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Abstract

It is shown that the limit of cos(j) and sin(j) as j goes to infinity does
not exist. DeMoivre’s theorem implies cos j!4-i sin j! raised to the 1 /(j —1)!
power equals cosj + ¢sinj. Assuming 7 is rational, its multiple can be
expressed as a factorial. This implies that cos(j) and sin(j) converges, a
contradiction.

Introduction

There are many proofs of the irrationality of 7 [3] [4]. Something like the
holy grail of showing 7 is irrational is to reduce things to just trigonometric
manipulations. Although the proof here doesn’t quite do that — some limit
ideas are involved — it gets close to this ideal; it might be simple enough for
a freshman calculus student.

There are two pre-requisites. One consists of a simple proof that the
limit of cos(j) and sin(j) as j, a natural number, goes to infinity does not
exist. This is given in the next section: Trigonometry. The other is poten-
tially a thing of mathematical analysis, but, in the opinion of the author, only
if you need convincing concerning something that many would take as obvi-
ous and easy. This material is covered in Apostol’s Mathematical Analysis
in sections 8.20 (Double Sequences) and 9.12 (Uniform Convergence and
Double Sequences): a definition and two theorems [1]. We present his ideas
in the third section: Double Sequences. The large print: a good avenue is to
assume the trig result and go right to the last Proof section.

In the conclusion, I review whether or not the magic chalice could be a
myth. Are there mistakes in the reasoning?



Trigonometry

The following Lemma is taken from a youtube video: Dr. Barker video.

Lemma 1. The limits

lim cos(j) (D
j—00

and
lim sin(j) @)
j—00

don’t exist.

Proof. Suppose (2) exists and equals L. Then

lim sin(j + 1) = lim sin(j — 1) = L.

j—o0 j—o0
Using trigonometric identities,
sin(j + 1) = sin(j) cos(1) 4 cos(j) sin(1) 3)

and
sin(j — 1) = sin(j) cos(1) — cos(j) sin(1). 4)

Using (3), we solve for cos(j):

. sin(j 4+ 1) — sin(j) cos(1)
cos() = sin(1)

This gives

. . L —Lcos(1) L(1—cos(l))
ylggo cos(j) = sin(1) N sin(1) )

implying the limit of cos(j) exists. Similarly, using (4), we solve for cos(j)

. sin(j)cos(1) —sin(j — 1)
cos(j) = sin(1) '

This gives

. . Lcos(l) =L  L(cos(1)—1)
ylggo cos(j) = sin(1) B sin(1) ©

The only way (5) and (6) can be made consistent is if both limits are 0. Given
that 1 — cos(1) # 0, this forces L = 0.
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https://youtu.be/9mo4u_FGvFw?si=zObP5rCOXQ9FivHd

‘We now have

lim sin(j) = lim cos(j) =0,
Jj—00 Jj—00

but this implies
lim cos?(j) + sin?(j) = 0,

J—00

contradicting the Pythagorean identity: giving 0 = 1. Therefore the limits,
(1) and (2) don’t exist. O

Note: 7 # 1 follows from the circumference of any circle is greater than
its diameter: 27 > 27 implies 7 > 1 and hence 7 # 1.

Double Sequences

The following is taken from Apostol [1].

Definition 1. A function f whose domain is Z+* x Z is called a double
sequence.

NOTE. We shall be interested only in real- or complex-valued double se-
quences.

Definition 2. If a € C, we write limy, ;.o f(p, q) = a and we say that the
double sequence f converges to a, provided that the following condition is
satisfied: For every € > 0, there exists an N such that |f(p,q) — a| < €
whenever bothp > N and ¢ > N.

Lemma 2. Assume that limy, ;. f(p,q) = a. For each fixed p, assume
that the limitlim,_.~ f(p, q) exists. Then the limitlim,,_, (lim,_.~ f(p, q))
also exists and has the value a.

NOTE. To distinguish limy, ;.o f(p, ¢) from lim,_(limy—.o f(p, q)).
the first is called a double limit, the second an iterated limit.

Proof. Let F(p) = limy_.o f(p, q). Given € > 0, choose N; so that
€ .
|f(p,Q)—a|<§, 1fp>NlandQ>N1- (7)
For each p we can choose N, so that

F(p) = f(p.0)| < 5. ifg > No. ®)



(Note that N, depends on p as well as on €.) For each p > N7 choose No,
and then choose a fixed ¢ greater than both N; and Ns. Then both (7) and
(8) hold, and hence

|F(p) —a| <e ifp> Ny.
Therefore, lim,, .~ F'(p) = a. O

NOTE. A similar result holds if we interchange the roles of p and q.
Thus the existence of the double limitlim,, ,—.~ f(p, ¢) and of lim,_,~ f(p, q)
implies the existence of the iterated limit

lim (lim f(p, q)> .
p—00 \ g—00

The following example shows that the converse is not true.

Example 1. Let

Fp,q) = 5=

p*+q*
Then lim,_. f(p,q) = 0 and hence lim,_, (lim, .o f(p,¢)) = 0. But
flp,q) = % when p = g and f(p, q) = % when p = 2q, and hence it is clear
that the double limit cannot exist in this case.

p=12,....,¢g=1,2,...).

A suitable converse to Lemma 2 can be established by introducing the
notion of uniform convergence.

Lemma 3. Let f be a double sequence and let " denote the set of positive
integers. For eachn = 1,2, ..., define a function g, on Z as follows:

gn(m) = f(m,n), ifmeZ".

Assume that g, — g uniformly on 7, where g(m) = lim,_. f(m,n).
If the iterated limit lim,,, oo (limy, oo f(m,n)) exists, then the double limit
limy, y,—o0 also exists and has the same value.

Proof. Given e > 0, choose Nj so that n > N7 implies

|f(m,n) —g(m)| < %, for every m € Z*.!
Let a = limy, o0 (limy—00 f(m,n)) = lim,, oo g(m). For the same e,
choose Ny so that m > N implies [g(m) — a| < €/2. Then, if N is the
larger of N7 and Na, we have | f(m, n) —a| < e whenever both m > N and
n > N. In other words, lim,, o0 f(m, 1) = a. O

' Apostol doesn’t define uniform converge explicitly for double sequences, but one gets the
drift here.



Proof

We need a slight modification of DeMoivre’s Theorem. First a review of
complex roots [2].

Let w = r(cosf+1isin f) be a complex number in polar form. If w # 0,
w has n distinct complex nth roots given by the formula

2, = Ur [cos (9 +n2ﬂk> + 7 sin (9 +n2ﬂk>] , ©))

where k = 0,1,2,...,n—1. The principal root [5] is the root corresponding
to the k = 0 case in (9).

Lemma 4. Forn > 4
(cos(n!) + i sin(n!))/ "' = cosn + isinn (10)
gives the principal root of the (n — 1)!th root of cos(n!) + i sin(n!).

Proof. The k = 0 case of

nl 4 2k Lis nl 4+ 2kmw
cos | ————— isin | ———
(n—1)! (n—1)!
is the right hand side of (10). This gives
. ;_n! . 1 1
e = D = (em!)(”*)’ = (cos(n!) + i sin(n!))@-D!
which is (10). n

Theorem 1. 7 is irrational.

Proof. Assume m = p/q, then there exists a first k! that has a factor of p in
it and

Kl —op
D
for some integer n. This means for all j > k, j! = 2mm, for some integer
m, giving cos(j!) = 1 and sin(j!) = 0. This makes
lim (cos(j!) +isin(k!)) =1+ 0,

Jk—o0
trivially uniform — meaning j = k doesn’t change this limit. See the Double
Sequence section. The iterated limit

lim ( lim (cos(r!) + i sin(r!))1/(@=1)}

q—00 T—00



also exists. Note: 11/ = 1, for all m € Z*. Therefore the double sequence

lim (cos(j!) + i sin(j!))/*=D!

j,k—00

=1+0: (11)

exists and yields the same result when j = k: Lemma 3. But then (11) is
identical to

lim (cos(j) + isin(j)) = 1 + 03,

J—00
using Lemma 4. This implies lim;_,, cos(j) and lim;_, sin(j) both exist
and equal 1 and 0O respectively, contradicting Lemma 1. See the Trigonome-
try section. ]

Exploration

We can make some inferences from the assumption that 7 is rational. Let’s
suppose that 7 = 6 and naturally 2 = 12 and this gives us the other circle
of interest: the clock. We can say that in one sense cosn and sinn di-
verge, but in another sense they converge (are) multi-valued (or piece-wise
defined) functions given by modulo classes from [0] to [11]. So, for exam-
ple sin(24) is [0] as 24 is a multiple of 6; sin(15) is [3] as 15 = 3 mod 6.
Per the Trigonometry Section is this a contradiction, proving that m must be
irrational?

My feeling is yes. The proof that cosn and sinn did not require any
assumptions about 7’s rationality or irrationality. As per a good by contra-
diction proof, the assumption to give a contradiction resides on one side of a
ledger and the consequences of not making the assumption rests on another.

If 7 is assumed to be irrational then cos n and sinn will always be dif-
ferent; the periodicity of these forces this conclusion. They don’t converge
to a multi-valued function.

The easy refrain is (10) isn’t true. But the use of this identity is not to
establish roots of a complex number. Multi-valued items can and are also
single valued. For example, I think I can say v/4 is 2 without clamoring that
no its not. Its

27k 27k
V4 [cos (M) + ¢ sin (uﬂ =2and — 2,

2 2

when k£ = 0 and k£ = 1. I can say (e*')*? = ¢*1*2 without detours into what
the complex numbers z1 and 2o are. We are working within the constraint of
principal values and single values.



Conclusion

The details concerning double sequences given in the third section seem
unnecessary given the sequence in question turns into a constant: for some
N, alln > N make a,, = b, b a constant. Instead of uniform convergence
one could term such convergence trivial. The word frivial in connection with
proving 7 is irrational raises an alarm bell. Is there an error?
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