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Abstract. This paper introduces problem theory, a new framework for study-

ing problem and solution spaces through the lens of point-set topology and

abstract algebra. We define solution spaces as topological constructs induced
by the assignment of solutions to problems and establish their fundamental

properties. Key results include the identification of compactness and conti-

nuity conditions in solution spaces and their algebraic interpretations within
module-theoretic settings. This theory bridges abstract algebra and topology,

providing new insights into the interplay between algebraic structures and

topological spaces. Potential applications and directions for future research
are discussed.

1. Introduction

The study of problem spaces, solution spaces, and the interactions between them
is a cornerstone of both theoretical and applied mathematics, particularly in the
context of computational complexity. This work embarks on a comprehensive ex-
ploration of these spaces, blending algebraic, topological, and computational per-
spectives. By introducing novel frameworks, formalizing key concepts, and proving
central theorems, this research contributes fresh insights into the intricate relation-
ships between problems and their solutions, as well as the transformations that
map between these spaces. These contributions lay the foundation for understand-
ing the deeper structure of problems and offer new directions for further theoretical
exploration.

A significant achievement of this work is the Characterization Theorem, which
provides a rigorous classification of problem spaces based on their intrinsic algebraic
and topological properties. This theorem not only deepens our understanding of
how problem spaces can be categorized but also illuminates the conditions under
which different problems can be solved. By offering a comprehensive framework for
analyzing these spaces, the theorem serves as a foundational tool for advancing the
study of problem classification and solution methodologies.

In parallel, the work investigates the concepts of separability and amenability
within the context of problem spaces. These properties have profound implications
for both theoretical problem-solving and the practical methods used to find solu-
tions. The results presented in this study provide new insights into the conditions
under which problem spaces exhibit these properties, offering novel approaches to
solving problems in these spaces. This theoretical framework has far-reaching con-
sequences, not only for understanding problem spaces but also for the design of
efficient algorithms.
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A key focus of this work is the connection between time complexity and transfor-
mations between problem spaces. The study introduces isotopic maps - a conceptual
tool that facilitates the analysis of how one problem space can be mapped to an-
other while preserving essential features, such as complexity measures. Through the
examination of the boundedness and continuity of these isotopic maps, this research
uncovers new relationships between problem space transformations and computa-
tional complexity. The equivalence of boundedness and continuity, a central result
of this work, offers critical insights into the limits of problem space transformations
and their computational feasibility.

In addition to these theoretical contributions, this study also proposes the iso-
tope, a new measure for assessing the complexity of problem spaces. This tool
quantifies the relationship between problem spaces and their solution spaces, pro-
viding a novel method for examining solvability. The introduction of this measure
offers fresh perspectives on problem theory and opens new avenues for further
investigation into the nature of complexity and solvability in mathematical and
computational contexts.

The endeavour of finding solutions to problems or at least knowing that a prob-
lem is solvable appears to be very compelling. It has various related class of prob-
lems that remains unsolved till date. Perhaps the best known of all is the P versus
NP problem in computer science. In [1] Florentin Smarandache ask the deceptively
simple question

Question 1.1. Is it true that for any question there is at least an answer? Recipro-
cally, is any assertion the result of at least a question?

We develop a much more consolidated theory of problems and their solution
spaces to study the structure and the inner workings of problems, whose solutions
may or may not exist. By studying this structure into details, we obtain a negative
answer to the question posed

Theorem 1.2. There exists a problem with no solution.

It turns out that this result holds for irreducible problems, a certain class of
problems we will study in the sequel. This result is obtained via a certain infi-
nite argument under the assumption of a positive answer to the major question,
to obtain a certain infinite sub-covers of problem spaces whose indices becomes
infinitesimally small and never running into extinction.

2. Problems and solution spaces

In this section we introduce and develop the notion of problem and their corre-
sponding solution spaces.

Definition 2.1. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all problems to be solved to provide
solution X to problem Y the problem space induced by providing solution X to
problem Y . We denote this space with PY (X). If K is any subspace of the space
PY (X), then we denote this relation with K ⊆ PY (X). If the space K is a subspace
of the space PY (X) with K 6= PY (X), then we write K ⊂ PY (X). We say problem
V is a sub-problem of problem Y if providing a solution to problem Y furnishes
a solution to problem V . If V is a sub-problem of the problem Y , then we write
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V ≤ Y . If V is a sub-problem of the problem Y and V 6= Y , then we write V < Y
and we call V a proper sub-problem of Y .

Definition 2.2. Let PY (X) be the problem space induced by providing the solution
X to problem Y . Then we call the number of problems in the space (size) the
complexity of the space and denote by C[PY (X)] the complexity of the space.
We make the assignment Z ∈ PY (X) if problem Z is also a problem in this space.

Definition 2.3. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all solutions to problems obtained as a
result of providing the solution X to problem Y the solution space induced by
providing solution X to problem Y . We denote this space with SY (X). If K is any
subspace of the space SY (X), then we denote this relation with K ⊂ SY (X). We
make the assignment T ∈ SY (X) if solution T is also a solution in this space.

Proposition 2.1. Let SY (X) be the solution space induced by providing solution
X to problem Y . Then X ∈ SY (X).

Proof. This follows by virtue of Definition 2.3. �

Definition 2.4. Let SY (X) be the solution space induced by providing the solution
X to problem Y . Then we call the number of solutions in the space (size) the index
of the space and denote by I[SY (X)] the index of this space.

Definition 2.5. Let SY (X) be the solution space induced by providing the solution
X to problem Y . Then by the entropy of the space, we mean the expression

E [S] =
1

I[SY (X)]
.

In the sequel we formalize the notion that the problem space induced by providing
a solution to a problem should - by necessity - contain this solution. The argument
is an iteration of a never diminishing entropy of larger and larger solution spaces.
We launch formally the following arguments.

Theorem 2.6. Let PY (X) be the induced problem space of providing solution X
to problem Y . Then Y ∈ PY (X).

Proof. Let us suppose to the contrary that for any problem space Y 6∈ PY (X).
Since Y is a solved problem, it must belong to some problem space, say PV (U). In
particular we have the containment

Y ∈ PV (U).

Since X is a solution to problem Y and V has solution U , it follows that X is a
solution obtained as a result of providing solution U to problem V . It follows that
X ∈ SV (U) so that the embedding

SY (X) ⊂ SV (U)

holds, since X ∈ SY (X). Again V 6∈ PV (U) under the assumption, so that V
belongs to some problem space, say PK(L). That is, V ∈ PK(L), a problem space
induced by providing solution L to problem K. Since U is a solution to problem V
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and K has solution L, it must be a problem solved as a result of providing solution
L to problem K. It follows that U ∈ SK(L) and the embedding holds

SY (X) ⊂ SV (U) ⊂ SK(L)

since U ∈ SV (U). By iterating the argument in this manner under the assumption
that G 6∈ PG(F ) for an arbitrary problem space, we obtain the infinite embedding

SY (X) ⊂ SV (U) ⊂ SK(L) ⊂ · · · ⊂ · · · .

It follows from this the following infinite decreasing sequence of the entropy of
solution spaces towards zero

1

I[SY (X)]
>

1

I[SV (U)]
>

1

I[SK(L)]
> · · · > · · ·

which is not possible. This completes the proof of the theorem. �

Definition 2.7. Let Y and V be any two problems. Then we say problem Y is
equivalent to problem V if providing solution to problem Y also provides a solution
to problem V and conversely providing a solution to problem V also provides a
solution to problem Y . We denote the equivalence with V ≡ Y .

Next we expose a simple criterion for creating a subspace of a problem space.

Proposition 2.2. Let X ∈ SV (U) and Y ∈ PV (U). If X is a solution to problem
Y , then

PY (X) ⊂ PV (U).

Proof. Under the requirement Y ∈ PV (U), then Y is a sub-problem to be solved to
provide solution U to problem V . Since X ∈ SV (U), it follows that X is a solution
obtained by providing solution U to problem V . Since X solves Y and Y ∈ PY (X),
it follows that

PY (X) ⊂ PV (U).

�

We use the following criterion to determine the solubility of a problem.

Proposition 2.3. Let V be a problem with solution U . If Y ∈ PV (U), then Y
must have a solution.

Proof. Clearly problem V is solved by U with an induced problem space PV (U).
Since this space consist of all sub-problems to be solved in order to provide solution
U to problem V and Y ∈ PV (U), then Y has a solution. �

3. Reducible and irreducible problems

In this section, we classify problems in a problem space into two main categories.
We study the notion of irreducibility and reducibility of a problem.

Definition 3.1. Let V be a problem. Then we say V is reducible if there exists a
proper sub-problem of V with no proper sub-problem. On the other hand, we say
problem V is irreducible if every proper sub-problem of V has a proper sub-problem.
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It is a well-known problem to determine if every problem has a solution. Using
this classification, we can deduce that there must exist a problem with no solution.
It turns out that irreducible problems satisfies this property.

Theorem 3.2. There exists a problem with no solution.

Proof. Suppose to the contrary that every problem has a solution. It suffices to
argue with only irreducible problems. Now, let V be an irreducible problem with
solution U . Consider the induced problem space PV (U). Then from Theorem 2.6
V ∈ PV (U). Since V is irreducible, we choose a proper sub-problem Y of V with
solution X and construct the problem space PY (X) and solution spaces SY (X).
Then Y ∈ PV (U) and X ∈ SV (U) so that

PY (X) ⊂ PV (U).

Again V is irreducible so that we can choose a proper sub-problem Z of Y with
solution R. Then under the same arguments, we have the chain of sub-covers of
problem spaces

PZ(R) ⊂ PY (X) ⊂ PV (U).

By iterating the argument under the same assumption that every problem has a
solution, we obtain the infinite chain of sub-covers of smaller problem spaces

· · · ⊂ · · · ⊂ PZ(R) ⊂ PY (X) ⊂ PV (U).

This is impossible and this completes the proof. �

We can now state another important criterion for determining the solubility of
a problem, provided we can put it on par with some category of problems.

Proposition 3.1. Let V and Y be any two problems such that V ≡ Y . If V is
irreducible, then Y cannot be solved.

Proof. Let V ≡ Y and suppose Y has a solution. Then it follows that V must also
have a solution, contradicting the requirement that V is irreducible. �

4. Regular and irregular problems

In this section we classify problems according to the structure of their sub-
problems. We study the notion of regular and irregular problem.

Definition 4.1. Let V be a problem and {Yi}i≥1 be the sequence of all the sub-
problems of V . Then we say V is regular if

· · · ≤ Y3 ≤ Y2 ≤ Y1 ≤ V.

We say it is irregular if there exists sub-problems Yj and Yk of V such that Yj 6≤ Yk
and Yk 6≤ Yj .

De facto, regular problem can easily be solved as opposed to irregular problems,
where a solution to one sub-problem cannot in anyway be modified and advanced
to obtain a solution to other sub-problems. This makes the theory much more
tractable with reducible problems.
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4.1. Maximal and minimal sub-problems.

Definition 4.2. Let V be a problem and Y a proper sub-problem of V . Then we
say Y is the maximal sub-problem of V if all other proper sub-problems of V are
sub-problems of Y . We say it is the minimal sub-problem of V if it is a sub-problem
of all other sub-problems of V .

Next we relate the notion of minimal sub-problem to the notion of reducibility.

Proposition 4.1. Let V be a problem. If there exists a minimal sub-problem of V ,
then V must be reducible.

Proof. Let Y be the minimal sub-problem of problem V . Then Y has no proper
sub-problem. This implies that V must be reducible. �

In a similar fashion we relate the notion of maximal sub-problem with the notion
of regularity.

Theorem 4.3. Let V be a problem. If every sub-problem of V has a maximal
proper sub-problem, then V must be regular.

Proof. Let Y be the maximal proper sub-problem of V , since V ≤ V . Then we
have the relation Y < V and every other proper sub-problem of V must be a sub-
problem of Y . Since every sub-problem of V has a maximal sub-problem, we let Z
be the maximal proper sub-problem of Y then Z < Y and every other proper sub-
problems of Y are sub-problems of Z. Since the proper sub-problems of V excluding
Y are proper sub-problems of Y and the remaining excluding Z are sub-problems
of Z, we obtain the chain of sub-problems

· · · < Z < Y < V

and thus chain contains all the sub-problems of V . This proves that V must be a
regular problem. �

5. Connected and disconnected problem spaces

In this section we study the existence of solutions to problems by deriving an
information about the status of related and analogous problems.

Definition 5.1. Let V be a problem with solution U and Y a problem with solution
X. Then we say the induced problem spaces PV (U) and PY (X) are connected if
and only if

PV (U) ∩ PY (X) 6= ∅.
We say the connection is high if

|PV (U) ∩ PY (X)|
|PV (U)|

≥ 1

2
and

|PV (U) ∩ PY (X)|
|PY (X)|

≥ 1

2
.

Otherwise, we say the connection is low. On the other hand, we say the problem
spaces are disconnected if and only if

PV (U) ∩ PY (X) = ∅.

Proposition 5.1. Let Y be a problem with solution X. If V is also a problem with
a maximal proper sub-problem Z such that Z ∈ PY (X) and V is regular, then V
must be solvable and the induced problem space must be connected to PY (X).
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Proof. Since problem Y has solution X, each problem in the space PY (X) has also
been solved. The requirement Z ∈ PY (X) implies that problem Z has been solved.
Since V is regular, we have the chain of all sub-problems of V as

· · · ≤ Y3 ≤ Y2 ≤ Y1 ≤ Z

since Z is the maximal sub-problem of V . Since Z is solved, it follows that all the
sub-problems of V is solved and V must have a solution, say T , with induced
problem space PV (T ). The latter claim follows by noting that Z ∈ PV (T ) ∩
PY (X). �

6. Alternative solutions and their corresponding solution spaces

Definition 6.1. Let Y be a problem. Then we say X and U are alternative
solutions to Y if and only if U and X both solves Y . We denote this relation with
X ⊥ U or U ⊥ X.

Proposition 6.1. Solution spaces remain invariant under replacement with alter-
native solutions.

Proof. Let PY (X) be a problem space with corresponding solution space SY (X).
Suppose L ∈ SY (X) with L ⊥ K, then there exist a problem F ∈ PY (X) that is
solved by L. Since L ⊥ K, it follows that K also solves F . Thus we can replace
L ∈ SY (X) with K. �

7. Separable and inseparable problem and solution spaces

In this section we introduce and study the notion of separability of problem and
their corresponding solution spaces. We first launch the following language.

Definition 7.1. Let PY (X) be a problem space. Then we say PY (X) is separable
if and only there exist some PV (U) ⊂ PY (X) and PK(L) ⊂ PY (X) such that

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅
and F 6≡ G for any F ∈ PV (U) and G ∈ PK(L). Otherwise, we say the problem
space is inseparable. Similarly, we say a solution space SY (X) is separable if and
only if there exist some SV (U) ⊂ SY (X) and SK(L) ⊂ SY (X) such that

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
and R 6⊥ W for any R ∈ SV (U) and W ∈ SK(L). Otherwise, we say the solution
space is inseparable.

We demonstrate that the notion of separability can be passed to and fro be-
tween problems and their corresponding solution spaces. The following result is a
formalization of this important concept.

Theorem 7.2. Let PY (X) be a problem space with the corresponding solution space
SY (X). Then PY (X) is separable if and only if SY (X) is separable.
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Proof. Suppose PY (X) is separable, then there exist PV (U) ⊂ PY (X) and PK(L) ⊂
PY (X) such that

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅
and F 6≡ G for any F ∈ PV (U) and G ∈ PK(L). For any F ∈ PV (U) there
exists some R ∈ SV (U) that solves F and some W ∈ SK(L) that solves G. Since
PV (U)∩PK(L) = ∅ and problems in both spaces are not equivalent, it follows that
R 6⊥W and R 6∈ SK(L) and W 6∈ SV (U). Since R and W are arbitrary , it follows
that SY (X) must also be separable. Suppose without loss of generality that R solves
some problem in the space PK(L). In particular, there exists some T ∈ PK(L) that
is solved by R. Since R also solves F and there exists some W ∈ SK(L) that
solves T , it must be that W ⊥ R, a contradiction. In the case, R ⊥ W then we
obtain R ∈ SK(L) and W ∈ SV (U) by virtue of Proposition 6.1. Without loss of
generality, we examine the case R ⊥ W and R ∈ SK(L) with W 6∈ SV (U) then
W ∈ SV (U) by virtue of Proposition 6.1. This is also a contradiction.
Conversely, suppose the solution space SY (X) is separable. Then there exist some
SV (U) ⊂ SY (X) and SK(L) ⊂ SY (X) such that

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
and R 6⊥W for any R ∈ SV (U) and W ∈ SK(L). Clearly R solves some G ∈ PV (U)
and W solves some T ∈ PK(L). We claim that T 6≡ G with

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅.
Suppose T ≡ G for some T ∈ PK(L) and G ∈ PV (U), then R ⊥W , a contradiction.
Since

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
it follows that

PV (U) ∪ PK(L) = PY (X).

Suppose to the contrary that

PV (U) ∪ PK(L) ⊂ PY (X)

then there exist a problem A ∈ PY (X) that has no solution in SV (U)∪ SK(L) but
has solution in SY (X). This assertion contradicts the equality

SV (U) ∪ SK(L) = SY (X).

We note that SV (U) ∩ SK(L) = ∅ implies PV (U) ∩ PK(L) = ∅. Suppose that
PV (U)∩PK(L) =6 ∅. Then there exists a problem J ∈ PV (U)∩PK(L) so that there
exists some N ∈ SV (U) ∩ SK(L) that solves J . This completes the proof. �
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8. Quotient problem and solution spaces

In this section, we introduce and study the notion of the quotient problem and
their corresponding solution spaces. We launch the following terminologies.

Definition 8.1. Let PY (X),PV (U) be problem spaces with

PV (U) ⊂ PY (X).

Then we say the quotient space induced by PV (U) in PY (X) regulated by a fixed
T ∈ PY (X), denoted by PY (X)/TPV (U), is the collection of problems

PY (X)/TPV (U) := {T} ∪ PV (U).

If PY (X)/TPV (U) := {T} ∪ PV (U) = PY (X) for some T ∈ PY (X) then we
say PV (U) is a principal subspace of the space PY (X). On the other hand, if
PY (X)/TPV (U) := {T} ∪ PV (U) = PV (U) for all T ∈ PY (X) (T 6= Y ) then we
say PV (U) is an ideal sub-space of the problem space PY (X).

In the sequel we use the notion of regularity and maximality to find a subspace
that is ideal and at the same time principal.

Proposition 8.1. Let PY (X),PV (U) be problem spaces with PV (U) ⊂ PY (X). If
Y is a regular problem and V is the maximal sub-problem of Y , then the sub-space
PV (U) is ideal and principal.

Proof. Suppose PV (U) ⊂ PY (X) and assume that Y is a regular problem and V is
the maximal sub-problem of Y . It follows for the sequence of all the sub-problems
{Ji}i≥1 of Y except V , we can write

· · · Jn ≤ · · · ≤ V ≤ Y.

Since every problem in the space PV (U) is a sub-problem of Y , it follows that for
each T ∈ PY (X) except Y , we must have

{T} ∪ PV (U) = PV (U)

and the space is ideal. Similarly, if we choose T = Y , then we have {T}∪PV (U) =
PY (X) and the space is a principal space. �

9. Overlapping and non-overlapping problem and solution spaces

In this section we study the notion of overlapping and non-overlapping problem
and solution spaces. We launch formally the following languages.

Definition 9.1. Let PY (X),PV (U) be problem spaces. Then we say they are
overlapping if and only if

PY (X) ∩ PV (U) 6= ∅.
Otherwise, we say they are non-overlapping. The same characterization also holds
for their corresponding solution spaces.

Proposition 9.1. Let PY (X),PV (U) be problem spaces, with their correspond-
ing solution spaces SY (X),SV (U) such that F 6≡ G for any F ∈ PY (X) and
G ∈ PV (U). Then the problem spaces are non-overlapping if and only if their
corresponding solution spaces are non-overlapping.
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Proof. First suppose PY (X) ∩ PV (U) 6= ∅ then there exist some T ∈ PY (X) ∩
PV (U). Since Y is a problem with solution X and V is a problem with solution U , it
follows that T must also be a solved problem. That is, there exist some K ∈ SY (X)
that solves T . Again, T ∈ PV (U) so that there exist some G ∈ SV (U) that solves
T . It follows that G and K must be the same solution or G ⊥ K; that is, G and
K are alternative solutions to T . Since solutions spaces remain invariant under
replacement with alternative solutions, it follows in particular that we can replace
G ∈ SV (U) with K and the space SV (U) still remains unchanged. Conversely,
suppose SY (X)∩SV (U) 6= ∅. It follows that for each F ∈ SY (X)∩SV (U) must be
a solution to some problem T ∈ PY (X) ∩ PV (U). �

10. Symmetric problem spaces

In this section we study the notion of symmetry existing among problem spaces.
We launch the following languages.

Definition 10.1. Let PY (X),PV (U) be problem spaces. We say the problem
spaces are symmetric if for each problem T ∈ PY (X) there exist a problem L ∈
PV (U) such that K ≡ L. That is, problem K and problem L are equivalent. We
denote the equivalence between the space PY (X) and PV (U) as

PY (X) � PV (U).

Proposition 10.1. Let PY (X) be a problem space with a corresponding solution
space SY (X). If PY (X) � PV (U), then

SY (X) = SV (U).

We use the notion of symmetry to justify the assertion that the problems spaces
endowed with equivalent problems have indistinguishable solution spaces. In fact,
it has consequences that allows us to artificially build solution spaces that can be
tweak without changing the structure.

Proof. Suppose PY (X) � PV (U), then for each problem T ∈ PY (X) there exists a
problem K ∈ PV (U) such that K ≡ T . Since SY (X) is the corresponding solution
space for PY (X), there exists some F ∈ SY (X) that solves T . Since problem T
and problem K are equivalent problems, it follows that F also solves K ∈ PV (U).
The claim follows by iterating the argument in this manner to build the solution
space SV (U). �

Proposition 10.2. Let SY (X) and SV (U) be solution spaces. If for each K ∈
SY (X) there exist some L ∈ SV (U), then

PY (X) � PV (U).

Proof. Let K and L be arbitrary with K ∈ SY (X) and L ∈ SV (U). Then there
exists a problem T ∈ PY (X) solved by K and a problem F ∈ PV (U) solved by L.
Since ≡ is an equivalence relation and K ⊥ L, it follows that T ≡ F , since L also
solves T and K also solves F . The claim follows by repeating the argument with
solutions in the space. �
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11. Further Remarks

The theory as developed is just the preliminary and the first phase of the theory
to study problems and their generative solutions. The notion of the time complexity
of problems and their sub-problems is a notion to be explored in our next phase
of this project, motivated in part by the P versus NP problem. We suspect the
following assertions to be true

Conjecture 11.1. Let V be a problem. If V has a minimal and a maximal sub-
problem, then V must be a regular problem.

Conjecture 11.2. Let V be a problem with solution U and Y a problem with
solution X. If V be regular and the spaces PV (U) and PY (X) are highly connected,
then Y must also be regular.

12. The time complexity

In this section we study the notion of time complexity of problem and solution
spaces.

Definition 12.1. The resolution complexity of problem T by providing solution
U that solves T is the algorithmic time required to generate solution U for problem
T . We denote this complexity with Cr(T,U).

Definition 12.2. The verification complexity of a solution U to problem T is
the algorithmic time required to check solution U for correctness. We denote this
complexity with Cv(T,U).

Definition 12.3. Let T be a problem with solution U . We say the time complexity
with respect to problem T with solution U is in equilibrium if Cr(T,U) = Cv(T,U).

It is important to declare that the time complexity is not unique to problems and
solutions. More precisely, it is indeed possible that the resolution time complexity
and the verification time complexity may differ quite significantly among equivalent
problems and alternative solutions. Consequently, it may not be possible to extend
an equilibrium to equivalent problems and alternative solutions. Let us suppose
that Cr(T1, U1) <∞ and Cv(T1, U1) <∞ with T1 ≡ T2 (equivalent problems) then
U1 ⊥ U2 (alternative solution). It is possible that

Cr(T1, U1) 6= Cr(T2, U1)

and

Cv(T1, U1) 6= Cv(T2, U1)

and similarly

Cr(T2, U2) 6= Cr(T2, U1)

and

Cv(T2, U2) 6= Cv(T2, U1).

Hence if Cr(T1, U1) = Cv(T1, U1) and T1 ≡ T2 then the equilibrium

Cr(T2, U2) = Cv(T2, U2)

may only hold under certain condition. We begin by verifying that time complexity
can be ordered up to sub-problems and sub-solutions of a given problem.
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Proposition 12.1. Let T be a problem with solution U . Let {Ti}i≥1 and {Ui}i≥1
denotes the sequence of all sub-problems and sub-solutions of T and U , respectively.
If Cr(T,U) <∞ and Cv(T,U) <∞, then we have

Cr(Ti, Ui) < Cr(T,U)

and

Cv(Ti, Ui) < Cv(T,U)

for each i ≥ 1.

Proof. Since Cr(T,U) <∞ and Cv(T,U) <∞ and

Cr(T,U) :=
∑
i≥1

Cr(Ti, Ui)

and

Cv(T,U) :=
∑
i≥1

Cv(Ti, Ui)

the inequality follows easily. �

Remark 12.4. In cases where we do not want to make a reference to the solution and
a problem in the notation of the resolution and the verification time complexity, we
will write for simplicity Cr(T ) and Cv(U). We will adopt this notation in situations
where a reference to a problem or a solution turns out to be irrelevant.

Proving the existence of equilibrium of time complexity of problems is by no
means an easy endeavour. In the sequel we prove that assuming equilibrium in the
time complexity can be passed down to sub-problems and sub-solutions. We make
these ideas formal in the proposition below.

Proposition 12.2. Let T be a regular problem with solution U such that for any
sub-problems Ti, Tj with i 6= j, then Cr(Ti, Ui) 6= Cv(Tj , Uj). If Cr(T,U) = Cv(T,U),
then there exists Q ≤ T (Q a sub-problem of T ) and L ≤ U (L a sub-solution of
U) that solves Q such that Cr(Q,L) = Cv(Q,L).

Proof. Suppose T is a regular problem with solution U . Let {Ti}i≥1 be the sequence
of all sub-problems of T with corresponding sequence of solutions {Ui}i≥1. Suppose
on the contrary that Cr(Ti, Ui) = Cv(Ti, Ui) for each i ≥ 1. By virtue of the
regularity of T , we can arrange the sequence of sub-problems and sub-solutions in
the following way T1 ≥ T2 ≥ · · · and the corresponding sequence of sub-solutions
U1 ≥ U2 ≥ · · · , where each preceding Ti is a sub-problem of Ti−1 and similarly each
Ui is a sub-solution for Ui−1. Since problem T is said to be solved by providing
a solution to each of the sub-problems, we find under the assumption Cr(T,U) =
Cv(T,U), that

Cr(T,U) =
∑
i≥1

Cr(Ti, Ui) =
∑
i≥1

Cv(Ti, Ui) = Cv(T,U).

Now suppose on the contrary that Cr(T1, U1) 6= Cv(T1, U1), then under the regularity
condition, it follows that ∑

i≥2

Cr(Ti, Ui) 6=
∑
i≥2

Cv(Ti, Ui)
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since providing a solution to all sub-problems of T2 solves problem T2. Under the
requirement that Cr(Ti, Ui) 6= Cv(Tj , Uj) for all i 6= j, it follows that

Cr(T,U) =
∑
i≥1

Cr(Ti, Ui) 6=
∑
i≥1

Cv(Ti, Ui) = Cv(T,U)

violating the assumption that Cr(T,U) = Cv(T,U). �

Theorem 12.5. Let T be a regular problem with a solution K. If M is the max-
imal sub-problem of T with a solution L and Cr(M,L) � polynomial time and
Cr(T,K) = Cv(T,K), then Cv(T,K)� polynomial time.

Proof. Suppose T is a regular problem and let {Ti}i≥1 denotes the sequence of
all sub-problems of T with corresponding sequence of sub-solutions {Ki}i≥1 where
each Ki solves Ti. We can arrange the sequence of sub-problems in the following
way: T1 ≥ T2 ≥ · · · where T1 := M is the maximal sub-problem of T and where
each sub-problem Ti is a sub-problem of Ti−1 for i ≥ 2. Since problem T is solved
by solving each of the sub-problems in the sequence, we can write

Cr(T,K) =
∑
i≥1

Cr(Ti,Ki)

= Cr(T1,K1) +
∑
i≥2

Cr(Ti,Ki).

By the regularity of problem T , we see that∑
i≥2

Cr(Ti,Ki) = Cr(T1,K1)� polynomial time.

Thus Cr(T,K) � polynomial time. Under the equality Cr(T,K) = Cv(T,K),
we deduce that Cv(T,K) � polynomial time, which completes the proof of the
theorem. �

Remark 12.6. Theorem 12.5 is an important ingredient for exploring a deep under-
standing of the P=NP problem. It purports that once there exist an equilibrium
of time complexity of a given problem, it suffices to only investigate the resolution
complexity of the maximal sub-problem for a class of well-behaved problems which
we refer to as regular problems, introduced and studied in [?].

Although the task of proving equilibrium of resolution and verification time
complexity can be very hard, we can often carry out this process from bottom-
up. That is to say, proving equilibrium of time complexity for sub-problems can
be extended to time complexity equilibrium of the actual problem. The following
proposition exemplifies that principle.

Proposition 12.3. Let Y be a problem with solution X and let {Yi}i≥1 and
{Xi}i≥1 denotes the sequence of all proper sub-problems and a solutions to sub-
problems of Y . If Cr(Yi, Xi) = Cv(Yi, Xi) for each i ≥ 1, then Cr(Y,X) = Cv(Y,X).

Proof. The sequences {Yi}i≥1 and {Xi}i≥1 denotes the sequence of all proper sub-
problems and a solutions to sub-problems of Y , respectively. Since the solution
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to problem Y is furnished solving each of the sub-problems in {Yi}1≥1, it follows
under the assumption Cr(Yi, Xi) = Cv(Yi, Xi) for each i ≥ 1 that

Cr(Y,X) =
∑
i≥1

Cr(Yi, Xi) =
∑
i≥1

Cv(Yi, Xi) = Cv(Y,X).

�

We now obtain an important characterization of irreducible problems.

Theorem 12.7. If X is an irreducible problem, then Cr(X) = ∞ or X is not
solvable.

Proof. Suppose X is an irreducible problem and assume the contrary that Cr(X) <
∞ and that X is solvable. Since X is irreducible, each sub-problem Xj ≤ X has
a proper sub-problem, and problem X has infinitely many proper sub-problems
Xi < X. Thus

Cr(X) :=

∞∑
i=1

Cr(Xi) <∞

since problem X is solved by providing a solution to each of the sub-problems. This
implies that for any ε > 0, there exists some N := N(ε) such that for all i ≥ N we
have

∞∑
i=N

Cr(Xi) < ε.

That is, Cr(Xi) −→ 0 as i −→ ∞. This means the algorithmic time required to
solve infinitely many proper sub-problems of problem X converges to zero, which
violates the assumption that X is solvable. �

The difficulty of proving equilibrium of time complexity of a given problem may
be made easier depending on its structure. Irregular problems seem to be very
difficult to understand and unfortunately most problems fall into this category.
It is however much easier to establish an equilibrium for a class of well behaved
problems that fall into the category of reducible and regular problems. It turns out
that once equilibrium is reached for the finest form of this problem, then equilibrium
will certainly be attained for the actual problem. We make this discussion formal
in the following results.

Theorem 12.8 (extension principle). Let T be a regular and a reducible problem
with solution U . If Tk is a sub-problem of T with solution Uk such that there exist
no Tj ∈ {Ti}i≥1 with Tj 6< Tk and that Cr(Tk, Uk) = Cv(Tk, Uk), then Cr(T,U) =
Cv(T,U).

Proof. Suppose T is a regular problem with solution U and let {Ti}i≥1 be the
sequence of all sub-problems of T with the corresponding sequence of solutions
{Ui}i≥1, where each Ui solves Ti for each i ≥ 1. Since T is reducible, it has a
sub-problem with no proper sub-problem. Let Tk be this sub-problem of T , then
by the regularity of T , we can arrange the sequence of all sub-problems of T in the
following way:

Tk ≤ Tk−1 ≤ Tk−2 ≤ · · · ≤ T1
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with

Uk ≤ Uk−1 ≤ Uk−2 ≤ · · ·U1

where each Ti is a sub-problem of Ti−1 and Ui is a sub-solution of Ui−1. Under
the equilibrium Cr(Tk, Uk) = Cv(Tk, Uk) and since problem Tk−1 is solved by pro-
viding a solution to all of its proper sub-problems, it follows that Cr(Tk−1, Uk−1) =
Cv(Tk−1, Uk−1). Similarly, problem Tk−2 is solved by providing a solution to all of
its sub-problems and it follows that

Cr(Tk−2, Uk−2) = Cr(Tk, Uk) + Cr(Tk−1, Uk−1)

= Cv(Tk, Uk) + Cv(Tk−1, Uk−1)

= Cv(Tk−2, Uk−2).

We can iterate this process to reach the equilibrium Cr(T,U) = Cv(T,U). �

Corollary 12.1. Let T be a regular and a reducible problem with solution U . Let
Tk is a sub-problem of T with solution Uk such that there exist no Tj ∈ {Ti}i≥1
with Tj 6< Tk and that Cr(Tk, Uk) = Cv(Tk, Uk). If Cv(T,U) � polynomial time
then Cr(T,U)� polynomial time.

Proof. It follows from Theorem 12.8 that Cr(T,U) = Cv(T,U) so that under the
hypothesis Cv(T,U)� polynomial time then Cr(T,U)� polynomial time. �

Remark 12.9. Corollary 12.1 suggests that under a certain mild condition, if a
certain class of well-behaved problems have a solution that are easy to verify for
correctness then they must also be easy to solve at the same level.

13. The time complexity of problem and solution spaces

In this section, we study the notion of time complexity on problem and solutions
spaces, as opposed to a specific problem and its solution.

Definition 13.1. Let PY (X) and SY (X) be the problem and solution spaces in-
duced by providing solution X to problem Y . Then by the resolution complexity
of the problem space PY (X), we mean the sum of each resolution complexity of
each problem in the space. For each problem T ∈ PY (X) there exists a solution
L ∈ SY (X) that solves T . We denote the resolution complexity of the space with

PrY (X) :=
∑

T∈PY (X)
L∈SY (X)

Cr(T, L)

and the verification complexity with

SvY (X) :=
∑

L∈SY (X)
T∈PY (X)

Cv(T, L).

Proposition 13.1. Let PY (X) and SY (X) be the problem and solution spaces
induced by providing solution X to problem Y . If for each T ∈ PY (X) and each
L ∈ SY (X) that solves T , Cr(T, L) = Cv(T, L) then PrY (X) = SvY (X).

Proof. This follows trivially from the proof of Proposition 12.3. �
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14. Analysis on the topology of problem spaces

In this section, we introduce and develop the analysis of the theory of problem
and their solution spaces. We adapt some classical concepts in functional analysis
to study problems and their corresponding solution spaces. We introduce the no-
tion of compactness, density, convexity, boundedness, amenability and the
interior. We examine the overall interplay among these concepts in theory.

14.1. Compact problems and solutions. In this section we study the notion of
compactness of problems and their corresponding solutions.

Definition 14.1. Let PX(Y ) and SX(Y ) denotes the problem and solutions spaces,
respectively, induced by providing solution X to problem Y . We say the problem
space PX(Y ) is compact if and only if there exists a finite number of problem spaces
PU1(V1),PU2(V2), . . . ,PUk

(Vk) such that

PX(Y ) ⊂ PU1
(V1) ∪ PU2

(V2) ∪ · · · ∪ PUk
(Vk).

Similarly, we say the solution space SX(Y ) is compact if and only if there exists a
finite number of solution spaces SU1(V1),SU2(V2), . . . ,SUk

(Vk) such that

SX(Y ) ⊂ SU1
(V1) ∪ SU2

(V2) ∪ · · · ∪ SUk
(Vk).

Proposition 14.1. Let PX(Y ) be a problem space induced by providing solution Y
to problem X. If PX(Y ) is compact, then the problem space PXi

(Yi) with PXi
(Yi)

is also compact.

Proof. Suppose PX(Y ) is compact, then it follows that for a finite k ∈ N there
exists problems spaces PU1(V1),PU2(V2), . . . ,PUk

(Vk) such that

PX(Y ) ⊂ PU1(V1) ∪ PU2(V2) ∪ · · · ∪ PUk
(Vk).

The compactness of PXi(Yi) follows trivially since PXi(Yi) ⊂ PX(Y ). �

Proposition 14.2. Let PX(Y ) be the problem space induced by providing solution
Y to problem X and let PXi(Yi) ⊂ PX(Y ). If PXi(Yi) is compact and principal,
then PX(Y ) is compact.

Proof. Let PXi
(Yi) ⊂ PX(Y ) and suppose that PXi

(Yi), then there exists a sub-
problem Xj ≤ X such that we can write PX(Y ) = PXi(Yi) ∪ {Xj}. Under the
requirement that PXi(Yi) is compact, it follows that for a finite k ∈ N there exists
problems spaces PU1

(V1),PU2
(V2), . . . ,PUk

(Vk) such that

PXi
(Yi) ⊂ PU1

(V1) ∪ PU2
(V2) ∪ · · · ∪ PUk

(Vk)

and we have

PX(Y ) ⊂ {Xj} ∪ PU1(V1) ∪ PU2(V2) ∪ · · · ∪ PUk
(Vk).

This proves that the space PX(Y ) is also compact. �

Proposition 14.3. Let PX(Y ) be the problem space induced by providing solution
Y to problem X, where X is a regular problem. If Xi < X is the maximal proper
sub-problem of X and PXi

(Yi) is compact, then PX(Y ) is also compact.

Proof. SupposeX is regular problem and letXi be the maximal proper sub-problem
of X, then we can write X > Xj > Xj+1 > · · · where Xj+n > Xj+n+1 indicates
that Xj+n+1 is the maximal proper sub-problem of Xn+j for n = 1, 2, . . . , by



PROBLEM THEORY 17

virtue of the regularity of the problem X. The sequence above contains all the sub-
problems of X so that we can put

⋃
n≥1
PXj+n(Yj+n) ⊆ PXj (Yj). Since a problem is

solved by providing a solution to each sub-problem and Xj is the maximal problem
sub-problem of X, we deduce that

⋃
n≥1
PXj+n(Yj+n) ∪ {X} ⊆ PXj (Yj) ∪ {X} =

PX(Y ) and it follows that

PX(Y ) ⊂ {X} ∪ PU1
(V1) ∪ PU2

(V2) ∪ · · · ∪ PUk
(Vk)

since PXj
(Yj) was assumed to be compact. This proves that the space PX(Y ) is

compact. �

14.2. Dense problems and solution spaces. We study the concept of density
of problems and their corresponding solution spaces in this section.

Definition 14.2. Let PX(Y ) and SX(Y ) be the problem and solution spaces,
respectively, induced by providing solution Y to problem X. Let Xi ∈ PX(Y ) with
an induced sub-space PXi(Yi) ⊂ PX(Y ) and corresponding solution space SXi(Yi).
We say the subspace PXi

(Yi) is dense in the space PX(Y ) if and only if for any
problem Z ∈ PX(Y ) with Z 6= X, there exists a proper subspace PXj

(Yj) with
Z ∈ PXj

(Yj) such that PXi
(Yi) ∩ PXj

(Yj) 6= ∅. Similarly, we say the subspace
SXi(Yi) is dense in the space SX(Y ) if and only if for any solution W ∈ PX(Y )
with W 6= Y , there exists a proper subspace SXj (Yj) with W ∈ SXj (Yj) such that
SXi

(Yi) ∩ SXj
(Yj) 6= ∅.

Theorem 14.3 (Characterization theorem). Let PX(Y ) be the problem space in-
duced by providing solution Y to problem X. Then PX(Y ) is separable if and only
if it contains no dense subspace.

Proof. Suppose the problem space PX(Y ) is separable, then there exists subspaces
PXi(Yi) and PXj (Yj) such that PX(Y ) = PXi(Yi)∪PXj (Yj) with PXi(Yi)∩PXj (Yj) =
∅.Now let PXk

(Yk) ⊂ PX(Y ) then we must have one of these possibilities: PXk
(Yk) ⊂

PXi
(Yi) or PXk

(Yk) ⊂ PXi
(Yi). Suppose there exist problems Z,U ∈ PXk

(Yk)
such that Z ∈ PXi

(Yi) and U ∈ PXj
(Yj), then we have for their corresponding

problem spaces induced with, say, the solutions W and T the following proper-
ties PZ(W ) ⊂ PXi(Yi) and PU (T ) ⊂ PXj (Yj). We know that PU (T ) ⊆ PXk

(Yk)
and PZ(W ) ⊆ PXk

(Yk) so that we must have PXk
(Yk) ⊆ PXi(Yi) and PXk

(Yk) ⊆
PXj

(Yj). Suppose without loss of generality that PXi
(Yi) ⊂ PXk

(Yk) then we will
have

PXi
(Yi) ∪ PXj

(Yj) = PX(Y ) ⊂ PXk
(Yk) ∪ PXj

(Yj) ⊂ PX(Y )

which is absurd. This implies that PXi
(Yi) ∩ PXj

(Yj) 6= ∅, which violates the
requirement that PX(Y ) is separable. Without loss of generality, we put PXk

(Yk) ⊆
PXi

(Yi) and choose a problem V ∈ PXj
(Yj) then PV (T ) ⊆ PXj

(Yj). It follows that
PXk

(Yk) ∩ PV (T ) = ∅ and since V /∈ PXl
(Yl) ⊆ PXi(Yi) for subspace PXl

(Yl) of
PXi(Yi), the problem space PXk

(Yk) cannot be dense in P(X)(Y ). Since PXk
(Yk)

was an arbitrary problem subspace, it follows that the space PX(Y ) contains no
dense sub-problem space. Conversely, suppose that the space PX(Y ) contains a
dense problem sub-space but that the space is separable, then there exists proper
sub-spaces PXi

(Yi) and PXj
(Yj) such that PXi

(Yi) ∪ PXj
(Xj) = PX(Y ) such that

PXi(Yi) ∩ PXj (Yj) = ∅. Let PXk
(Yk) ⊂ PX(Y ) be dense in PX(Y ) then for V ∈

PXi(Yi) and U ∈ PXj (Yj). Since these subspaces are the largest subspaces in the
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space PX(Y ) containing the problems V and U , it follows by the density of the
subspace PXk

(Yk) that PXk
(Yk) ∩ PXi(Yi) 6= ∅ and PXk

(Yk) ∩ PXj (Yj) 6= ∅. This
contradicts the assumption that the space PX(Y ) is separable. �

14.3. Bounded problem and solution spaces. In this section we study the
notion of bounded problem and solution spaces.

Definition 14.4. Let PX(Y ) be a problem space induced by providing solution
Y to problem X. We say the space PX(Y ) is bounded if and only if it has fi-
nite complexity. If we denote the complexity of the space with C[PX(Y )], then
we say PX(Y ) is bounded if and only if C[PX(Y )] < ∞. Similarly, we say the
corresponding solution space SX(Y ) is bounded if only if it has a finite index. If we
denote the index of this space with I[SX(Y )], then SX(Y ) is bounded if and only
if I[SX(Y )] <∞.

Proposition 14.4. Let PX(Y ) be the problem space induced by providing solution
Y to problem X. If C[PX(Y )] <∞, then PX(Y ) contains a reducible problem.

Proof. Suppose each problem Xi ∈ PX(Y ) is irreducible, then we can construct the
infinite nested sequence of sub-problem spaces · · · ⊂ PX2

(Y2) ⊂ PX1
(Y1) ⊂ PX(Y )

with X1 > X2 > · · · , where Xj+1 < Xj indicates that Xj+1 is a proper sub-problem
of Xj . This implies that the space PX(Y ) contains infinitely many problems and
thus C[PX(Y )] =∞. �

14.4. The interior of problem and solution spaces. In this section we study
the topological notion of interior of problem and solution spaces.

Definition 14.5. Let PX(Y ) and SX(Y ) be the problem and the solutions spaces
induced by providing solution Y to problem X. We say a problem Z ∈ PX(Y ) is
an interior problem if there is no problem space PS(T ) with PS(T ) 6⊆ PX(Y ) such
that Z ∈ PS(T ). We call the collection of all such problems in PX(Y ) the interior
of PX(Y ) and denote for this collection Int[PX(Y )]. We say the interior is non-
empty if Int[PX(Y )] 6= ∅; otherwise, we say the interior is empty. Similarly, we say
a solution W ∈ SX(Y ) is an interior solution if there is no solution space SR(T )
with SR(T ) 6⊆ SX(Y ) such that W ∈ PS(T ). We call the collection of all such
solutions in SX(Y ) the interior of SX(Y ) and denote for this collection Int[SX(Y )].
We say the interior is non-empty if Int[SX(Y )] 6= ∅; otherwise, we say the interior
is empty.

Theorem 14.6. Let PX(Y ) be the problem space induced by providing solution Y
to problem X. If Int[PX(Y )] = ∅ and C[PX(Y )] <∞, then PX(Y ) is compact.

Proof. Suppose C[PX(Y )] <∞, then PX(Y ) = {X,X1, . . . , Xk} for a finite k ∈ N.
Since Int[PX(Y )] = ∅, it follows that there exists problem spaces PT1

(R1), . . . ,PTk
(Rk)

with PTi
(Ri) 6⊆ PX(Y ) for i = 1, . . . , k such that Xi ∈ PTi

(Ri) for each i. It follows

that we can put PX(Y ) ⊂
k⋃
i=1

PTi
(Ri) ∪ {X}. This proves that the problem space

PX(Y ) is compact. �

14.5. Convex problem and solution spaces. We introduce and study the no-
tion of convexity of problems and solution spaces in this section.

Definition 14.7. Let PX(Y ) be the problem space induced by providing solution
Y to problem X. We say the space PX(Y ) is convex if for any problem Xi, Xj ∈
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PX(Y ) (Xi, Xj 6= X), there exist a problem Xk ∈ PX(Y ) such that {Xi}∪{Xj} =
{Xk}. Similarly, We say the solution space SX(Y ) is convex if for any solution
Yi, Yj ∈ SX(Y ) (Yi, Yj 6= Y ), there exist a solution Yk ∈ SX(Y ) such that {Yi} ∪
{Yj} = {Yk}.

The notion of convexity of a problem (resp. solution) spaces suggest that each
problem in the convex problem space is a sub-problem of some problem in the space.
It worth noting that convexity of problem and solutions do not unconditionally
extend to convexity of sub-problem spaces.

Proposition 14.5. Let PX(Y ) be the problem space induced by providing solution
Y to problem X. If PX(Y ) is convex and bounded with C[PX(Y )] ≥ 4, then PX(Y )
has a principal subspace PXk

(Yk) with C[PXk
(Yk)] ≥ 3.

Proof. Suppose PX(Y ) is bounded, then C[PX(Y )] < ∞ so that PX(Y ) contains
finitely many problems. Let Xi, Xj ∈ PX(Y ) then under the requirement that
PX(Y ) is convex, then {Xi} ∪ {Xj} = {Xk}, where Xk ∈ PX(Y ). That is, we
can merge to problems in the space to produce another problem in the space. It
follows that Xi ≤ Xk and Xj ≤ Xk. That is, Xi and Xj are sub-problems of
Xk. By the minimality of the complexity of the space C[PX(Y )] ≥ 4, we can
repeat this construction by using the newly constructed problems Xk with some
Xs ∈ PX(Y ) with Xs 6= Xi, Xj to produce a sub-problem space which is principal
and has complexity ≥ 3. �

The next result purports that each subspace of a problem space must be dense
in their mother space.

Theorem 14.8. Let PX(Y ) be the problem space induced by providing solution Y
to problem X. If PX(Y ) is convex then every subspace PXi

(Yi) ⊂ PX(Y ) is dense
in PX(Y ).

Proof. Suppose the problem space PX(Y ) is convex and put PXi
(Yi) ⊂ PX(Y ).

Next pick a arbitrarily a problem V ∈ PX(Y ), then under the convexity of the
space there exists a problem W ∈ PX(Y ) such that {Xi} ∪ {V } = {W}. This
implies that Xi < W and V < W ; that is, Xi and V are proper sub-problems
of W . Since W ∈ PX(Y ), it has a solution so let T ∈ SX(Y ) be the solution to
W and we obtain the induced problem space PW (T ) ⊂ PX(Y ) with V ∈ PW (T ).
Because Xi < W and is the maximal sub-problem in the space PXi

(Yi), it follows
that PXi(Yi) ⊂ PW (T ). We find that PXi(Yi) ∩ PW (T ) 6= ∅ with V ∈ PW (T ).
Since V was chosen arbitrarily in the space PX(Y ), it follows that PXi(Yi) is dense
in PX(Y ). Because the sub-problem space was chosen arbitrarily, it follows that
each sub-problem space is dense problem space PX(Y ). This completes the proof
of the claim. �

14.6. Amenable problem spaces. In this section, we study the notion of amenabil-
ity of problem spaces.

Definition 14.9. Let PX(Y ) be the problem space induced by providing solution
solution Y to problem X. We say the problem space PX(Y ) is partially amenable if
there exist proper sub-problem Xi, Xj ∈ PX(Y ) such that Xi and Xj are equivalent
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problems (Xi ≡ Xj). We say the space PX(Y ) is totally amenable if for any sub-
problem Xi, Xj ∈ PX(Y ) then Xi ≡ Xj . We say a problem is amenable if it is a
problem in some totally amenable problem space.

Amenable problems are naturally easily tractable. This notion hold much sig-
nificance, because if we can identify some totally amenable space that contains a
specific problem then finding a solution will reduce to finding a solution to much
easier problem in the same space. Subsequent studies will be devoted to a detail
and much more specialized study of this important concept and its overall interplay
with the theory. Next we launch a result that basically purports the compactness
of a space provided one can identify a compact sub-problem space.

Theorem 14.10. Let PX(Y ) be a totally amenable problem space. If there exists a
sub-problem space PXi(Yi) such that PXi(Yi) is compact, then PX(Y ) is compact.

Proof. Put PXi(Yi) ⊂ PX(Y ) and suppose PX(Y ) is an amenable space. This
implies that for any problem Xj ∈ PX(Y ) then Xj ≡ Xi. The induced problem
space PXj

(Yj) contains the problem Xj and it is the maximal sub-problem of this
space. Since PXj

(Yj) ⊂ PX(Y ), it follows by amenability of the space that we
can replace Xj with Xi and Yj with Yi, since problem and solution spaces remain
invariant on replacement with equivalent problems and alternative solutions, so
that under the requirement that PXi(Yi) is compact, we can put

PXj (Yj) = PXi(Yi) ⊂
k⋃
s=1

PSs(Ts)

for a fixed k ∈ N. It follows that⋃
i≥1

PXi(Yi) ∪ {X} = PX(Y ) ⊂
k⋃
s=1

PSs(Ts) ∪ {X}

for a fixed k ∈ N. This proves that the problem space PX(Y ) is compact. �

15. Maps between problem and solution spaces

In this section, we study the analysis of map between between problem spaces
and solution spaces. We examine how the notion of boundedness and compactness
are preserved under the map.

Definition 15.1. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
We say f is continuous if and only if for any subspace PR(U) ⊆ PS(T ) with
complexity C[PR(U)] ≥ k there exists a subspace PW (Z) ⊆ PX(Y ) with complexity
C[PW (Z)] ≥ k such that f(PW (R)) ⊆ PR(U). Similarly, we say the map f :
SX(Y ) −→ SS(T ) between problem spaces is continuous if and only if for any
subspace SR(U) ⊆ SS(T ) with index I[SR(U)] ≥ k there exists a subspace SW (Z) ⊆
SX(Y ) with index I[SW (Z)] ≥ k such that f(SW (R)) ⊆ SR(U).

Definition 15.2. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
We say f is bounded if f(PU (T )) is a finite subset of problems in PS(T ) for each
bounded PU (T ) ⊂ PX(Y ).

Definition 15.3. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
We say f is compact if and only if f(PX(Y )) is compact.
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We expose the fact that compactness of a map between problem spaces can be
inherited from the compactness of the space on which it acts.

Theorem 15.4 (Stability theorem). Let f : PX(Y ) −→ PS(T ) be a map between
problem spaces. If PX(Y ) is compact, then f is compact.

Proof. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces and suppose
the space PX(Y ) is compact. Then there exists a finite number of problems spaces
PK1

(L1), · · · ,PKn
(Ln) such that

PX(Y ) ⊂ PK1(L1) ∪ · · · ∪ PKn(Ln).

We observe that f(PX(Y ) ∩ PK1
(L1)) ⊆ f(PK1

(L1))). Using this relation, we can
put

f(PX(Y )) ⊆
n⋃
j=1

f(PX(Y ) ∩ PKj (Lj)) ⊆
n⋃
j=1

f(PKj (Lj)).

This proves that the range f(PX(Y )) is compact and hence f is also compact. �

16. Isotope and Isotope problem and solution spaces

In this section we study the notion of an isotope of problem and solution spaces.

Definition 16.1. Let V and U be any two problems. We say V and U are com-
patible if there exists a problem space PX(Y ) such that V,U ∈ PX(Y ). We denote
this compatibility by V � U or U � V . Similarly, we say two solutions R,S to some
(possibly) distinct problems are compatible if there exists a solution space SX(Y )
such that R,S ∈ SX(Y ). We denote this compatibility by R � S or S �R.

Definition 16.2. Let U and V be compatible problems. We say V and U admits
a merger in the space PX(Y ) if there exists a problem S ∈ PX(Y ) such that V < S
and U < S and V,U are the only maximal subproblem of S. In notation, we
write V ./ U = S ∈ PX(Y ) or U ./ V = S ∈ PX(Y ). Similarly, let R and T
be compatible solutions. We say R and T admits a merger in the space SX(Y ) if
there exists a solution W ∈ SX(Y ) such that R < W and T < W and R, T are the
only maximal sub-solutions of W . In notation, we write R ./ T = W ∈ SX(Y ) or
R ./ T = W ∈ PX(Y )

We now launch the notion of an isotope.

Definition 16.3. Let PX(Y ) and SX(Y ) be the problem space and the correspond-
ing solution space, induced by assigning solution Y to problem X. We denote an
isotope on PX(Y ) as the map Iso : PX(Y ) −→ R such that

(i) Iso(V ) ≥ 0 for each V ∈ PX(Y ) and
(ii) Iso(V ./ U) ≤ Iso(V ) + Iso(U) provided U, V ∈ PX(Y ) admits a merger.

A similar axiom also holds for solution spaces.

The notion of an isotope may not be viewed as an abstract notion. For example,
if we consider a problem V ∈ PX(Y ) with solution U ∈ SX(Y ) and the induced
problem space PV (U) ⊂ PX(Y ), then we can associate a number to problem V to
be

(C[PV (U)])
1

C[PV (U)]
−1
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where C[PV (U)] as usual denotes the complexity of the space. Similarly for a
solution U in the solution space SX(Y ), we can assign a number to the solution U
to be

(I[SV (U)])
1

I[PV (U)]
−1

where I[PV (U)] as usual denotes the index of the space. One could verify that these
two maps satisfy the axioms of an isotope. In particular, an isotope is a pseudo
semi-norm.

Definition 16.4. Let PX(Y ) and SX(Y ) be a problem and a corresponding so-
lution space whose topology admits an isotope. A problem (resp. solution) space
equipped with an isotope is an isotope problem (resp. isotope solution) space. We
denote these spaces with (PX(Y ), Iso(·)) and (SX(Y ), Iso(·)), respectively.

Definition 16.5. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. We put the isotope of f , denoted Iso(f), to be

Iso(f) := sup
V ∈PX(Y )
Iso(V ) 6=0

Iso(f(V ))

Iso(V )
.

We say f is bounded if Iso(f) < ∞. A similar characterization also holds for
solution spaces.

Proposition 16.1. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
Then Iso(f) < ∞ if and only if there exists an absolute constant c > 0 such that
Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ).

Proof. Suppose Iso(f) <∞ then by definition 16.5 there exists an absolute constant

c > 0 such that Iso(f(V ))
Iso(V ) ≤ c for all V ∈ PX(Y ). It implies immediately that

Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ). Conversely, suppose Iso(f(V )) ≤ c Iso(V )
for all V ∈ PX(Y ) then

Iso(f) := sup
V ∈PX(Y )
Iso(V ) 6=0

Iso(f(V ))

Iso(V )
<∞.

�

16.1. Bounded isotope problem spaces. In this section, we introduce and study
the notion of a bounded isotope problem and solution spaces.

Definition 16.6. Let PX(Y ) be an isotope problem space induced by providing
solution Y to problem X. We say the space PX(Y ) is bounded if Iso(V ) < ∞ for
all V ∈ PX(Y ).

Remark 16.7. We now show that a bounded map between problem spaces maps
bounded subspaces to a bounded set of problems.

Proposition 16.2. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. Suppose PK(L) ⊂ PX(Y ) be a bounded sub-problem space. If Iso(f) < ∞,
then f(PK(L)) is bounded in PS(T ).

Proof. Consider the map f : PX(Y ) −→ PS(T ) such that Iso(f) < ∞. Then
there exists an absolute constant c > 0 such that Iso(f(V)) ≤ c Iso(V ) for all
V ∈ PX(Y ). The requirement that PK(L) is bounded implies that Iso(V ) <∞ for
all V ∈ PK(L). This implies that Iso(f(V )) ≤ d for all V ∈ PK(L). This proves
that f(PK(L)) is bounded in PS(T ). �
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A similar characterization could be made and proofs can be constructed by
replacing the problem spaces PK(L) with the corresponding induced solution spaces
SK(L).

16.2. Continuous maps between isotope problem and solution spaces. In
this section, we introduce the notion of continuity of a map between isotope problem
spaces.

Definition 16.8. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. We say f is continuous if for any ε > 0 there exists some δ > 0 such that
with Iso(V ) < δ then Iso(f(V )) < ε for V ∈ PX(Y ).

We expose the relationship that exists between continuity and boundedness of
maps between problem space. In fact, we show that these two seemingly disparate
notions are equivalent in problem theory.

Theorem 16.9. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. Then Iso(f) <∞ if and only if f is continuous.

Proof. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem spaces. Sup-
pose that Iso(f) < ∞ , then there exists an absolute constant c > 0 such that
Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ). Let ε > 0 and choose δ := ε

c so that
with Iso(V ) < δ then Iso(f(V )) ≤ c Iso(V ) < cδ = ε. This proves that f is
continuous. Conversely, suppose that f is continuous and assume that f is not
bounded. Then for each n ≥ 1 there exists a sequence {Vn} ⊂ PX(Y ) such that
Iso(f(Vn)) > n Iso(Vn) for all n ≥ No > 0. Put 1

n < Iso(Vn) < 1 − 1
n , then (by

continuity) we get 1 < n Iso(Vn) < Iso(f(Vn)) < 1, which is absurd. �

17. Conclusion and further remarks

This work represents a significant advancement in our understanding of problem
and solution spaces, particularly with respect to their algebraic, topological, and
computational properties. By introducing novel concepts such as isotopic maps,
separability, amenability, and the isotope pseudo semi-norm, we have opened new
avenues for exploring the intricate relationships between problems, their solution
spaces, and the transformations between them.

The Characterization Theorem introduced in this work provides a robust frame-
work for categorizing problem spaces, a critical step toward understanding the fun-
damental structure of problems and the conditions under which they can be solved.
The study of separability and amenability within these spaces has highlighted es-
sential conditions that influence the solvability of problems, while the examination
of isotopic maps and their properties has bridged the gap between theoretical ex-
ploration and practical application, particularly in the context of time complexity.
The equivalence of boundedness and continuity of isotopic maps provides a key in-
sight into how problem spaces can be transformed while preserving their complexity,
offering valuable tools for further studies in computational complexity theory.

As we have shown, the introduction of the isotope pseudo semi-norm provides
a new approach for assessing the complexity of problem spaces. This measure
is a vital contribution to problem theory, facilitating a deeper understanding of
solvability and the structure of solution spaces.
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However, despite the progress made, several open questions remain, particularly
in relation to the complexity of problem transformations and the limits of current
theories. The following conjectures arise naturally from the findings of this work
and serve as promising directions for future research.

Conjecture 17.1. Let P be a problem space and Iso : P −→ R. There exists a
bounded isotope Iso() such that for any p1, p2 ∈ P with p1 6= p2 and p1 6=≡ p2,
then Iso(p1) 6= Iso(p2).

Conjecture 17.2. Let P be a problem space and p1, p2 ∈ P. If |Iso(p1)−Iso(p2)| <
ε for some small ε > 0, then there exist absolute constants C1, C2 > 0 such that

Cv(p1)

Cv(p2)
≤ C1

and
Cr(p1)

Cr(p2)
≤ C2

1.
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