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Abstract

The authors [1] have recently constructed models of nonextensive black
hole Thermodynamics from a generalized Wick’s rotation procedure in the
evaluation of the Euclidean path integral. We have explicitly shown in [6]
how the Schwarzschild Black Hole Entropy (in all dimensions) emerges
from truly point mass sources at r = 0 due to a non-vanishing scalar
curvature involving the Dirac delta distribution. It is the density and
anisotropic pressure components associated with the point mass delta
function source at the origin r = 0 which furnish the Schwarzschild black
hole entropy in all dimensions D ≥ 4 after evaluating the non-vanishing
Euclidean Einstein-Hilbert action. In this work we generalize our con-
struction of the Euclidean Einstein-Hilbert action by following the gener-
alized Wick’s rotation procedure of [1] in order to construct the nonex-
tensive Schwarzschild black hole entropies in all dimensions. The first law
of Thermodynamics is obeyed and when the nonextensivity parameter
is λ < 0, the nonextensive entropy is finite at T = 0 despite that the
Bekenstein-Hawking entropy SBH(β = ∞) = SBH(T = 0) = ∞ blows up
violating the the third law of Thermodynamics.

Keywords : Nonextensive Statistics; Black Holes; Entropy.

1 Nonextensive Black Hole Entropy from truly
Point Mass Sources

Recently, the authors [1] proposed to construct models of nonextensive black
hole Thermodynamics from generalized Euclidean path integrals and Wick’s
rotation. Concretely, they introduced a generalized Wick’s rotation from real
time t to imaginary time τ such that t → −ifλ(τ) where fλ is a differentiable
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function and λ is a parameter related to the nonextensivity. After applying this
generalized Euclidean path integral to black hole thermodynamics they derived
the generalized Wick’s rotation functions associated to a given nonextensive
statistics [2].

The Black-Brane/Bose-Gas Duality and Third Law of Thermodynamics has
been studied more recently by [3]. In the thermodynamics of black holes in
asymptotically flat space the third law of thermodynamics is violated, and the
black hole entropy cannot be consistently modeled through conventional sta-
tistical mechanics. Notably, the third law of thermodynamics is violated for
the Schwarzschild black hole, and its entropy can only be described using an
unconventional model, such as a Bose gas in negative dimensions [3]. For these
reasons, instead of dealing with conventional statistics we shall be working with
the q-entropy inspired from Tsallis statistics [9].

The interplay between nonextensive statistical mechanics and black hole
entropy has been been previously analyzed by [4] and others. Using nonextensive
statistical mechanics, the author [4] has shown that the Bekenstein-Hawking
area law is obtained from microstates of black holes in Loop Quantum Gravity,
for arbitrary real positive values of the Barbero-Immirzi parameter γ. The
arbitrariness of γ was encoded in the strength of the “bias” created in the
horizon microstates through the coupling with the quantum geometric fields
exterior to the horizon. Majhi argued [4] that an experimental determination of
γ will fix this coupling, leaving out the macroscopic area of the black hole to be
the only free quantity of the theory. Hence, a key link between the microscopic
theory of black holes in Loop Quantum Gravity (LQG) and the application of
nonextensive statistics to black hole thermodynamics was found.

Recently, it was explicitly shown in [6] how the Schwarzschild Black Hole
Entropy (in all dimensions) emerges from truly point mass sources at r = 0
due to a non-vanishing scalar curvature involving the Dirac delta distribution.
In order to achieve this, one requires to extend the domain of r to negative
values −∞ ≤ r ≤ +∞. It is the density and anisotropic pressure components
associated with the point mass delta function source at the origin r = 0 which
furnish the Schwarzschild black hole entropy in all dimensions D ≥ 4 after
evaluating the non-vanishing Euclidean Einstein-Hilbert action. As usual, it
was required to take the inverse Hawking temperature βH as the length of the
circle S1

β obtained from a compactification of the Euclidean time in thermal field
theory which results after a Wick rotation, it = τ , to imaginary time.

In units h̄ = c = kB = 1, the 4D scalar curvature and the Euclidean action
I turned out to be [6]

R =
4GMδ(r)

r2
⇒ I = − i

16πG

∫ βH

0

dτ

∫ ∞

0

R 4πr2 dr (1)

The magnitude of the integral (1) becomes (after inserting the inverse Hawking
temperature β = 8πGM)

|I| = 1

2
M βH = 4πGM2 =

4π(2GM)2

4G
=

4πr2h
4G

=
Area

4L2
P

(2)
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and which is the Schwarzschild black hole entropy in D > 4.
In higher dimensions D > 4, the scalar curvature is [6]

R = 2
16πGM

(D − 2)ΩD−2
(D − 3)

δ(r)

|r|D−2
= 2 rD−3

h (D − 3)
δ(r)

|r|D−2
(3)

where ΩD−2 = 2π
D−1

2 /Γ(D−1
2 ) is the solid angle of the D− 2-dim hypersphere.

The horizon radius is given by

rh =

(
16πGM

(D − 2) ΩD−2

) 1
D−3

(4)

and the magnitude of the Euclidean integral I

I = − i

16πG

∫ β

0

dτ

∫ ∞

0

R ΩD−2 rD−2 dr (5)

after inserting the inverse Hawking temperature β = 4πrh/(D − 3), becomes

|I| =
ΩD−2 rD−2

h

4GD
=

ΩD−2

4GD

(
16πGDM

(D − 2) ΩD−2

)D−2
D−3

(6)

which is the Schwarzschild black hole entropy in D > 4 dimensions given by
one-quarter of the horizon area in Planck units. Essential in these findings was
the result that

∫∞
0

δ(r)dr = 1
2

∫∞
−∞ δ(r)dr = 1

2 resulting from the symmetry of
the delta function δ(−r) = δ(r).

Armed with the finding that the black hole entropy is the same as the
Euclidean Einstein-Hilbert action associated to a point-mass singular source we
shall be able to define the notion of q-entropy. Our procedure to construct
the modified gravitational entropy for the 4D Schwarzschild black hole is very
different than the one undertaken by [1] based on the Euclidean path integral.
We only need to focus on the modified Wick rotation procedure t = −ifλ(τ)
leading to the modification of the expression |I| = 1

2MβH found in eq-(2) by
simply making the following replacement βH → fλ(βH)

|I| = 1

2
M βH → |I|λ =

1

2
M fλ(βH) (7)

and resulting from the imaginary time integration of the Euclidean Einstein-
Hilbert action after imposing the modified Wick rotation procedure t = −ifλ(τ),
and leading to 1

I = −i
1

16πG

∫ βH

0

dfλ(τ)

dτ
dτ

∫ ∞

0

R 4πr2 dr = − i

2
M (fλ(βH)− fλ(0)) (8)

1The i and
dfλ(τ)

dτ
term result from evaluating the integral measure

√
−det(gµν) after the

Wick rotation.
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The choice of fλ(0) = 0 yields the result in eq-(7). Hence, by equating the
modified entropy (8) to the λ-entropy Sλ(βH) associated with non-extensive
statistics, one can read-off the functional form of the function fλ(β)

|I|λ =
1

2
M fλ(βH) = Sλ(βH) ⇒

fλ(βH) =
2

M
Sλ(βH) =

16πG

βH
Sλ(βH), M =

βH

8πG
(9)

Inspired by the q entropy proposed by Tsallis [9]

Sq =
1−

∑Ω
i pqi

q − 1
(10)

where the q parameter is called the entropic index and can be q > 1 or q < 1; pi
is the probability for the i-th microstate; Ω is the total number of microstates
of the system, we may find the functional form fλ(βH) corresponding to the
Tsallis entropy.

The q-entropy of a black hole

S(1/2)
q =

2(1−q)N − 1

1− q
=

e(1−q)Nln2 − 1

1− q
=

e(1−q)ln(2N ) − 1

1− q
(11)

was derived in [5] by counting black holes microstates in Loop Quantum Gravity
after setting all the spins to s = 1

2 for the black hole horizon punctures. In view
of the result found in eq-(11), after noticing that S = ln(Ω) = ln(2N ), we may
define the q-entropy of the Schwarzschild black hole as follows

Sq ≡ e(1−q)SBH − 1

1− q
=

e((1−q)β2/16πG) − 1

1− q
(12)

Defining λ ≡ 1− q one may rewrite (12) as

Sλ(βH) =
eλSBH − 1

λ
=

e(λβ
2
H/16πG) − 1

λ
, −∞ < λ < 1 (13)

One may notice that the expression (13) involves the same functional rela-
tion between the λ-entropy Sλ, and the black hole entropy SBH , as the relation
between the Tsallis ST and Renyi entropy SR given by

ST =
eλSR − 1

λ
=

1 − e−(q−1)SR

q − 1
, λ = 1− q (14)

The Tsallis and Renyi entropies are defined, respectively, as follows

ST =
1

q − 1

(
1 −

N∑
i=1

pqi

)
, SR = − 1

q − 1
ln

(
N∑
i=1

pqi

)
, 0 < q < ∞ (15)

Eliminating the term
∑N

i=1 p
q
i in eq-(15) leads to the relation (14). When λ = 0

(q = 1), ST = SR = −
∑N

i=1 piln(pi) and one recovers the Shannon entropy
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(kB = 1) after using L’Hopital’s rule. A fundamental property of the Tsallis
entropies is the fact that they are not additive (non-extensive) for independent
subsystems [13].

Consequently, given eqs-(9,13) one then arrives at the expression for fλ(βH)

fλ(βH) =
2

M
Sλ(βH) =

16πG

βH
Sλ(βH) =

16πG

βH

e(λβ
2
H/16πG) − 1

λ
(16)

and such that the generalized Wick rotation procedure t = −ifλ(τ) is captured
by the function

fλ(τ) =
16πG

τ

e(λτ
2/16πG) − 1

λ
(17a)

One may verify that fλ(τ = 0) = 0 which is a sign of consistency, and when

λ → 0 ⇒ fλ(τ) → τ , and Sλ(βH) → SBH =
β2
H

16πG .
It is important to emphasize that the Wick rotation function of eq-(17a)

differs from the Wick rotation functions found in [1] for a variety of black
holes under different statistics. However, the Taylor expansion of (17a)

fλ(τ) = τ +
1

32πG
λ τ3 +

1

6(16πG)2
λ2 τ5 + . . . (17b)

does capture a similar behavior in powers of τ as the Wick rotation functions
found in [1] up to numerical factors and signs. Such Wick rotation functions
were obtained after using the saddle point method to evaluate approximately
the Euclidean gravitational path integral.

The physical relevance of using the λ-entropy in the case that λ < 0 is that
Sλ(βH = ∞) = Sλ(TH = 0) = − 1

λ is finite, and positive (λ < 0), whereas the
Bekenstein-Hawking entropy SBH(βH = ∞) = SBH(TH = 0) = ∞ blows up
and violates the third law of Thermodynamics. On the other hand, when λ > 0
the λ-entropy Sλ(βH = ∞) = Sλ(TH = 0) still diverges violating the third law.

In higher dimensions D > 4, the modified Wick rotation t = −ifλ(τ) proce-
dure leads to an Euclidean Einstein-Hilbert action whose modified magnitude
is given by

|I|λ =
1

16πGD
fλ(βH) (D − 3) ΩD−2 rD−3

h (18)

Upon equating |I|λ with the λ-entropy Sλ(βH)

|I|λ = Sλ(βH) =
eλSBH(βH) − 1

λ
(19)

one can read-off the expression for fλ(βH)

fλ(βH) =
16πGD

(D − 3) ΩD−2 BD βD−3
H

eλ(ADβD−2
H

) − 1

λ
(20)

after rewriting
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SBH(βH) =
ΩD−2 rD−2

h

4GD
= AD βD−2

H , rD−3
h = [

βH(D − 3)

4π
]D−3 = BD βD−3

H

(21)
in terms of powers of βH , and the dimension-dependent numerical coefficients
AD, BD

AD ≡ ΩD−2

4GD
[
D − 3

4π
]D−2, BD ≡ [

D − 3

4π
]D−3 (22)

and which required relating the expression for the black hole horizon rh in terms

of the inverse Hawking temperature βH = 4πrh/(D − 3) ⇒ rh = βH(D−3)
4π .

Therefore, the modified Wick rotation t = −ifλ(τ) is captured by the func-
tion

fλ(τ) =
16πGD

(D − 3) ΩD−2 BD τD−3

eλ(ADτD−2) − 1

λ
, D ≥ 4 (23)

One can verify that fλ(τ = 0) = 0, and when λ = 0 ⇒ fλ(τ) → τ .
There are many other examples of modified entropies which can be ob-

tained by recurring to the modified Wick rotation procedure and the Euclidean
Einstein-Hilbert action associated with a truly point mass source with a delta
function scalar curvature singularity at the origin. For example, given the Ka-
niadakis entropy [7] in D = 4

SK =
1

λ
sinh(λSBH) =

1

λ
sinh

(
λβ2

H/16πG
)

(24)

upon equating SK and M
2 fλ(βH) = βH

16πGfλ(βH) allows us to read-off the ex-
pression for fλ(βH)

fλ(βH) =
16πG

βH

1

λ
sinh

(
λβ2

H/16πG
)

⇒

fλ(τ) =
16πG

τ

1

λ
sinh

(
λτ2/16πG

)
(25)

and, which in turn, furnishes the functional form of the modified Wick rotation
function. Once more, one can verify that fλ(τ = 0) = 0, and when λ = 0 ⇒
fλ(τ) = τ .

2 First Law of Black Hole Nonextensive
Thermodynamics

A careful inspection of eq-(9) reveals that one could perform a modification
of the black hole’s mass M → Mλ (black hole’s area A → Aλ), and inverse
Hawking temperature βH → βλ,H , with the provision that βλ,H = 8πGMλ
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in order to maintain the periodicity in τ and avoid a conical singularity for
the Euclidean metric near the horizon. Furthermore, one can then rewrite the
λ-entropy Sλ(β) in 4D as follows

Sλ(βH) =
e(λβ

2
H/16πG) − 1

λ
=

1

2
M fλ(βH) =

SBH(βλ,H) =
Aλ

4G
=

1

2
Mλ βλ,H =

β2
λ,H

16πG
(26)

and from which one can read-off the sought-after functional form of βλ,H , and
Mλ in terms of M and the Wick rotation function fλ(βH) (20) of the previous
section, as follows

βλ,H =
√
8πGMfλ(βH) =

√
βHfλ(βH); Mλ =

1

8πG

√
8πGMfλ(βH) (27)

and one then finds that the deformed inverse Hawking temperature βλ,H is the
geometric mean of βH and fλ(βH). The latter fλ(βH) could be interpreted as
an “effective” inverse Hawking temperature.

The reason of introducing the modified mass Mλ and inverse temperature
βλ,H is to ensure that the first law of black hole non-extensive Thermodynamics
is obeyed. From the second line of eq-(26) one can verify that

∂Sλ(βH)

∂Mλ
=

∂βλ,H

∂Mλ

∂SBH(βλ,H)

∂βλ,H
= βλ,H , λ ̸= 0 (28)

It is important to mention that one must exclude the other two possibilities

∂Sλ(βH)

∂Mλ
= βH ,

∂Sλ(βH)

∂M
= βλ,H (29)

because the pair of values (Mλ, βH) and (M,βλ,H) do not obey the condition
required to maintain the periodicity in τ and avoid a conical singularity for
the Euclidean metric near the horizon. In ordinary Gibbs-Boltzman extensive
thermodynamics (statistics), the first law of black-hole Thermodynamics yields
∂SBH

∂M = βH . In the modified entropy case one must have ∂Sλ

∂Mλ
= βλ,H , instead.

These results can be extended to higher dimensions D > 4. After deforming
the mass, Mλ, and the inverse Hawking temperature βλ,H , one arrives at the
relationship among βH , fλ(βH) and βλ,H

AD βD−2
λ,H =

1

16πGD
fλ(βH) (D − 3) ΩD−2 BD βD−3

H (30)

with AD, BD and fλ(βH) given explicitly by eqs-(20,22). Once more, in order
to avoid a conical singularity the deformed mass Mλ and βλ,H must obey the
relation

16πGDMλ

(D − 2)ΩD−2
=

(
βλ,H(D − 3)

4π

)D−3

(31)
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To sum up, the physical relevance of these results is three-fold : (i) In D = 4,
the λ-entropy agrees with the BH entropy Aλ

4G associated to a deformation of
the area Aλ resulting from modifying the mass Mλ and the upper τ integration
limit of the Euclidean Einstein-Hilbert action with the provision that βλ,H =
8πGMλ in order to maintain the periodicity in τ and avoid a conical singularity
for the Euclidean metric near the horizon. These results can be extended to
higher dimensions D > 4. (ii) The first law of Thermodynamics is obeyed as
displayed in eq-(28), and (iii) when λ < 0, the λ-entropy is finite and positive
Sλ(β = ∞) = − 1

λ despite that the Bekenstein-Hawking entropy SBH(β = ∞) =
SBH(T = 0) = ∞ blows up violating the the third law of Thermodynamics.

In essence, by introducing the λ-entropy Sλ, one has “regularized” the value
of β = ∞ furnishing an infinite entropy at zero temperature to a finite value
βλ,0 =

√
(16πG/|λ|) leading to a bounded Sλ entropy when λ < 0. There are

systems with non-zero and bounded entropy at absolute zero. The extremal
Reissner-Nordstrom and Kerr-Newman black holes have zero temperature but
non-vanishing entropy given by one-quarter of the horizon area. The authors [3]
have pointed out that for charged black branes the entropy at zero temperature
is bounded but not zero. This is not common in thermodynamic systems and
seems to imply a highly degenerate ground state [14].

To conclude, we should mention that Kaniadakis [8] has shown that it is pos-
sible to select generalized statistical theories in which the twofold link between
entropy and the distribution function continues to hold, such as in the case
of ordinary statistical mechanics. Within this scenario, apart from the stan-
dard logarithmic-exponential functions that define ordinary statistical mechan-
ics, there emerge other new couples of direct-inverse functions, i.e. generalized
logarithms and generalized exponentials, defining coherent and self-consistent
generalized statistical theories. Interestingly, Kanadiakis found [8] that all these
theories preserve the main features of ordinary statistical mechanics, and predict
distribution functions presenting power-law tails. Furthermore, the obtained
generalized entropies are both thermodynamically and Lesche stable.

The relevant three-parameter entropy associated with a generalized loga-
rithm [8] contains as special cases all the one-parameter and two-parameter
trace form entropies appearing in the literature. The ensuing three-parameter
probability distribution functions represent the minimal deformation of the
Maxwell-Boltzmann exponential distribution compatible with the maximum en-
tropy principle and exhibit power-law tails. Sharma-Mittal entropies [11],[12]
are two-parameter families of entropic forms which contain many of the en-
tropies like the Tsallis [9], Kaniadakis [7], Abe [10] entropies as special cases for
the values of the two paramters [13].

Therefore, it is warranted to explore if a three-parameter family of Wick
rotation functions fλ1λ2,λ3(τ) can reproduce all the different modified black hole
entropies mentioned above when one evaluates the Euclidean Einstein-Hilbert
actions involving a delta function scalar curvature singularity at r = 0.
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