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Abstract

It is shown that the limit of cos(j) and sin(j) as j goes to infinity does

not exist. DeMoivre’s theorem implies cos j!+i sin j! raised to the 1/(j−1)!

power equals cos j + i sin j. Assuming π is rational, its multiple can be

expressed as a factorial. This implies that cos(j) and sin(j) converges, a

contradiction.

Introduction

There are many proofs of the irrationality of π [3] [4]. Something like the

holy grail of showing π is irrational is to reduce things to just trigonometric

manipulations. Although the proof here doesn’t quite do that – some limit

ideas are involved – it gets close to this ideal; it might be simple enough for

a freshman calculus student.

There are two pre-requisites. One consists of a simple proof that the

limit of cos(j) and sin(j) as j, a natural number, goes to infinity does not

exist. This is given in the next section: Trigonometry. The other is poten-

tially a thing of mathematical analysis, but, in the opinion of the author, only

if you need convincing concerning something that many would take as obvi-

ous and easy. This material is covered in Apostol’s Mathematical Analysis

in sections 8.20 (Double Sequences) and 9.12 (Uniform Convergence and

Double Sequences): a definition and two theorems [1]. We present his ideas

in the third section: Double Sequences. The large print: a good avenue is to

assume the trig result and go right to the last Proof section.

In the conclusion, I review whether or not the magic chalice could be a

myth. Are there mistakes in the reasoning?
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Trigonometry

The following Lemma is taken from a youtube video: Dr. Barker video.

Lemma 1. The limits

lim
j→∞

cos(j) (1)

and

lim
j→∞

sin(j) (2)

don’t exist.

Proof. Suppose (2) exists and equals L. Then

lim
j→∞

sin(j + 1) = lim
j→∞

sin(j − 1) = L.

Using trigonometric identities,

sin(j + 1) = sin(j) cos(1) + cos(j) sin(1) (3)

and

sin(j − 1) = sin(j) cos(1)− cos(j) sin(1). (4)

Using (3), we solve for cos(j):

cos(j) =
sin(j + 1)− sin(j) cos(1)

sin(1)
.

This gives

lim
j→∞

cos(j) =
L − L cos(1)

sin(1)
=

L(1− cos(1))

sin(1)
, (5)

implying the limit of cos(j) exists. Similarly, using (4), we solve for cos(j)

cos(j) =
sin(j) cos(1) − sin(j − 1)

sin(1)
.

This gives

lim
j→∞

cos(j) =
L cos(1) − L

sin(1)
=

L(cos(1)− 1)

sin(1)
. (6)

The only way (5) and (6) can be made consistent is if both limits are 0. Given

that 1 − cos(1) 6= 0, this forces L = 0.
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We now have

lim
j→∞

sin(j) = lim
j→∞

cos(j) = 0,

but this implies

lim
j→∞

cos2(j) + sin2(j) = 0,

contradicting the Pythagorean identity: giving 0 = 1. Therefore the limits,

(1) and (2) don’t exist.

Note: π 6= 1 follows from the circumference of any circle is greater than

its diameter: 2πr > 2r implies π > 1 and hence π 6= 1.

Double Sequences

The following is taken from Apostol [1].

Definition 1. A function f whose domain is Z
+ × Z

+ is called a double

sequence.

NOTE. We shall be interested only in real- or complex-valued double se-

quences.

Definition 2. If a ∈ C, we write limp,q→∞ f(p, q) = a and we say that the

double sequence f converges to a, provided that the following condition is

satisfied: For every ε > 0, there exists an N such that |f(p, q) − a| < ε
whenever both p > N and q > N .

Lemma 2. Assume that limp,q→∞ f(p, q) = a. For each fixed p, assume

that the limit limq→∞ f(p, q) exists. Then the limit limp→∞(limq→∞ f(p, q))
also exists and has the value a.

NOTE. To distinguish limp,q→∞ f(p, q) from limp→∞(limq→∞ f(p, q)),

the first is called a double limit, the second an iterated limit.

Proof. Let F (p) = limq→∞ f(p, q). Given ε > 0, choose N1 so that

|f(p, q)− a| <
ε

2
, if p > N1 and q > N1. (7)

For each p we can choose N2, so that

|F (p)− f(p, q)| < ε

2
, if q > N2. (8)
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(Note that N2 depends on p as well as on ε.) For each p > N1 choose N2,

and then choose a fixed q greater than both N1 and N2. Then both (7) and

(8) hold, and hence

|F (p) − a| < ε, if p > N1.

Therefore, limp→∞ F (p) = a.

NOTE. A similar result holds if we interchange the roles of p and q.

Thus the existence of the double limit limp,q→∞ f(p, q) and of limq→∞ f(p, q)

implies the existence of the iterated limit

lim
p→∞

(

lim
q→∞

f(p, q)

)

.

The following example shows that the converse is not true.

Example 1. Let

f(p, q) =
pq

p2 + q2
, (p = 1, 2, . . . , q = 1, 2, . . .).

Then limq→∞ f(p, q) = 0 and hence limp→∞(limq→∞ f(p, q)) = 0. But

f(p, q) = 1
2 when p = q and f(p, q) = 2

5 when p = 2q, and hence it is clear

that the double limit cannot exist in this case.

A suitable converse to Lemma 2 can be established by introducing the

notion of uniform convergence.

Lemma 3. Let f be a double sequence and let Z
+ denote the set of positive

integers. For each n = 1, 2, . . . , define a function gn on Z
+ as follows:

gn(m) = f(m, n), if m ∈ Z
+.

Assume that gn → g uniformly on Z
+, where g(m) = limn→∞ f(m, n).

If the iterated limit limm→∞(limn→∞ f(m, n)) exists, then the double limit

limm,n→∞ also exists and has the same value.

Proof. Given ε > 0, choose N1 so that n > N1 implies

|f(m, n)− g(m)| < ε

2
, for every m ∈ Z

+.1

Let a = limm→∞(limn→∞ f(m, n)) = limm→∞ g(m). For the same ε,

choose N2 so that m > N2 implies |g(m) − a| < ε/2. Then, if N is the

larger of N1 and N2, we have |f(m, n)−a| < ε whenever both m > N and

n > N . In other words, limm,n→∞ f(m, n) = a.

1Apostol doesn’t define uniform converge explicitly for double sequences, but one gets the

drift here.
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Proof

We need a slight modification of DeMoivre’s Theorem. First a review of

complex roots [2].

Let w = r(cos θ+i sin θ) be a complex number in polar form. If w 6= 0,

w has n distinct complex nth roots given by the formula

zk = n

√
r

[

cos

(

θ + 2πk

n

)

+ i sin

(

θ + 2πk

n

)]

, (9)

where k = 0, 1, 2, . . . , n−1. The principal root [5] is the root corresponding

to the k = 0 case in (9).

Lemma 4. For n > 4

(cos(n!) + i sin(n!))1/(n−1)! = cos n + i sinn (10)

gives the principal root of the (n − 1)!th root of cos(n!) + i sin(n!).

Proof. The k = 0 case of

cos

(

n! + 2kπ

(n − 1)!

)

+ i sin

(

n! + 2kπ

(n − 1)!

)

is the right hand side of (10). This gives

ein = e
i n!
(n−1)! = (ein!)

1
(n−1)! = (cos(n!) + i sin(n!))

1
(n−1)!

which is (10).

Theorem 1. π is irrational.

Proof. Assume π = p/q, then there exists a first k! that has a factor of p in

it and

k!
q

p
= 2n

for some integer n. This means for all j ≥ k, j! = 2mπ, for some integer

m, giving cos(j!) = 1 and sin(j!) = 0. This makes

lim
j,k→∞

(cos(j!) + i sin(k!)) = 1 + i0,

trivially uniform – meaning j = k doesn’t change this limit. See the Double

Sequence section. The iterated limit

lim
q→∞

( lim
r→∞

(cos(r!) + i sin(r!))1/(q−1)!)
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also exists. Note: 11/m = 1, for all m ∈ Z
+. Therefore the double sequence

lim
j,k→∞

(cos(j!) + i sin(j!))1/(k−1)! = 1 + 0i (11)

exists and yields the same result when j = k: Lemma 3. But then (11) is

identical to

lim
j→∞

(cos(j) + i sin(j)) = 1 + 0i,

using Lemma 4. This implies limj→∞ cos(j) and limj→∞ sin(j) both exist

and equal 1 and 0 respectively, contradicting Lemma 1. See the Trigonome-

try section.

Exploration

We can make some inferences from the assumption that π is rational. Let’s

suppose that π = 6 and naturally 2π = 12 and this gives us the other circle

of interest: the clock. We can say that in one sense cos n and sinn di-

verge, but in another sense they converge (are) multi-valued (or piece-wise

defined) functions given by modulo classes from [0] to [11]. So, for exam-

ple sin(24) is [0] as 24 is a multiple of 6; sin(15) is [3] as 15 ≡ 3 mod 6.

Per the Trigonometry Section is this a contradiction, proving that π must be

irrational?

My feeling is yes. The proof that cosn and sin n did not require any

assumptions about π’s rationality or irrationality. As per a good by contra-

diction proof, the assumption to give a contradiction resides on one side of a

ledger and the consequences of not making the assumption rests on another.

If π is assumed to be irrational then cos n and sinn will always be dif-

ferent; the periodicity of these forces this conclusion. They don’t converge

to a multi-valued function.

The easy refrain is (10) isn’t true. But the use of this identity is not to

establish roots of a complex number. Multi-valued items can and are also

single valued. For example, I think I can say
√

4 is 2 without clamoring that

no its not. Its

2
√

4

[

cos

(

0 + 2πk

2

)

+ i sin

(

0 + 2πk

2

)]

= 2 and − 2,

when k = 0 and k = 1. I can say (ez1)z2 = ez1z2 without detours into what

the complex numbers z1 and z2 are. We are working within the constraint of

principal values and single values.
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Conclusion

The details concerning double sequences given in the third section seem

unnecessary given the sequence in question turns into a constant: for some

N , all n > N make an = b, b a constant. Instead of uniform convergence

one could term such convergence trivial. The word trivial in connection with

proving π is irrational raises an alarm bell. Is there an error?
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