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Abstract. This paper presents a significant advancement in understanding

the P vs NP problem through the lens of problem theory. Using isotopes as

a technical tool within this framework, we provide a solution to the problem,
establishing that P = NP. The results demonstrate the effectiveness of the

proposed theoretical framework in addressing fundamental problems in com-

putational complexity.

1. Introduction and background

Problem theory have been developed by the author in [1],[2], [3],[4] and [5]. We
provide a summary of the background of this theory.

Definition 1.1. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all the problems to be solved to provide
the solution X to the problem Y the problem space induced by providing the
solution X to problem Y . We denote this space by PY (X). If K is any subspace of
the space PY (X), then we denote this relation by K ⊆ PY (X). If the space K is
a subspace of the space PY (X) with K 6= PY (X), then we write K ⊂ PY (X). We
say problem V is a sub-problem of problem Y if providing a solution to problem Y
furnishes a solution to problem V . If V is a subproblem of the problem Y , then we
write V ≤ Y . If V is a subproblem of the problem Y and V 6= Y , then we write
V < Y and call V a proper subproblem of Y .

Definition 1.2. Let PY (X) be the problem space induced by providing the solution
X to the problem Y . Then we call the number of problems in the space (size) the
complexity of the space and denote by C[PY (X)] the complexity of the space. We
make the assignment Z ∈ PY (X) if problem Z is also a problem in this space.

Definition 1.3. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all solutions to problems obtained as a
result of providing the solution X to the problem Y the solution space induced by
providing the solution X to the problem Y . We denote this space by SY (X). If K
is any subspace of the space SY (X), then we denote this relation by K ⊂ SY (X).
We assign T ∈ SY (X) if the solution T is also a solution in this space.

Proposition 1.1. Let SY (X) be the solution space induced by providing the solution
X to the problem Y . Then X ∈ SY (X).

Proof. This follows by virtue of Definition 1.3. �
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Definition 1.4. Let SY (X) be the solution space induced by providing the solution
X to the problem Y . Then we call the number of solutions in the space (size) the
index of the space and denote by I[SY (X)] the index of this space.

Definition 1.5. Let SY (X) be the solution space induced by providing the solution
X to the problem Y . Then by the entropy of the space, we mean the expression

E [S] =
1

I[SY (X)]
.

In the sequel, we formalize the notion that the problem space induced by pro-
viding a solution to a problem should, by necessity, contain this solution. The
argument is an iteration of a never-diminishing entropy of larger and larger solu-
tion spaces. We launch formally the following arguments.

Theorem 1.6. Let PY (X) be the induced problem space of providing the solution
X to the problem Y . Then Y ∈ PY (X).

Proof. Let us suppose to the contrary that for any problem space Y 6∈ PY (X).
Since Y is a solved problem, it must belong to some problem space, say PV (U). In
particular, we have the containment

Y ∈ PV (U).

Since X is a solution to problem Y and V has a solution U , it follows that X is
a solution obtained as a result of providing a solution U to problem V . It follows
that X ∈ SV (U) so that the embedding

SY (X) ⊂ SV (U)

holds, since X ∈ SY (X). Again, V 6∈ PV (U) under the assumption, so that V
belongs to some problem space, say PK(L). That is, V ∈ PK(L), a problem space
induced by providing a solution L to problem K. Since U is a solution to problem
V and K has solution L, it must be a problem solved as a result of providing a
solution L to problem K. It follows that U ∈ SK(L) and the embedding holds

SY (X) ⊂ SV (U) ⊂ SK(L)

since U ∈ SV (U). By iterating the argument in this manner under the assumption
that G 6∈ PG(F ) for an arbitrary problem space, we obtain the infinite embedding

SY (X) ⊂ SV (U) ⊂ SK(L) ⊂ · · · ⊂ · · · .
It follows from this the following infinite decreasing sequence of the entropy of
solution spaces towards zero

1

I[SY (X)]
>

1

I[SV (U)]
>

1

I[SK(L)]
> · · · > · · ·

which is not possible. This completes the proof of the theorem. �

Definition 1.7. Let Y and V be any two problems. Then we say problem Y
is equivalent to problem V if providing a solution to problem Y also provides
a solution to problem V and conversely providing a solution to problem V also
provides a solution to problem Y . We denote the equivalence with V ≡ Y .

Next, we present a simple criterion for creating a subspace of a problem space.
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Proposition 1.2. Let X ∈ SV (U) and Y ∈ PV (U). If X is a solution to the
problem Y , then

PY (X) ⊂ PV (U).

Proof. Under the requirement Y ∈ PV (U), then Y is a subproblem to be solved to
provide a solution U to the problem V . Since X ∈ SV (U), it follows that X is a
solution obtained by providing a solution U to the problem V . Since X solves Y
and Y ∈ PY (X), it follows that

PY (X) ⊂ PV (U).

�

We use the following criterion to determine the solubility of a problem.

Proposition 1.3. Let V be a problem with solution U . If Y ∈ PV (U), then Y
must have a solution.

Proof. Clearly, problem V is solved by U with an induced problem space PV (U).
Since this space consists of all subproblems to be solved in order to provide a
solution U to the problem V and Y ∈ PV (U), then Y has a solution. �

Definition 1.8. Let V be a problem. Then we say V is reducible if there exists
a proper subproblem of V with no proper subproblem. On the other hand, we say
problem V is irreducible if every proper sub-problem of V has a proper sub-problem.

Definition 1.9. Let V be a problem and {Yi}i≥1 be the sequence of all the sub-
problems of V . Then we say V is regular if

· · · ≤ Y3 ≤ Y2 ≤ Y1 ≤ V.
We say it is irregular if there exist subproblems Yj and Yk of V such that Yj 6≤ Yk
and Yk 6≤ Yj .

De facto, regular problem can easily be solved as opposed to irregular problems,
where a solution to one sub-problem cannot in anyway be modified and advanced
to obtain a solution to other sub-problems. This makes the theory much more
tractable with reducible problems.

1.1. Maximal and minimal sub-problems.

Definition 1.10. Let V be a problem and Y a proper subproblem of V . Then we
say Y is the maximal subproblem of V if all other proper subproblems of V are
subproblems of Y . We say it is the minimal subproblem of V if it is a subproblem
of all other subproblems of V .

Next we relate the notion of minimal sub-problem to the notion of reducibility.

Proposition 1.4. Let V be a problem. If there exists a minimal subproblem of V ,
then V must be reducible.

Proof. Let Y be the minimal subproblem of problem V . Then Y has no proper
subproblem. This implies that V must be reducible. �

In a similar fashion, we relate the notion of maximal sub-problem with the notion
of regularity.
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Theorem 1.11. Let V be a problem. If every sub-problem of V has a maximal
proper sub-problem, then V must be regular.

Proof. Let Y be the maximal proper subproblem of V , since V ≤ V . Then we have
the relation Y < V and every other proper sub-problem of V must be a sub-problem
of Y . Since every sub-problem of V has a maximal sub-problem, we let Z be the
maximal proper sub-problem of Y then Z < Y and all other proper sub-problems
of Y are subproblems of Z. Since the proper subproblems of V excluding Y are
proper subproblems of Y and the remaining excluding Z are subproblems of Z, we
obtain the chain of sub-problems

· · · < Z < Y < V

and thus the chain contains all the subproblems of V . This shows that V must be
a regular problem. �

2. The time complexity

In this section we study the notion of time complexity of problem and solution
spaces.

Definition 2.1. The resolution complexity of problem T by providing a solution
U that solves T is the algorithmic time required to generate the solution U for
problem T . We denote this complexity by Cr(T,U).

Definition 2.2. The verification time complexity of a solution U to the problem
T is the algorithmic time required to check the correctness of solution U . We
denote this complexity by Cv(T,U).

Definition 2.3. Let T be a problem with solution U . We say the time complexity
with respect to the problem T with solution U is in equilibrium if Cr(T,U) =
Cv(T,U).

It is important to declare that the time complexity is not unique to problems and
solutions. More precisely, it is indeed possible that the resolution time complexity
and the verification time complexity may differ quite significantly among equivalent
problems and alternative solutions. Consequently, it may not be possible to extend
an equilibrium to equivalent problems and alternative solutions. Suppose that
Cr(T1, U1) < ∞ and Cv(T1, U1) < ∞ with T1 ≡ T2 (equivalent problems) then
U1 ⊥ U2 (alternative solution). It is possible that

Cr(T1, U1) 6= Cr(T2, U1)

and
Cv(T1, U1) 6= Cv(T2, U1)

and similarly
Cr(T2, U2) 6= Cr(T2, U1)

and
Cv(T2, U2) 6= Cv(T2, U1).

Hence if Cr(T1, U1) = Cv(T1, U1) and T1 ≡ T2 then the equilibrium

Cr(T2, U2) = Cv(T2, U2)

may only hold under certain condition. We begin by verifying that time complexity
can be ordered up to sub-problems and sub-solutions of a given problem.
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Proposition 2.1. Let T be a problem with solution U . Let {Ti}i≥1 and {Ui}i≥1
denote the sequence of all subproblems and subsolutions of T and U , respectively.
If Cr(T,U) <∞ and Cv(T,U) <∞, then we have

Cr(Ti, Ui) < Cr(T,U)

and

Cv(Ti, Ui) < Cv(T,U)

for each i ≥ 1.

Proof. Since Cr(T,U) <∞ and Cv(T,U) <∞ and

Cr(T,U) :=
∑
i≥1

Cr(Ti, Ui)

and

Cv(T,U) :=
∑
i≥1

Cv(Ti, Ui)

the inequality follows easily. �

Remark 2.4. In cases where we do not want to make reference to the solution and
a problem in the notation of resolution and verification time complexity, we will
write for simplicity Cr(T ) and Cv(U). We will adopt this notation in situations
where a reference to a problem or a solution turns out to be irrelevant.

Proving the existence of an equilibrium of time complexity of problems is by no
means an easy endeavor. In the sequel, we prove that assuming equilibrium in the
time complexity can be passed down to subproblems and subsolutions. We make
these ideas formal in the following proposition.

Proposition 2.2. Let T be a regular problem with solution U such that for any
sub-problems Ti, Tj with i 6= j, then Cr(Ti, Ui) 6= Cv(Tj , Uj). If Cr(T,U) = Cv(T,U),
then there exists Q ≤ T (Q a sub-problem of T ) and L ≤ U (L a sub-solution of
U) that solves Q such that Cr(Q,L) = Cv(Q,L).

Proof. Suppose T is a regular problem with a solution U . Let {Ti}i≥1 be the
sequence of all subproblems of T with the corresponding sequence of solutions
{Ui}i≥1. Suppose on the contrary that Cr(Ti, Ui) = Cv(Ti, Ui) for each i ≥ 1. By
virtue of the regularity of T , we can arrange the sequence of subproblems and
subsolutions in the following way T1 ≥ T2 ≥ · · · and the corresponding sequence of
subsolutions U1 ≥ U2 ≥ · · · , where each preceding Ti is a subproblem of Ti−1 and
similarly each Ui is a subsolution for Ui−1. Since problem T is said to be solved
by providing a solution to each of the sub-problems, we find under the assumption
Cr(T,U) = Cv(T,U), that

Cr(T,U) =
∑
i≥1

Cr(Ti, Ui) =
∑
i≥1

Cv(Ti, Ui) = Cv(T,U).

Now suppose on the contrary that Cr(T1, U1) 6= Cv(T1, U1), then under the regularity
condition, it follows that ∑

i≥2

Cr(Ti, Ui) 6=
∑
i≥2

Cv(Ti, Ui)
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since providing a solution to all sub-problems of T2 solves problem T2. Under the
requirement that Cr(Ti, Ui) 6= Cv(Tj , Uj) for all i 6= j, it follows that

Cr(T,U) =
∑
i≥1

Cr(Ti, Ui) 6=
∑
i≥1

Cv(Ti, Ui) = Cv(T,U)

violating the assumption that Cr(T,U) = Cv(T,U). �

Theorem 2.5. Let T be a regular problem with a solution K. If M is the max-
imal subproblem of T with a solution L and Cr(M,L) � polynomial time and
Cr(T,K) = Cv(T,K), then Cv(T,K)� polynomial time.

Proof. Suppose T is a regular problem and let {Ti}i≥1 denote the sequence of all
subproblems of T with corresponding sequence of subsolutions {Ki}i≥1 where each
Ki solves Ti. We can arrange the sequence of subproblems in the following way:
T1 ≥ T2 ≥ · · · where T1 := M is the maximal subproblem of T and where each
subproblem Ti is a subproblem of Ti−1 for i ≥ 2. Since problem T is solved by
solving each of the sub-problems in the sequence, we can write

Cr(T,K) =
∑
i≥1

Cr(Ti,Ki)

= Cr(T1,K1) +
∑
i≥2

Cr(Ti,Ki).

By the regularity of problem T , we see that∑
i≥2

Cr(Ti,Ki) = Cr(T1,K1)� polynomial time.

Thus Cr(T,K) � polynomial time. Under the equality Cr(T,K) = Cv(T,K),
we deduce that Cv(T,K) � polynomial time, which completes the proof of the
theorem. �

Remark 2.6. Theorem 2.5 is an important ingredient in exploring a deep under-
standing of the P vs NP problem. It purports that once there exists an equilibrium
of time complexity of a given problem, it suffices to only investigate the resolution
complexity of the maximal sub-problem for a class of well-behaved problems which
we refer to as regular problems, introduced and studied in [2].

Although the task of proving equilibrium of resolution and verification time
complexity can be very hard, we can often carry out this process from the bottom
up. That is to say, proving the equilibrium of time complexity for sub-problems
can be extended to the time complexity equilibrium of the actual problem. The
following proposition exemplifies that principle.

Proposition 2.3. Let Y be a problem with solution X and let {Yi}i≥1 and {Xi}i≥1
denote the sequence of all proper sub-problems and a solution to sub-problems of Y .
If Cr(Yi, Xi) = Cv(Yi, Xi) for each i ≥ 1, then Cr(Y,X) = Cv(Y,X).

Proof. The sequences {Yi}i≥1 and {Xi}i≥1 denote the sequence of all proper sub-
problems and solutions to subproblems of Y , respectively. Since the solution to
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problem Y is furnished solving each of the sub-problems in {Yi}1≥1, it follows un-
der the assumption Cr(Yi, Xi) = Cv(Yi, Xi) for each i ≥ 1 that

Cr(Y,X) =
∑
i≥1

Cr(Yi, Xi) =
∑
i≥1

Cv(Yi, Xi) = Cv(Y,X).

�

We now obtain an important characterization of irreducible problems.

Theorem 2.7. If X is an irreducible problem, then Cr(X) = ∞ or X is not
solvable.

Proof. Suppose X is an irreducible problem and assume the contrary that Cr(X) <
∞ and X is solvable. Since X is irreducible, each subproblem Xj ≤ X has a proper
subproblem, and the problem X has infinitely many proper subproblems Xi < X.
Thus

Cr(X) :=

∞∑
i=1

Cr(Xi) <∞

since the problem X is solved by providing a solution to each of the subproblems.
This implies that for any ε > 0, there exists some N := N(ε) such that for all i ≥ N
we have

∞∑
i=N

Cr(Xi) < ε.

That is, Cr(Xi) −→ 0 as i −→ ∞. This means that the algorithmic time required
to solve infinitely many proper subproblems of problem X converges to zero, which
violates the assumption that X is solvable. �

The difficulty of proving the equilibrium of time complexity of a given problem
may be made easier depending on its structure. Irregular problems seem to be very
difficult to understand, and unfortunately, most problems fall into this category.
However, it is much easier to establish an equilibrium for a class of well-behaved
problems that fall into the category of reducible and regular problems. It turns out
that once equilibrium is reached for the finest form of this problem, equilibrium
will certainly be achieved for the actual problem. We make this discussion formal
in the following results.

Theorem 2.8 (extension principle). Let T be a regular and reducible problem with
a solution U . If Tk is a subproblem of T with solution Uk such that there exists
no Tj ∈ {Ti}i≥1 with Tj 6< Tk and that Cr(Tk, Uk) = Cv(Tk, Uk), then Cr(T,U) =
Cv(T,U).

Proof. Suppose T is a regular problem with a solution U and let {Ti}i≥1 be the
sequence of all subproblems of T with the corresponding sequence of solutions
{Ui}i≥1, where each Ui solves Ti for each i ≥ 1. Since T is reducible, it has a
subproblem without a proper subproblem. Let Tk be this sub-problem of T , then
by the regularity of T , we can arrange the sequence of all sub-problems of T in the
following way:

Tk ≤ Tk−1 ≤ Tk−2 ≤ · · · ≤ T1
with

Uk ≤ Uk−1 ≤ Uk−2 ≤ · · ·U1
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where each Ti is a sub-problem of Ti−1 and Ui is a sub-solution of Ui−1. Under
equilibrium Cr(Tk, Uk) = Cv(Tk, Uk) and since problem Tk−1 is solved by provid-
ing a solution to all its proper sub-problems, it follows that Cr(Tk−1, Uk−1) =
Cv(Tk−1, Uk−1). Similarly, problem Tk−2 is solved by providing a solution to all of
its sub-problems and it follows that

Cr(Tk−2, Uk−2) = Cr(Tk, Uk) + Cr(Tk−1, Uk−1)

= Cv(Tk, Uk) + Cv(Tk−1, Uk−1)

= Cv(Tk−2, Uk−2).

We can iterate this process to reach the equilibrium Cr(T,U) = Cv(T,U). �

Corollary 2.1. Let T be a regular and reducible problem with a solution U . Let
Tk be a subproblem of T with solution Uk such that there exists no Tj ∈ {Ti}i≥1
with Tj 6< Tk and that Cr(Tk, Uk) = Cv(Tk, Uk). If Cv(T,U) � polynomial time
then Cr(T,U)� polynomial time.

Proof. It follows from Theorem 2.8 that Cr(T,U) = Cv(T,U) so that under hy-
pothesis Cv(T,U)� polynomial time then Cr(T,U)� polynomial time. �

Remark 2.9. Corollary 2.1 suggests that under a certain mild condition, if a certain
class of well-behaved problems have a solution that is easy to verify for correctness,
then they must also be easy to solve at the same level.

2.1. The time complexity of problem and solution spaces. In this section,
we study the notion of time complexity on problem and solutions spaces, as opposed
to a specific problem and its solution.

Definition 2.10. Let PY (X) and SY (X) be the problem and solution spaces in-
duced by providing the solution X to problem Y . Then by the resolution complexity
of the problem space PY (X), we mean the sum of each resolution complexity of
each problem in the space. For each problem T ∈ PY (X) there exists a solution
L ∈ SY (X) that solves T . We denote the resolution complexity of the space with

Pr
Y (X) :=

∑
T∈PY (X)
L∈SY (X)

Cr(T, L)

and the verification complexity with

SvY (X) :=
∑

L∈SY (X)
T∈PY (X)

Cv(T, L)

where T < Y and L < X.

Proposition 2.4. Let PY (X) and SY (X) be the problem and solution spaces in-
duced by providing the solution X to the problem Y . If for each T ∈ PY (X) and
each L ∈ SY (X) that solves T , Cr(T, L) = Cv(T, L) then Pr

Y (X) = SvY (X).

Proof. This follows trivially from the proof of Proposition 2.3. �

3. Analysis on the topology of problem spaces

In this section, we introduce and develop the analysis of the theory of problem
and their solution spaces. We adapt some classical concepts in functional analysis
to study problems and their corresponding solution spaces.



A PROGRESS ON THE P VS NP PROBLEM 9

3.1. Bounded problem and solution spaces. In this section we study the no-
tion of bounded problem and solution spaces.

Definition 3.1. Let PX(Y ) be a problem space induced by providing the solution
Y to the problem X. We say the space PX(Y ) is bounded if and only if it has
finite complexity. If we denote the complexity of the space with C[PX(Y )], then
we say PX(Y ) is bounded if and only if C[PX(Y )] < ∞. Similarly, we say the
corresponding solution space SX(Y ) is bounded if only if it has a finite index. If
we denote the index of this space by I[SX(Y )], then SX(Y ) is bounded if and only
if I[SX(Y )] <∞.

Proposition 3.1. Let PX(Y ) be the problem space induced by providing the solution
Y to the problem X. If C[PX(Y )] <∞, then PX(Y ) contains a reducible problem.

Proof. Suppose each problem Xi ∈ PX(Y ) is irreducible, then we can construct the
infinite nested sequence of sub-problem spaces · · · ⊂ PX2

(Y2) ⊂ PX1
(Y1) ⊂ PX(Y )

with X1 > X2 > · · · , where Xj+1 < Xj indicates that Xj+1 is a proper sub-problem
of Xj . This implies that the space PX(Y ) contains infinitely many problems and
thus C[PX(Y )] =∞. �

3.2. Maps between problem and solution spaces. In this section, we study
the analysis of map between between problem spaces and solution spaces. We
examine how the notion of boundedness and compactness are preserved under the
map.

Definition 3.2. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
We say f is bounded if f(PU (T )) is a finite subset of problems in PS(T ) for each
bounded PU (T ) ⊂ PX(Y ).

Definition 3.3. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces. We
say f is compact if and only if f(PX(Y )) is compact.

We expose the fact that compactness of a map between problem spaces can be
inherited from the compactness of the space on which it acts.

Theorem 3.4 (Stability theorem). Let f : PX(Y ) −→ PS(T ) be a map between
problem spaces. If PX(Y ) is compact, then f is compact.

Proof. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces and suppose
that the space PX(Y ) is compact. Then there exists a finite number of problems
spaces PK1(L1), · · · ,PKn(Ln) such that

PX(Y ) ⊂ PK1(L1) ∪ · · · ∪ PKn(Ln).

We observe that f(PX(Y ) ∩ PK1(L1)) ⊆ f(PK1(L1))). Using this relation, we can
put

f(PX(Y )) ⊆
n⋃

j=1

f(PX(Y ) ∩ PKj
(Lj)) ⊆

n⋃
j=1

f(PKj
(Lj)).

This proves that the range f(PX(Y )) is compact and hence f is also compact. �
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4. Isotope and Isotope problem and solution spaces

In this section we study the notion of an isotope of problem and solution spaces.

Definition 4.1. Let V and U be any two problems. We say V and U are compatible
if there exists a problem space PX(Y ) such that V,U ∈ PX(Y ). We denote this
compatibility by V � U or U � V . Similarly, we say two solutions R,S to some
(possibly) distinct problems are compatible if there exists a solution space SX(Y )
such that R,S ∈ SX(Y ). We denote this compatibility by R � S or S �R.

Definition 4.2. Let U and V be compatible problems. We say V and U admit a
merger in the space PX(Y ) if there exists a problem S ∈ PX(Y ) such that V < S
and U < S and V,U are the only maximal subproblem of S. In notation, we
write V ./ U = S ∈ PX(Y ) or U ./ V = S ∈ PX(Y ). Similarly, let R and T
be compatible solutions. We say R and T admit a merger in the space SX(Y ) if
there exists a solution W ∈ SX(Y ) such that R < W and T < W and R, T are the
only maximal sub-solutions of W . In notation, we write R ./ T = W ∈ SX(Y ) or
R ./ T = W ∈ PX(Y )

We now introduce the notion of an isotope.

Definition 4.3. Let PX(Y ) and SX(Y ) be the problem space and the correspond-
ing solution space, induced by assigning solution Y to problem X. We denote an
isotope on PX(Y ) as the map Iso : PX(Y ) −→ R such that

(i) Iso(V ) ≥ 0 for each V ∈ PX(Y ) and
(ii) Iso(V ./ U) ≤ Iso(V ) + Iso(U) provided U, V ∈ PX(Y ) admits a merger.

A similar axiom also holds for solution spaces.

The notion of an isotope may not be viewed as an abstract notion. For example,
if we consider a problem V ∈ PX(Y ) with a solution U ∈ SX(Y ) and an induced
problem space PV (U) ⊂ PX(Y ), then we can associate a number to problem V to
be

(C[PV (U)])
1

C[PV (U)]
−1

where C[PV (U)] as usual denotes the complexity of the space. Similarly for a
solution U in the solution space SX(Y ), we can assign a number to the solution U
to be

(I[SV (U)])
1

I[PV (U)]
−1

where I[PV (U)] as usual denotes the index of the space. We could verify that these
two maps satisfy the axioms of an isotope. In particular, an isotope is a pseudo
semi-norm.

Definition 4.4. Let PX(Y ) and SX(Y ) be a problem and a corresponding solution
space whose topology admits an isotope. A problem (resp. solution) space equipped
with an isotope is an isotope problem (resp. isotope solution) space. We denote
these spaces by (PX(Y ), Iso(·)) and (SX(Y ), Iso(·)), respectively.

Definition 4.5. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. We put the isotope of f , denoted Iso(f), to be

Iso(f) := sup
V ∈PX(Y )
Iso(V ) 6=0

Iso(f(V ))

Iso(V )
.
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We say f is bounded if Iso(f) < ∞. A similar characterization also holds for
solution spaces.

Proposition 4.1. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
Then Iso(f) < ∞ if and only if there exists an absolute constant c > 0 such that
Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ).

Proof. Suppose Iso(f) <∞ then by definition 4.5 there exists an absolute constant

c > 0 such that Iso(f(V ))
Iso(V ) ≤ c for all V ∈ PX(Y ). It implies immediately that

Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ). Conversely, suppose Iso(f(V )) ≤ c Iso(V )
for all V ∈ PX(Y ) then

Iso(f) := sup
V ∈PX(Y )
Iso(V ) 6=0

Iso(f(V ))

Iso(V )
<∞.

�

4.1. Bounded isotope problem spaces. In this section, we introduce and study
the notion of a bounded isotope problem and solution spaces.

Definition 4.6. Let PX(Y ) be an isotope problem space induced by providing
solution Y to problem X. We say the space PX(Y ) is bounded if Iso(V ) < ∞ for
all V ∈ PX(Y ).

Remark 4.7. We now show that a bounded map between problem spaces maps
bounded subspaces to a bounded set of problems.

Proposition 4.2. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. Suppose PK(L) ⊂ PX(Y ) is a bounded sub-problem space. If Iso(f) < ∞,
then f(PK(L)) is bounded in PS(T ).

Proof. Consider the map f : PX(Y ) −→ PS(T ) such that Iso(f) < ∞. Then
there exists an absolute constant c > 0 such that Iso(f(V)) ≤ c Iso(V ) for all
V ∈ PX(Y ). The requirement that PK(L) is bounded implies that Iso(V ) <∞ for
all V ∈ PK(L). This implies that Iso(f(V )) ≤ d for all V ∈ PK(L). This shows
that f(PK(L)) is bounded in PS(T ). �

A similar characterization could be performed and proofs can be constructed
by replacing the problem spaces PK(L) with the corresponding induced solution
spaces SK(L).

5. Application to the P vs NP problem

In this section, we provide a sketch solution to the P vs NP problem. We show
that P = NP by employing ideas drawn from problem theory. We begin as follows:
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5.1. A sketch solution. Let p be a problem in NP, then the solution q to the
problem p is verifiable in polynomial time. In keeping with the notation of the
theory, we let Pp(q) and Sp(q) denote the problem and the solution spaces induced
equipped with an isotope. That is, we work in the isotope problem and solution
spaces (Pp(q), Iso(·)) and (Sp(q), Iso(·)). We obtain for the corresponding resolution
and verification complexity

Pr
p(q) :=

∑
u∈Pp(q)
k∈Sp(q)

Cr(u, k) = Cr(p, q)

and the verification complexity with

Svp (q) :=
∑

k∈Sp(q)
u∈Pp(q)

Cv(u, k) = Cv(p, q)

where Cr(u, k) and Cv(u, k) denotes the resolution and the verification time com-
plexity each problem u in the problem space with solution q in the correspond-
ing solution space. Because we have assumed that p ∈ NP, it follows that for
the verification time complexity Cv(p, q) � polynomial time. Hence, for each
u ∈ Pp(q) with solution k ∈ Sp(q), we must have Cv(u, k) � polynomial time.
It follows necessarily that for the index of the solution space Sp(q), we must have
I[Sp(q)] < ∞. Consequently, we have, for the complexity of the problem space
C[Pp(q)] <∞.

Now consider a surjective map f : Px(y) −→ Pp(q) for x ∈ P and p ∈ NP. Since
f(Px(y)) = Pp(q) and C[Pp(q)] <∞, it implies that f is bounded. It follows that
Iso(f) < ∞, where Iso denotes the isotope of the map f . Therefore, there exists
an absolute constant c1 > 0 such that Iso(f(l)) ≤ c1Iso(l) for all l ∈ Px(y).

Now, we define Iso : Px(y) −→ R by

Iso(l) :=
∑

w∈Sl(t)
z∈Pl(t)

Cr(z, w).

It is easy to check that this definition satisfies the axioms of an Isotope. Be-
cause x ∈ P, it follows that Cr(x, y) � polynomial time and hence Iso(x) �
polynomial time. It follows that

Iso(p) := Cr(p, q) :=
∑

k∈Sp(q)
u∈Pp(q)

Cr(u, k) ≤ c1Iso(h)� polynomial time

for some h ∈ Px(y) such that f(h) = p ∈ Pp(q). This proves p ∈ P.
1.

1

.
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