebesgue

integral says
∫ 1
0 f12(x)dx = 1. But indeed

∫ 1
0 f12(x)dx could be any value

between 1 and 3 depending on the definition of integral, because this f12
maps a point to a set: f12(x) = {1, 2}.

Theorem 10.9. Within MC meaning, a mapping is bijective if and only if
it is continuous.

Theorem 10.10. Within MC meaning, a function on a finite domain of
definition is bounded if and only if its function value is point-wise finite.

A perfect definition of integral does not exist.
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10.5 Mechanics

Owning to the Archimedean property of ordinary real numbers, mass points
are all spinless in classical mechanics, material mechanics and fluid mechan-
ics. Rotation is represented by relative motions of mass points. Even if we
assign a spinning velocity to every point, there would be no difference in the
principles of these mechanics.

Take the symmetry of continuous stress tensor as an example. When
the size of a considered mass cube tends to zero, its rotation inertia reduces
faster than the torch of stresses. Because neither an ϵ stress nor an ϵ−1

angular velocity can be expressed by ordinary real numbers, so the stress
tensor must be symmetric. The symmetry of continuous stress tensor is
an immediate consequence of the Archimedean property. A continuous but
non-symmetric stress tensor could only exist in some non-standard analysis.

The linearity of continuous stress (Cauchy’s theorem) is due to the same
reason.

11 Topology

A new perspective of topology is introduced that topology is also a measure
based on open partition.

A non-Euclidean geometry is a geometry in a subspace of Euclidean
space. As long as a space is described by real numbers, it is a Euclidean
space[10] in fact. In Euclidean space, the number of i-dimensional objects
contained by an n-dimensional cube is Cn−in 2(n−i). Suppose the counting
measure of an i-dimensional object in a discrete real space is ki, then the
sum of measure of all the objects contained by this n-dimensional cube is∑n

i=0C
n−i
n 2(n−i)ki = (2 + k)n.

Definition 11.1. (Topology Measure) Suppose the number of i-dimensional
objects contained by an n-dimensional classA ismi, then a topology measure
of A is χk(A) =

∑n
i=0mik

i.

The ‘k’ in topology measure could be any complex number. Euler[11]
characteristic χ−1(A) is a topology measure with ‘−1’ resolution. χ−2(A)
represents the number of points in a decomposition into basic i-dimensional
cubes. Next we attempt to define another measure called ‘corner measure’.

Definition 11.2. (Box Reshaping) B and b are two box collections in an
open partition. A box reshaping is one of the two adjustments of B:

41



Infinite Numbers in Mathematics

Figure 5: Box cover of torus body Figure 6: Box cover of torus surface
(cut-away view)

(I) Adding: If b is utmost-connected, t ∩ B = ∅ and
⋃
t∈b t ∩

⋃
t∈B t is

utmost-connected, then this b could be added to B.
(II) Removing: If b is utmost-connected, t ⊆ B and

⋃
t∈b t ∩

⋃
t∈B−b t is

utmost-connected, then this b could be removed from B.

Definition 11.3. (Box Homeomorphism) X1, X2 are box-homeomorphic if
and only if: ∀λ > 0, there exists an open partition T with a resolution no
greater than λ, the box cover of X1 and X2 in T are B(X1) and B(X2)
respectively, B(X1) and B(X2) can be box-reshaped to each other.

The box homeomorphism keeps connectivity, i.e., two box homeomorphic
classes are either both n-connected or both not n-connected. Box homeo-
morphism does not distinguish dimensions. A point, a triangle and a ball
are box-homeomorphic. If a topological class intersects itself, like the Klein
bottle in R3, then there should be multiple copies of a box at the inter-
secting position . There are basic questions to be answered: For a class
X, does there exist an open partition that B(X) is box-homeomorphic with
X? Is box homeomorphism an equivalence relation? Is box homeomor-
phism equivalent to homeomorphism for open classes. . . If all the questions
are confirmed, then a class can be represented by a box cover that is box-
homeomorphic with itself. Topology properties shall be studied through this
box cover afterwards. The difference between simplex in orthodox topology
and box is that a box is open and utmost-connected.

Definition 11.4. (Vertex) A vertex is a point belonging to at least n + 1
different boxes in an open partition of Rn.

Definition 11.5. (Corner) A corner in an open cover is a set of all the
boxes intersecting at one vertex.
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Figure 7: Box-homeomorphic of
torus body

Figure 8: Box-homeomorphic of
torus surface (cut-away view)

Definition 11.6. (Arithmetic Operation of Corners) For a box cover of a
class, let Ck and C̃k denote a corner at the same vertex before and after a
box-reshaping. Corner ‘+’ operation meets:

∑
Ck =

∑
C̃k. Commutative

law: ∀C1, C2, C1+C2 = C2+C1. Cancellation law: ∀C∗, Ci, Cj , C
∗+

∑
Ci =

C∗ +
∑
Cj ⇐⇒ ∑

Ci =
∑
Cj . Multiplication law: ∀C,∑mC = mC.

Definition 11.7. (Trivial Corner) If a corner equals to ∅ by the arithmetic
computation according to Definition 11.6, then it is a trivial corner.

‘Corner’ is a representation of ‘vertex’ in terms of open partition. Be-
cause ‘=’ is defined by box-homeomorphic reshaping, so a corner C = ∅ if
and only if C =

∑
Ck and Ck are all the corners at some vertices. In a

box cover of a compact class, there exists a corner with the minimal volume
angle, so that it cannot equal to ∅ and is non-trivial. Hence, the arith-
metic operation of corners is not nonsense and provides some information.
Definition 11.6 is an exemplary corner measure.

A Euclidean space is described by n independent real numbers, so its
topology could be described in a discrete real space. In 2-d or 3-d discrete
real space, all the corners can be enumerated.

If B(X) is box-homeomorphic with X, then check the corners of B(X) is
enough. For example, Figure 5 shows a box cover of a slightly twisted torus
body. Figure 6 shows a box cover (in cut-away view) of a torus surface.
By box-reshaping, they are box-homeomorphic with Figure 7 and Figure 8
respectively. It can be verified that by Definition 11.6, they are both ∅ (i.e.,
adding or removing a torus does not change the sum of corners).

An n-dimensional X can be deemed as an n-dimensional knot in Rn+2.
The common knots only exist in R3, so can be represented by a sequence of
turning boxes with 3 coordinates. In a box cover of a knot, a turning box is
a box with non-trivial corners. For example, Figure 9 shows a box cover of
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Figure 9: Box cover of left-hand trefoil

a left-handed trefoil K. It could be represented by a 3× n matrix:

K =

 2 2 4 4 4 1 1 1 3 3 3 2
4 1 1 1 3 3 3 2 2 2 4 4
3 3 3 2 2 2 4 4 4 1 1 1

 (3)

In matrix K, a column denotes the three coordinates of a turning box, a
row represents relative positions of turning boxes along a coordinate axis.
Thus knot transformations could be computed by manipulating an integer
matrix. A simpler form is

K =

 4 1 3 2
1 3 2 4

3 2 4 1

 (4)

or
K =

[
33 12 41 23 32 11 43 22 31 13 42 21

]
(5)

Every math counts something. Real analysis counts areas, complex anal-
ysis counts angles, topology counts corners. Quantitative theorems could be
explained from a new viewpoint, e.g., Gauss-Bonnet theorem[12, 13] states
that if corners are averaged by area and accumulated, then the result equals
to counting corners directly.

12 Algebra

‘Extract a set from a class, then study the set’ is a basic method, e.g., the
mathematical induction. In algebra a proof usually presumes a finite num-
ber that could be arbitrary large. For example, in proofs of Diophantine
approximation problems, it is necessary to take algebraic equations with
fixed degrees as a premise, otherwise because all the algebraic numbers gen-
erate the class of real numbers, a proof is unimaginable.
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Theorem 12.1. Let X be an algebraic closed field. If a real number belongs
to X, then R ⊆ XMC . If a complex number belongs to X, then C ⊆ XMC ,
(i.e., ‘algebraic closed field’ refers to the whole complex plane within the
meaning of MC).

Proof. If X contains a real (or complex) number, then a sequence of alge-
braic equations could be constructed to make roots dense in real (or complex)
numbers.

In algebra geometry, finite separations of an infinite field is used. This
is another way to extract a set from a class: represent a class with finite
number of sub-classes, then study this set of sub-classes.

Next, we attempt to delve into a deeper infinite world. Several definitions
and an axiom are introduced to give a ‘proof’ of one Erdős conjecture[14].

Definition 12.1. (Limit of Motional Construction) Let x be a mathematical
object processed by an MC process p, then

limc
p→∞

x

represents an x obtained after all the finite steps.

Definition 12.2. (Distantly Exclusive in Logic) Let x1, x2 be two values
of a mathematical object x, if there exists ϵ ≥ 0 that for any MC process
p1, p2, limcp1→∞ x = limi→∞ x1i = x1, limcp2→∞ x = limj→∞ x2j = x2,
∃N ∈ N, ∀i, j ≥ N, ∥x1i, x2j∥ ≥ ϵ, then x1 and x2 are distantly exclusive.

Definition 12.3. (Finitely imply) Proposition P2 is a corollary of proposi-
tion P1 in a logical system. If P2 is consistent with all conclusions of finite
reasonings, then represent this fact as P1 =⇒

FD
P2.

Axiom 2. In a finitely consistent logical system (finitely consistent mathe-
matics), limc

p→∞
x = x1, x1 and x2 are distantly exclusive =⇒

FD
limc
p→∞

x ̸= x2.

Conjecture 12.1. (Erdős) If a subclass S of natural numbers satisfies∑
n∈S

1
n = ∞, then S contains arbitrarily long arithmetic progressions.

Proof. Construct a subclass W of natural numbers step by step. Begin with
W = S and d = 1. At the ith step (i ∈ N), check whether i|d. If i|d, then
do nothing and proceed to the next step. If i ∤ d, then let k = i/ gcd(i, d),
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divide W into k parts:

W1 =W ∩ {kj + 1: j = 0, 1, 2, · · · }
W2 =W ∩ {kj + 2: j = 0, 1, 2, · · · }

...

Wk =W ∩ {kj + k : j = 0, 1, 2, · · · }

Because
∑

n∈W
1
n = ∞, so among these classes there must be at least one

class W ∗,
∑

n∈W ∗
1
n = ∞. Let d∗ = kd. Check whether W ∗ and d∗ meet all

the following conditions:
(I)

∑
n∈W ∗

1
n = ∞.

(II) For any progression interval a of W ∗, a ∈ N and d∗|a.
(III) i|d∗.
(IV) W ∗ ⊆ S.
IfW ∗ and d∗ meet all the above conditions, then replaceW withW ∗, replace
d with d∗, otherwise stop the process.

Assume the process ceases at a finite step, then contradictions would be
derived. Therefore, this process shall be executed for all finite steps. Note a
class obtained after all the finite steps asW = limcp→∞ W . Because for any
progression differences a1, a2 of W , we have d|a1, d|a2 and ∀i ∈ N, i|d, so
that ∀i ∈ N, i|a1, i|a2. On the other hand, a1, a2 ∈ N, so that a1|a2, a2|a1, so
that a1 = a2. Then W is an arithmetic progression.

∑
n∈W

1
n = ∞, ∞ and

0 are distantly exclusive =⇒
FD

limcp→∞ W ̸= 0. This means
∑

n∈W
1
n > 0.

Because the common difference of W can be arbitrarily large, so that there
are arbitrarily long arithmetic progressions in W . Because W ⊆ S, so that
S contains arbitrarily long arithmetic progressions.

Many paradoxes can be obtained through reasoning paths involving in-
finity. A distantly exclusive reasoning seems to be more trustworthy than
the others.

A job of math is to find a finite structure governing a concerned proposi-
tion. But it is not easy to find a finite structure governing Erdős conjecture.
Because

∑
n∈S

1
n = ∞ ⇐⇒ ∃S∗ ⊂ S,

∑
n∈S∗

1
n = ∞ and the difference

values of progression S∗ can be arbitrary large, so a subclass S∗ could al-
ways be untouched, beating our effort of deducing a conclusion. In order to
obtain a finite proof of Erdős conjecture, we have to overcome this obstacle.
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13 Other Topics

All the three mathematical crises are due to infinity. This article aims to
demonstrate a fact: Infiniteness implies inconsistency, which is a nature of
infinity and cannot be avoided by adjusting a strategy of getting the infinity.
Infinite math is paradox math.

Paradox 13.1. Operations of abstract mathematical ideas are carried out
by manipulating primitive intuitions in mathematicians’ minds.

Finiteness is intuitive in nature, but it is risky to presume an intuitive
vision of infinity. A reliable way to study infinity is to construct a finite
structure then expand it to infinity. If paradoxes derived are acceptable
then we adopt the structure, otherwise we look for something else. AC and
MC are the tools we have to explore infiniteness at present. Most proofs in
this article are prototypes of exploiting MC. Practically, finiteness is all we
have in math, so count it and make it count.

This is a brief introduction to a math with an updated understanding
of infiniteness. Many topics are not covered, such as in probabilistic theory
a lot of conclusions shall be reexamined because of the problem of measure
theory, in group theory all set groups are finite groups, etc.

Definitions and Notations in this article are exemplary and temporary,
e.g., it is a choice whether to use a new name ‘class’ or to update the concept
of ‘set’. This is the reason why ‘set’ is used in the first few sections while
‘class’ is used in the subsequent sections.

14 Author’s Opinion

Existence of infinity is a problem in philosophy as well as in reality. If the
world we live in is invariant both in rotations and in translations, then real
numbers might exist. Otherwise, infinity is an approximation of a world
with resolution.

Mathematics is a language to interpret sophisticate problems with simply
trusted intuitions, but not to design a world. Any theory that is neither
intuitively inspiring nor practically applicable is highly probably a joking
one, because being applicable in mind or reality is an ultimate approval of
a theory, i.e., an approval by our world’s creator — God.

Logic is an abstraction of everyday life, but not a law of the world. There
are many omnipotence paradoxes. For example, ‘Could God create a rock he
cannot lift up? No matter the answer is yes or no, God are not omnipotent.’
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I disagree with this notion, because if God reply to your challenge, you might
get a class rock. Omnipotence of the Almighty is beyond the thinking ability
of humankind. For me, God is not a belief but real. The way to believe in
God is to fight for truth and justice. Here is a fact I see:

God bless everyone fighting for truth and justice.

Math has been clumsy for a long time. Maybe someday when all the
misunderstandings are corrected, math could become neat. We need a neat
math because it is the only way for math to be prosperous, and a prosperous
math is an indispensable move towards human civilization’s new eve.
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