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Abstract

This expository-styled paper contains interesting observations and conjectures
about distribution of nontrivial zeros in L-functions; and [optional] use of Sign
normalization when computing Hardy Z-function, including its relationship to
Analytic rank and Symmetry type of L-functions. On the Sign normalization
when applied to eligible L-functions, we posit its dependency on even-versus-odd
Analytic ranks, degree of L-function, and the particular gamma factor present
in functional equations for Genus 1 elliptic curves and higher Genus curves. The
relevant mathematical arguments are postulated to satisfy Generalized Riemann
hypothesis, and Generalized Birch and Swinnerton-Dyer conjecture. We explicitly
mention their underlying proven/unproven hypotheses or conjectures.
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1 Introduction

An L-function is a meromorphic function on the complex plane, associated to one out
of several categories of mathematical objects. For Generic L-functions [aka General L-
functions] that include dual L-functions and self-dual L-functions theoretically arising
from Maass forms, Genus 0, 1, 2, 3, 4, 5... curves, etc; we compare and contrast these
two types of L-functions, and show different forms of symmetry being manifested by
Z(t) plots of their nontrivial zeros (spectrum). As with many problems in Number
theory, the basic questions are easy to state but difficult to resolve. This colloquial
saying is prophetically true in mathematics especially for our outlined intractable open
problems in Number theory, whereby we explicitly mention throughout this paper
their underlying proven/unproven hypotheses or conjectures.

Genus of a connected, orientable surface is an integer representing the maximum
number of cuttings along non-intersecting closed simple curves without rendering the
resultant manifold disconnected. Topologically, it is equal to number of ”holes” (or
”handles”) on it. Alternatively, it is defined in terms of Euler characteristic χ via
the relationship χ = 2 − 2g for closed surfaces where g is Genus. For surfaces with b
boundary components, the equation reads χ = 2 − 2g − b. Thus Genus 0, 1, 2, 3, 4,
5,... curves have 0, 1, 2, 3, 4, 5,... holes.

In classical algebraic geometry, the genus-degree formula relates the degree d
of an irreducible plane curve C with its arithmetic genus g via the formula:

g =
1

2
(d− 1)(d− 2). Here ”plane curve” means that C is a closed curve in projective

plane P2. If the curve is non-singular the geometric genus and the arithmetic genus
are equal, but if the curve is singular, with only ordinary singularities, the geometric
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genus is smaller. More precisely, an ordinary singularity of multiplicity r decreases the

genus by
1

2
r(r − 1).

Definition 1. Completely Unpredictable entities, Completely Predictable entities, and
Incompletely Predictable entities with all three constituting countably infinite sets

Predominantly based on p. 18 of [7], we provide formal definitions for three types
of [infinitely-many] entities in a succinct manner: The Completely Unpredictable (non-
deterministic) entities are defined as entities that are random and behave like one
e.g. [true] random number generator that supply sequences of entities (as non-distinct
Sets of numbers) that are not reproducible; viz, these entities do not contain any
repeatable spatial or temporal patterns. The Completely Predictable (deterministic)
entities are defined as entities that are actually NOT random and DO NOT behave
like one e.g. distinct Set of Even numbers {0, 2, 4, 6, 8, 10,...} and Set of Odd numbers
{1, 3, 5, 7, 9, 11,...}; viz, these entities are reproducible. The distinct Sets of trivial
zeros in various L-functions [as infinitely-many negative integers] are other examples
of Completely Predictable entities. The Incompletely Predictable [or Pseudo-random]
(deterministic) entities are defined as entities that are actually NOT random but
DO behave like one e.g. distinct Set of Prime numbers {2, 3, 5, 7, 11, 13,...} and
Set of Composite numbers {4, 6, 8, 9, 10, 12,...}; viz, these entities are reproducible.
Apart from integers, these entities are also constituted from other number systems e.g.
distinct Sets of t-valued irrational (transcendental) numbers representing infinitely-
many Incompletely Predictable nontrivial zeros (spectrum) of various L-functions are,
as conjectured under Riemann hypothesis or Generalized Riemann hypothesis, only

located on ℜ(s) = 1

2
-Critical line or Analytically normalized ℜ(s) = 1

2
-Critical line.

Lemma 1. The plots of Z-function for general L-functions [and for the L-function
from Riemann zeta-function] manifest unique distributions of both Z(t) positivity and
Z(t) negativity that depend on the choice of sqrt(root number) being correctly and
arbitrarily chosen from +1 or −1 value for even Analytic rank L-functions AND on
the choice of sqrt(root number) being correctly and arbitrarily chosen from +i or −i
value for odd Analytic rank L-functions.

Proof. Riemann zeta function is Genus 0 curve having Analytic rank 0 [of degree
1]. Elliptic curves are Genus 1 curves having Analytic rank 0, 1, 2, 3, 4, 5,... [of degree
2], and there are other higher Genus 2, 3, 4, 5, 6... curves [of higher degree]. They
all have associated self-dual L-functions generating unique nontrivial zeros (spectrum)
with t values being fully independent of the chosen Z(t) positivity [or Z(t) negativity].

A product P , having positive (+ve) or negative (−ve) value, is the multiplication
of two or more factors A, B, C, D, ...; viz, P = A×B × C ×D × · · · . Let P = Z(t),

A = ε
1
2 {viz, [optional] ”Sign normalization” from L-functions and modular forms

database (LMFDB)}, B =
γ( 12 + it)

|γ( 12 + it)|
and C = L(

1

2
+ it). LMFDB’s Z(t) is defined

by P = A × B × C whereby A = ±1 for L-functions having even Analytic rank 0, 2,
4, 6, 8, 10... and A = ±i for L-functions having odd Analytic rank 1, 3, 5, 7, 9, 11....

The epsilon (ϵ) [= +1 for even Analytic ranks /−1 for odd Analytic ranks] is also
known as Sign or Root number in the functional equation for an analytic L-function.
Then the sqrt(root number) [or square root of epsilon] has values of +1 or −1 for even
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Analytic ranks and +i or −i for odd Analytic ranks. This value is arbitrarily chosen
under LMFDB’s stated convention so that Z(t) > 0 for sufficiently small t > 0; viz,
manifesting Z(t) positivity [≡ Sign normalization]. The corollary convention so that
Z(t) < 0 for sufficiently small t > 0 refers to arbitrarily choosing this value to manifest
Z(t) negativity. Thus, sqrt(root number) always give rise to two opposite choices for
two complementary Z(t) plots of nontrivial zeros (spectrum) in both even and odd
Analytic rank L-functions. Consequently, both Z(t) positivity and Z(t) negativity are

inherently and validly present in Z(t) plots of L-functions when we use ϵ
1
2 =

√
ϵ in

relevant Z-functions [instead of just using ϵ in relevant Z-functions], and with their
unique distributions being specified by chosen +1 or −1 choices and +i or −i choices.

As per Axiom 1, Z(t) plots from L-functions using ϵ without adopting, or
√
ϵ with

adopting, LMFDB’s Sign normalization will NOT affect actual t values of nontrivial
zeros (spectrum). Requiring confirmatory research studies, we intuitively propose here
that these unique distributions have various [unknown] deterministic Incompletely
Predictable properties. The proof is now complete for Lemma 12.
Proposition 1. The self-deal L-functions are special cases of dual L-functions,
whereby they both have unique Z(t) plots of nontrivial zeros (spectrum) with LMFDB’s
enforced [optional] Sign normalization that manifest different forms of symmetry.

Proof. Sign (root number) or epsilon for dual L-functions is a complex number
a+bi being the ”Root of Unity”. Then for self-dual L-functions [which can be usefully

considered as simply special cases of dual L-functions], ϵ = +1 + 0i = +1 with ε
1
2 =

±1 for even Analytic rank AND ϵ = −1+0i = −1 with ε
1
2 = ±i for odd Analytic rank.

Both dual and self-dual concepts deal with the relationships between L-functions
and their duals, and self-dual L-functions represent a stronger condition of symmetry:
[1] Symmetry. Dual L-functions may have a more general relation to their duals, while
self-dual L-functions exhibit exact symmetry.
[2] Applications. Self-dual L-functions are often directly tied to important conjectures
and results in Number theory.
[3] Examples. Many well-known L-functions associated with modular forms or Dirichlet
characters can be self-dual, whereas others might not exhibit this property.

In Remark 1.1 below, we discuss using examples of Z(t) plots of nontrivial zeros
(spectrum) that manifest unique types of individual/combined symmetry for both
dual and self-dual L-functions. The proof is now complete for Proposition 12.
Axiom 1. The LMFDB’s [optional] Sign normalization does not affect the actual
values of nontrivial zeros (spectrum) from Z(t) plots of L-functions.

Proof. Root number or Sign ϵ directly govern the functional equation; viz, [1] If
ϵ = 1, the L-function is symmetric (even functional equation); and [2] If ϵ = −1, the
L-function is anti-symmetric (odd functional equation). When constructing Z(t), the
absolute value |Λ(s)| eliminates the impact of ϵ as a Sign, so ϵ remains unchanged,
and thus we strictly DO NOT need to square root the ϵ for Z(t) to be valid.

Why do LMFDB use
√
ϵ to obtain two choices [and arbitrarily choose one of the two

choices under Sign normalization to manifest Z(t) positivity]? [1] Ensure symmetry:
By incorporating

√
ϵ whereby the required phase adjustment DOES NOT change the

magnitude of Λ(E, s), the functional equation becomes symmetric Z(−t) = Z(t), [2]
Numerical stability: The square root ensures the phase of Λ(s) along the Critical line
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Fig. 1 Graph of Z-function along [Analytically normalized] ℜ(s) =
1

2
-critical line for −∞ < t < ∞

nontrivial zeros (spectrum) in Genus 1 odd Analytic rank 1 semistable Elliptic curve 37.a1 of degree
2. Point Symmetry of Origin point, trajectory intersect Origin point, and manifest Z(t) positivity.
Integral points (−1, 0), (−1, −1), (0, 0), (0, −1), (1, 0), (1, −1), (2, 2), (2, −3), (6, 14), (6, −15).

is correctly adjusted for numerical computations, [3] Nontrivial zeros being unaffected:
The t values for infinitely-many nontrivial zeros (spectrum) are independent of using ϵ
versus

√
ϵ, and [4] Historical context: Similar constructions occur in Analytic Number

theory e.g. for Riemann zeta function. The proof is now complete for Axiom 12.
An old bug in the code for computing some of (Hardy or Riemann-Siegel) Z(t)

plots in LMFDB website had previously resulted in a failure to follow the LMFDB’s
stated convention that Z(t) > 0 as t → 0+. In particular, the Z(t) plots being affected
by this bug are, firstly, from L-functions of all Genus 1 elliptic curves having (odd)
Analytic rank 3 [except for the very first listed Analytic rank 3 Elliptic curve 5077.a1
being not affected]; and, secondly, from solitary L-function of the (non-elliptic) Genus
0 curve Riemann zeta function having (even) Analytic rank 0. We assign this stated
convention as definition for ’Z(t) positivity’ [hereby also called ’Sign normalization’]
whereby the complementary ’Z(t) negativity’ is defined by (corollary) convention Z(t)
< 0 as t → 0+. However we acknowledge this Sign normalization [so that Z(t) > 0 for
sufficiently small t > 0] used in LMFDB (which is explicitly noted to be arbitrary)
should not, in general, be used as a basis for definitive mathematical arguments.

As an obvious [randomly chosen] example correctly manifesting Z(t) positivity,
the Z(t) plot of nontrivial zeros (spectrum) in Figure 1 for Degree 2 Genus 1 (odd)
Analytic rank 1 Elliptic curve 37.a1 [NOT affected by the bug] is uniquely determined
by choosing sqrt(root number) = +i choice in self-dual L-function 2-37-1.1-c1-0-1.

Regarding these incorrectly depicted Z(t) plots manifesting Z(t) negativity [instead
of Z(t) positivity] in affected Analytic rank 3 elliptic curves, they were first alerted by
us in August 2024. The culprit bug in the code causing this problem was subsequently
discovered by LMFDB Associate Editor Dr. Edgar Costa in conjunction with LMFDB
Managing Editor Prof. Andrew Sutherland, and was largely fixed in October 2024.

As already mentioned: Apart from smallest conductor Degree 2 Analytic rank 3
Elliptic curve 5077.a1 with its Z(t) plot in Figure 2 of self-dual L-function 2-5077-
1.1-c1-0-410 showing Z(t) positivity from arbitrarily choosing sqrt(root number) = −i
choice [NOT affected by the bug]; this bug affects Z(t) plots of self-dual L-functions
derived from all other Degree 2 (odd) Analytic rank 3 elliptic curves e.g. randomly
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Fig. 2 Graph of Z-function along [Analytically normalized] ℜ(s) =
1

2
-critical line for −∞ < t < ∞

nontrivial zeros (spectrum) in Genus 1 odd Analytic rank 3 semistable Elliptic curve 5077.a1 of degree
2. Point Symmetry of Origin point, trajectory intersect Origin point, and manifest Z(t) positivity as
Pseudo-transitional curve. Integral points (−3, 0), (−3, −1), (−2, 3), (−2, −4), (−1, 3), (−1, −4), (0,
2), (0, −3), (1, 0), (1, −1), (2, 0), (2, −1), (3, 3), (3, −4), (4, 6), (4, −7), (8, 21), (8, −22), (11, 35),
(11, −36), (14, 51), (14, −52), (21, 95), (21, −96), (37, 224), (37, −225), (52, 374), (52, −375), (93,
896), (93, −897), (342, 6324), (342, −6325), (406, 8180), (406, −8181), (816, 23309), (816, −23310).

Fig. 3 Graph of Z-function along [Analytically normalized] ℜ(s) =
1

2
-critical line for −∞ < t < ∞

nontrivial zeros (spectrum) in Genus 1 curve odd Analytic rank 3 semistable Elliptic curve 21858.a1
of degree 2. Point Symmetry of Origin point, trajectory intersect Origin point, and manifest Z(t)
positivity [post-bug-fixing]. Integral points are (−7, 5), (−7, 2), (−6, 12), (−6, −6), (−4, 14), (−4,
−10), (−2, 12), (−2, −10), (1, 5), (1, −6), (2, 2), (2, −4), (3, 0), (3, −3), (4, 2), (4, −6), (5, 5),
(5, −10), (7, 12), (7, −19), (11, 29), (11, −40), (14, 44), (14, −58), (22, 92), (22, −114), (30, 150),
(30, −180), (68, 530), (68, −598), (119, 1244), (119, −1363), (122, 1292), (122, −1414), (137, 1541),
(137, −1678), (786, 21660), (786, −22446), (1069, 34437), (1069, −35506), (38746, 7607514), (38746,
−7646260), (783868, 693616502), (783868, −694400370).

chosen self-dual L-function 2-21858-1.1-c1-0-3 of Elliptic curve 21858.a1 [depicted as
correct Z(t) positivity version post-bug-fixing in Figure 3 and incorrect Z(t) negativity
version pre-bug-fixing in Figure 4]. This bug has also affected Z(t) plot of self-dual
L-function 2-11-1.1-c1-0-0 derived from Degree 1 (even) Analytic rank 0 (non-elliptic)
Number field 1.1.1.1: Q / Riemann zeta function / Dirichlet eta function [depicted as
correct Z(t) positivity version post-bug-fixing in Figure 5 and incorrect Z(t) negativity
version pre-bug-fixing in Figure 6].
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Fig. 4 Graph of Z-function along [Analytically normalized] ℜ(s) =
1

2
-critical line for −∞ < t < ∞

nontrivial zeros (spectrum) in Genus 1 curve odd Analytic rank 3 semistable Elliptic curve 21858.a1
of degree 2. Point Symmetry of Origin point, trajectory intersect Origin point, and manifest Z(t)
negativity [pre-bug-fixing]. Integral points are identical to that in Figure 3.

Fig. 5 Graph of Z-function along ℜ(s) =
1

2
-critical line for −∞ < t < ∞ nontrivial zeros (spectrum)

in even Analytic rank 0 Genus 0 Dirichlet eta function η(s) of degree 1 over K = Q as Analytic
continuation of Riemann zeta function ζ(s). Line Symmetry of vertical y-axis, trajectory DO NOT
intersect Origin point, and manifest Z(t) positivity [post-bug-fixing]. Integral basis 1. [An integral
basis of a number field K is a Z-basis for ring of integers of K. This is also a Q-basis for K.]

Fig. 6 Graph of Z-function along ℜ(s) =
1

2
-critical line for −∞ < t < ∞ nontrivial zeros (spectrum)

in even Analytic rank 0 Genus 0 Dirichlet eta function η(s) of degree 1 over K = Q as Analytic
continuation of Riemann zeta function ζ(s). Line Symmetry of vertical y-axis, trajectory DO NOT
intersect Origin point, and manifest Z(t) negativity [pre-bug-fixing] as Pseudo-transitional curve.
This is the complementary Z(t) plot of nontrivial zeros (spectrum) to that depicted by Figure 5.
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Fig. 7 Graph of Z-function along ℜ(s) =
1

2
-critical line for −∞ < t < ∞ nontrivial zeros (spectrum)

in even Analytic rank 0 Genus 0 Dirichlet character χ5(2, ·) with odd Parity. There is neither Line
symmetry nor Point symmetry being manifested. The trajectory DO NOT intersect the Origin point.
This is the complementary Z(t) plot to that depicted by Figure 8.

Fig. 8 Graph of Z-function along ℜ(s) =
1

2
-critical line for −∞ < t < ∞ nontrivial zeros (spectrum)

in even Analytic rank 0 Genus 0 Dirichlet character χ5(3, ·) with odd Parity. There is neither Line
symmetry nor Point symmetry being manifested. The trajectory DO NOT intersect the Origin point.
This is the complementary Z(t) plot to that depicted by Figure 7.

Fig. 9 Graph of Z-function along ℜ(s) =
1

2
-critical line for −∞ < t < ∞ nontrivial zeros (spectrum)

in even Analytic rank 0 Genus 0 Dirichlet character χ7(2, ·) with even Parity. There is neither Line
symmetry nor Point symmetry being manifested. The trajectory DO NOT intersect the Origin point.
This is the complementary Z(t) plot to that depicted by Figure 10.
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Fig. 10 Graph of Z-function along ℜ(s) =
1

2
-critical line for −∞ < t < ∞ nontrivial zeros (spec-

trum) in even Analytic rank 0 Genus 0 Dirichlet character χ7(4, ·) with even Parity. There is neither
Line symmetry nor Point symmetry being manifested. The trajectory DO NOT intersect the Origin
point. This is the complementary Z(t) plot to that depicted by Figure 9.

Remark 1.1. In relation to self-dual L-functions, we see the horizontal x-axis acting
as Line Symmetry for [combined] Figure 3 and Figure 4 with their [paired] sqrt(root
number) given by ±i (for odd Analytic ranks), and [combined] Figure 5 and Figure 6
with their [paired] sqrt(root number) given by ±1 (for even Analytic ranks).

On randomly chosen examples of Analytic rank 0 dual L-functions from Dirichlet
characters having [paired] Sign given by complex number and its conjugate, we depict
them via [combined] Figure 7 (L-function 1-5-5.2-r1-0-0) and Figure 8 (L-function 1-5-
5.3-r1-0-0) as [respectively] odd Parity χ5(2, ·) with Sign: 0.850+0.525i and odd Parity
χ5(3, ·) with Sign: 0.850−0.525i; and via [combined] Figure 9 (L-function 1-7-7.2-r0-0-
0) and Figure 10 (L-function 1-7-7.4-r0-0-0) as [respectively] even Parity χ7(2, ·) with
Sign: 0.895−0.444i and even Parity χ7(4, ·) with Sign: 0.895+0.444i. In contrast to self-
dual L-functions, we instead see the vertical y-axis acting as Line Symmetry for these
complementary-paired [with ”conjugate Signs”] dual L-functions having either even or
odd parity, and having [combined] ”reverse” patterns of nontrivial zeros (spectrum).

Using the very definition of Z(t) for an L-function whereby we [optionally] adopt
LMFDB’s sqrt(root number) that always provide two choices, we unambiguously
obtain valid mathematical statements in Lemma 1, Proposition 1 and Axiom 1. These
statements are rigorously proven to be true using simple mathematical arguments.

2 Generalized Riemann hypothesis, and Generalized
Birch and Swinnerton-Dyer conjecture

Proposed in 1859 by German mathematician Bernhard Riemann (September 17, 1826 –
July 20, 1866), Riemann hypothesis (RH) refers to a famous conjecture on all nontrivial
zeros in (self-dual) L-function from Genus 0 curve known as Riemann zeta function
[and, through Analytic continuation, its proxy Dirichlet eta function]. Then our posited
Generalized RH simply refers to this same conjecture on higher Genus 1, 2, 3, 4,
5... curves [and also, with ”overlap”, on lower Genus 0 curves]. Proposed during the
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early 1960’s by two British mathematicians Bryan John Birch and Peter Swinnerton-
Dyer, Birch and Swinnerton-Dyer (BSD) conjecture refers to a famous conjecture on
Analytic ranks of (self-dual) L-functions from Genus 1 curves known as elliptic curves.
Then our posited Generalized BSD simply refers to this same conjecture on higher
Genus 2, 3, 4, 5, 6... curves [and also on lower Genus 0 curves and, with ”overlap”, on
Genus 1 curves].

Widely studied diverse L-functions [e.g. having to be entire with poles on edge of
0 < ℜ(s) < 1-Critical strip or in other locations] are those arising from arithmetic
objects such as elliptic and higher-genus curves, holomorphic cusp or modular forms,
Maass forms, number fields with their Hecke characters, Artin representations, Galois
representations, and motives. Two characterizations of such L-functions are in terms of
Dirichlet coefficients and spectral parameters. That every Galois representation arises
from an automorphic representation is known as Modularity Conjecture. Sometimes
an L-function may arise from > 1 source e.g. L-functions associated with elliptic
curves are also associated with weight 2 cusp forms. A big goal of Langlands program
ostensibly is to prove any degree d L-function is associated with an automorphic form
on GL(d). Because of this representation theoretic genesis, one can associate an L-
function not only to an automorphic representation but also to symmetric powers, or
exterior powers of that representation, or to the tensor product of two representations
(the Rankin-Selberg product of two L-functions).

Of relevance to (Analytically normalized) σ =
1

2
-Critical Line when referenced to

positive 0 < t < +∞ range in complex variable s = σ ± it, the LMFDB’s Sign nor-
malization is applicable to eligible L-functions having Z(t) plots of ’OUTPUTS ’ as
infinitely-many Incompletely Predictable nontrivial zeros (spectrum). Using the vast
[albeit limited] catalogues in LMFDB website[5] for our observational study, we pro-
pose LMFDB’s Sign normalization is ubiquitously satisfied by Genus 0, 1, 2, 3, 4, 5...
curves e.g. Genus 1 elliptic curves over Number field K = Rational number Q, real and
imaginary quadratic fields; Genus 2 curves over K = Q; etc. We confirm LMFDB’s
Sign normalization [≡ Z(t) positivity] will always, by default, be ”standardized” on an
individual case-by-case basis through arbitrarily applying this normalization in a cor-
rect manner [so that Z(t) > 0 for sufficiently small t > 0]. As further outlined in section
3, Analytic rank 0 Genus 0 curves of degree 1 and Analytic rank 3 Genus 1 curves
of degree 2 have (respective) Pseudo-transitional curves [pre-bug-fixing]: non-elliptic
curve Riemann zeta function/Dirichlet eta function and Elliptic curve 5077.a1.

One could adopt Selberg class S as the set of all Dirichlet series (’Generic L-

functions’) F (s) =

∞∑
n=1

an
ns

that satisfy four Selberg class axioms [whereby it is often

practical to regard Axioms I, II and III to be ”essential”, and Axiom IV to be
”optional”]. As opposed to the very particular cuspidal automorphic representations of
GL(n) by Langlands, this set S contains very general analytic axioms defined by Atle
Selberg who conjectured its elements all satisfy (Generalized) Riemann hypothesis.
· Axiom I. Analyticity: (s− 1)mF (s) is an entire function of finite order for some non-
negative integer m.
· Axiom II. Functional equation: there is a function γF (s) of form γF (s) =
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ϵQs

k∏
i=1

Γ(λis + µi) where |ϵ| = 1, Q > 0, λi > 0, and Re(µi) ≥ 0 such that

Λ(s) = γF (s)F (s) satisfies Λ(s) = Λ(1− s) where Λ(s) = Λ(s).

· Axiom III. Euler product: a1 = 1, and logF (s) =

∞∑
n=1

bn
ns

where bn = 0 unless n is a

positive power of a prime and bn ≪ nθ for some θ <
1

2
.

· Axiom IV. Ramanujan hypothesis: an = Oϵ(n
ϵ) for any fixed ϵ > 0.

In [2], we encounter an attractively useful but unavoidably complex and inherently
quasi -complete classification on universal ’Generic L-functions’ as provided by Prof.
David Farmer and his colleagues via dividing Analytic L-functions and Q-automorphic
L-functions into arithmetic type and algebraic type based on [extra] collection of
axioms. Conjecturally, all four resulting sets of L-functions are equal arising from
arithmetic objects of pure motives and geometric Galois representations.

Imperfect commonly accepted scheme on modern classification (taxonomy) is never
a mutually exclusive classification system for Living Things = Life → Domain →
Kingdom → Phyllum → Class → Order → Family → Genus → Species. It is strongly
influenced by modern technology of e.g. Artificial Intelligence (AI) software, DNA
sequencing, bioinformatics, databases, imaging, etc. Likewise for our primitive and
arbitrary but insightful and practical (lineage) classification of Scientific Knowledge
= Science → Mathematics → Number theory : Algebraic, Analytic or Geometric →
Genus curves: having different polynomial-degree → Generic L-functions: dual and
self-dual L-functions having different degree, Euler product and gamma factors in
functional equations → Analytic ranks: even versus odd with Line symmetry versus
Point symmetry in Z(t) plots of nontrivial zeros (spectrum) → Sign normalization:
adopting the arbitrary decision to have Z(t) positivity → Isogeny class over a field K:
e.g. elliptic curves over Q either have or have not rational isogeny, two elliptic curves
are twists if an only if they have same j-invariant, etc.
Remark 2.1. Many of the L-functions we consider in this paper (including those
associated to curves of Genus > 1) are not known to admit an Analytic continuation
or satisfy a functional equation. To discuss nontrivial zeros on the Critical Line and in
the Hardy Z-function; we therefore need to, at least, assume the Hasse-Weil conjecture.

Taking Remark 2.1 into full and perspective consideration; all correct and complete
mathematical arguments in this paper are assumed to comply with two conditions
below whereby the ”Analytic rank 0” component is present in both conditions:
Condition 1. Generalized Riemann hypothesis (RH): All nontrivial zeros (spectrum)
of Generic L-functions from Genus 0, 1, 2, 3, 4, 5... curves with Analytic rank 0, 1,

2, 3, 4, 5... lie on the σ =
1

2
-Critical Line or the Analytically normalized σ =

1

2
-

Critical Line. The ’special case’ (simplest) RH[7] refers to [Analytic rank 0] Genus 0
non-elliptic curve called Riemann zeta function/Dirichlet eta function.
Condition 2. Generalized Birch and Swinnerton-Dyer (BSD) conjecture: All Generic
L-functions from Genus 0, 1, 2, 3, 4, 5... curves satisfy Algebraic (Mordell-Weil) rank
= Analytic rank [for even Analytic rank 0, 2, 4, 6, 8, 10... and odd Analytic rank 1, 3,
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5, 7, 9, 11...]. The ’special case’ (simplest) BSD conjecture refers to Genus 1 elliptic
curves; expressed as weak form and strong form of BSD conjecture (see Remark 2.2).

Analogy for (Generalized) Riemann hypothesis: Let δ =
1

∞
[an infinitesimal

small number value], Geometrical 0-dimensional σ =
1

2
-Origin point ≡ Mathematical

1-dimensional σ =
1

2
-Critical Line, and Origin point intercept ≡ nontrivial zeros.

Always having Origin point intercept ⇔ sinx = cos(Ax− Cπ

2
) uniquely when C = 1.

Never having Origin point intercept ⇔ sinx ̸= cos(Ax − Cπ

2
) non-uniquely when C

= 1 ± δ. Assigned values for A is ”inconsequential” in the sense solitary A = 1 value
=⇒ ’special case’ Riemann hypothesis [involving Genus 0 curve], and multiple A ̸= 1
values =⇒ Generalized Riemann hypothesis [involving Genus 1, 2, 3, 4, 5... curves].

Under Generalized Riemann hypothesis, nontrivial zeros [as actual C s-values] are
conventionally denoted by R t-values in 0 < t < +∞ range, and lie on Critical Line

ℜ(s) = 1

2
(in Analytic normalization). The lowest nontrivial zero of an L-function L(s)

is the least t > 0 for which L(
1

2
+ it) = 0. Even when L(

1

2
) = 0, the lowest nontrivial

zero is by ”traditional” definition a positive t-valued real number. As functions of
complex variable s, L-functions for elliptic curves are denoted by L(E, s) or LE(s),
with these symbols often used interchangeably. They have Analytic rank of zero integer
value [whereby L(1) ̸= 0 and t ̸= 0 for first nontrivial zero] or non-zero integer values
[whereby L(1) = 0 and t = 0 for first nontrivial zero]. Analytic rank = 0 =⇒ associated
L-functions for elliptic [and non-elliptic] curves NEVER have first nontrivial zero given
by (R-valued) variable t = 0. Analytic rank ≥ 1 [viz, 1, 2, 3, 4, 5... up to an arbitrarily
large number value] =⇒ associated L-functions for elliptic [and non-elliptic] curves
ALWAYS have first nontrivial zero given by (R-valued) variable t = 0.

In (Generalized) BSD conjecture, Generic L-functions and associated modular
forms are usefully regarded as types of infinite series. The 2001 modularity theorem
states that elliptic curves, with their LE(s), over Q are uniquely related to [weight 2
for Γ0(N) classical ] modular form in a particular way. The rank of a number field K
is size of any set of fundamental units of K. It is equal to r = r1 + r2 − 1 where r1
is number of real embeddings of K into C and 2r2 is number of complex embeddings
of K into C. The analytic rank of an abelian variety is analytic rank of its L-function
L(A, s). The analytic rank of a curve is analytic rank of its Jacobian. The weak form of
BSD conjecture =⇒ Analytic rank = Rank of Mordell-Weil group of abelian variety.
Analytic ranks are always computed under assumption that L(A, s) satisfies Hasse-
Weil conjecture [they are not necessarily well-defined otherwise]. When A is defined
over Q, parity of analytic rank is always compatible with sign of functional equation.
In general, analytic ranks stored in LMFDB are only upper bounds on true analytic
rank [they could be incorrect if L(A, s) has a zero very close to but not on the cen-
tral point]. For the abelian varieties over Q of analytic rank < 2 this upper bound is
necessarily tight, due to parity. The rank of an elliptic curve E defined over a number
field K is rank of its Mordell-Weil group E(K).
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Mordell-Weil theorem states that the set of rational points on an abelian variety
over a number field forms a finitely generated abelian group, hence isomorphic to a
group of form T ⊕ Zr where T is a finite torsion group. The integer r ≥ 0 is Mordell-
Weil rank of abelian variety. Phrased in another way: This theorem says that E(K)
is a finitely-generated abelian group, hence E(K) ∼= E(K)tor × Zr where E(K)tor is
finite torsion subgroup of E(K), and r ≥ 0 is the rank. Rank is an isogeny invariant:
all curves in an isogeny class have the same rank.

A p-adic field (or local number field) is a finite extension of Qp, equivalently, a
nonarchimedean local field of characteristic zero. A p-group is a group whose order is
a power of a prime p. A result of Higman and Sims shows that the number of groups of

order pk is p(2/27+o(1))k3

, and this can be combined with a result of Pyber to show that,
asymptotically, 100% of groups are p-groups. For p-groups, the rank can be computed
by taking the Fp-dimension of the quotient by the Frattini subgroup. Let A/Fq be an
abelian variety where q = pr. The p-rank of an abelian variety is the dimension of the
geometric p-torsion as a Fp-vector space: p -rank(A) = dimFp

(A(Fp)[p]). The p-rank is
at most the dimension of A, with equality if and only if A is ordinary; the difference
between the two is the p-rank deficit of A.
Remark 2.2. Formal statements on Birch and Swinnerton-Dyer conjecture:
The central value of an L-function is its value at central point of Critical Strip. The
central point of an L-function is the point on real axis of Critical Line. Equivalently, it
is the fixed point of functional equation. In its Arithmetic normalization, an L-function

L(s) of weight w has its central value at s =
w + 1

2
and functional equation relates s

to 1+w−s. For L-functions defined by an Euler product
∏
p

Lp(s)
−1 where coefficients

of Lp are algebraic integers, this is the usual normalization implied by definition. The

Analytic normalization of an L-function is defined by Lan(s) := L(s+
w

2
), where L(s)

is L-function in its arithmetic normalization. This moves the central value to s =
1

2
,

and the functional equation of Lan(s) relates s to 1− s.
Rodriguez-Villegas and Zagier[6] have proven a formula, conjectured by Gross and

Zagier[3], for central value of L(s, χ2n−1), namely L(
1

2
, χ2n−1) = 2

(2π
√
7)nΩ2n−1A(n)

(n− 1)!

where Ω =
Γ( 17 )Γ(

2
7 )Γ(

4
7 )

4π2
. By the functional equation A(n) = 0 whenever n is even.

For odd n Gross and Zagier conjectured that A(n) is a square [and provide tabulated
values using their notation]. Rodriguez-Villegas and Zagier then prove that A(n) =

B(n)2 where B(1) =
1

2
and B(n) is an integer for n > 1; and that A(n) is given by a

remarkable recursion formula [not stated in this paper]. The accompanying incredible
[derived] result of ”for odd n, B(n) ≡ −n mod 4”, in one fell swoop, proves the

non-vanishing of L(
1

2
, χ2n−1) for all odd n.

BSD conjecture relates the order of vanishing (or analytic rank) and the leading
coefficient of the L-function associated to an elliptic curve E defined over a number
field K at central point s = 1 to certain arithmetic data, the BSD invariants of
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E. It is usually stated as two forms. (1) The weak form of BSD conjecture states
just that the analytic rank ran [that is, the order of vanishing of L(E, s) at s = 1],
is equal to the rank r of E/K. (2) The strong form of BSD conjecture states also

that the leading coefficient of the L-function is given by the formula
1

r!
L(r)(E, 1) =

|dK |1/2 ·
#X(E/K) · Ω(E/K) · Reg(E/K) ·

∏
p cp

#E(K)2tor
. The quantities appearing in this

formula are: dK is discriminant of K; r is rank of E(K); X(E/K) is Tate-Shafarevich
group of E/K; Reg(E/K) is regulator of E/K; Ω(E/K) is global period of E/K; cp
is Tamagawa number of E at each prime p of K; E(K)tor is torsion order of E(K).

For elliptic curves over Q, a natural normalization for its L-function is the one that
yields a functional equation s ↔ 2 − s. As stated above, this is known as arithmetic
normalization, because Dirichlet coefficients are rational integers. We emphasize here
that arithmetic normalization is being used by writing L-function as L(E, s). In this
notation, the central point is at s = 1. The ”Special value” in LMFDB is the first
non-zero value among L(E, 1), L′(E, 1), L′′(E, 1), L′′′(E, 1), L′′′′(E, 1), L′′′′′(E, 1),. . .
as (correspondingly) listed for Analytic rank 0, 1, 2, 3, 4, 5... elliptic curves.

Let A/Fq be an abelian variety of dimension g defined over a finite field. Its L-
polynomial is the polynomial P (A/Fq, t) = det(1− tFq|H1((AFq

)et,Ql)), where Fq is
the inverse of Frobenius acting on cohomology. This is a polynomial of degree 2g with
integer coefficients. By a theorem of Weil, the complex roots of this polynomial all
have norm 1/

√
q; this means that there are only finitely many L-polynomials for any

fixed pair (q, g). The L-polynomial of A is the reverse of Weil polynomial. Let K = Fq

be the finite field with q elements and E an elliptic curve defined over K. By Hasse’s
theorem on elliptic curves, the precise number of rational points #E(K) of E; will
comply with inequality |#E(K)− (q + 1)| ≤ 2

√
q. Implicit in the strong form of BSD

conjecture is that the Tate-Sharafevich group X(E/K) is finite. There is a similar
conjecture for abelian varieties over number fields.

3 Pseudo-transitional curves: Genus 0 Riemann
zeta function and Genus 1 elliptic 5077.a1

Preliminary note: Mathematical arguments in this section are [falsely] true to the
extent if there was [incorrectly] ”never a bug in the code for computing Z(t) plots in
LMFDB website, whereby Z(t) negativity do exist in some of Z(t) plots irrespective
of the LMFDB’s stated convention to follow Z(t) positivity [≡ Sign normalization]”.

In reference to Z(t) plots of nontrivial zeros (spectrum) as ’OUTPUTS ’ from L-
functions: Analytic rank 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11... have corresponding Sign +1,
+1, +1, −1, +1, +1, +1, −1, +1, +1, +1, −1... with our [incorrectly] derived Sign
normalization here being (conjecturally) ONLY satisfied by Genus 1 elliptic curves
over Q. However by conforming with the [incorrect] liberalized Sign normalization, we
cautiously devise the following conditions:
[#1.] We expect all even Analytic rank 0, 2, 4, 6, 8, 10... Genus 0, 1, 2, 3, 4, 5... curves
to always manifest Z(t) positivity; viz, having Sign +1, +1, +1, +1, +1....
[#2.] We expect all odd Analytic rank 1, 3, 5, 7, 9, 11... Genus 0, 1, 2, 3, 4, 5... curves
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to always manifest alternating Z(t) positivity and Z(t) negativity; viz, having Sign
+1, −1, +1, −1, +1....

Denote r = Analytic rank. Then our [incorrect] Sign normalization is [falsely]
represented by (1)r−1 for even r with ϵ = 1 and resulting in +1; and by (i)r−1 for odd
r with ϵ = i [that satisfies (r − 1)th ”Root of Unity”] resulting in ±1. Intuitively, one
anticipate Sign changes to occur exactly when r ≡ 1, 2 (mod 4) but this is not true:
[I] For even r = 0, 2, 4, 6, 8, 10...; 1r−1 = (1)−1, (1)1, (1)3, (1)5, (1)7... = same +1 sign
[of +1, +1, +1, +1, +1,...]. c.f. [II] For odd r = 1, 3, 5, 7, 9, 11...; ir−1 = (i)0, (i)2,
(i)4, (i)6, (i)8... = alternating ±1 sign [of +1, −1, +1, −1, +1,...]. Combined signs =
+1, +1, +1, −1, +1, +1, +1, −1, +1, +1, +1, −1,... for r = 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11.... NOTE: In Z(t) plots: Number of nontrivial zeros with ’0’ value of {0, 1,
2, 3, 4, 5...} = r of {0, 1, 2, 3, 4, 5...} ∝ width of Z(t) = 0 value [which is of equal
length to the −ve left and +ve right of Origin point in self-dual L-functions].

All (even) Analytic rank 0 Genus 1 elliptic curves manifest Z(t) positivity without
exception. But (even) Analytic rank 0 Genus 0 non-elliptic curve Riemann zeta func-
tion / Dirichlet eta function manifest Z(t) negativity [pre-bug-fixing], and is called a
Pseudo-transitional curve (see Figure 6).

[Definition: An elliptic curve is semistable if it has multiplicative reduction at
every ”bad” prime.] All (odd) Analytic rank 3 Genus 1 elliptic curves manifest Z(t)
negativity [pre-bug-fixing] but we observe an exception for Pseudo-transitional curve
(see Figure 2) of semistable elliptic curve 5077.a1 {y2+y = x3−7x+6} that [instead]
manifests Z(t) positivity, has smallest conductor 5077 amongst elliptic curves over Q
of Analytic rank 3, 36 Integral points, one ”bad” prime at p = 5077 ≡ FpT = 1+O(T ),
Mordell-Weil group structure Z ⊕ Z ⊕ Z, Infinite order Mordell-Weil generators P =
(1, 0), (2, 0), (0, 2), Endomorphism ring Z that is NOT larger than Z =⇒ DO NOT
have Complex Multiplication. With associated L-function of degree 2, elliptic curve
5077.a1 has no rational isogenies and its isogeny class 5077.a consists of this elliptic
curve only. This elliptic curve is its own minimal quadratic twist.

History of Gauss elliptic curve 5077.a1: In 1985, Buhler, Gross and Zagier
used the celebrated Gross-Zagier Theorem on heights of Heegner points (see [4]) to
prove L-function of this curve has a zero of order 3 at its critical point s = 1, thus
establishing first part of BSD conjecture for this curve (see [1]). This was first time
that BSD had been established for any elliptic curve of rank 3. To this day, it is not
possible, even in principle, to establish BSD for any curve of rank ≥ 4 since there is no
known method for rigorously establishing the value of Analytic rank when it is > 3.
*We anticipate future Z(t) plots of nontrivial zeros (spectrum) for (odd) Analytic rank
5, 7, 9, 11... elliptic curves over Q, when available, should definitively (dis)prove our
[incorrect] Sign normalization*. Via Goldfeld’s method, which required use of an L-
function of Analytic rank at least 3, elliptic curve 5077.a1 also found an application in
context of obtaining explicit lower bounds for the class numbers of imaginary quadratic
fields. This solved Gauss’s Class Number Problem first posed by Gauss in 1801 in his
book Disquisitiones Arithmeticae (Section V, Articles 303 and 304).

Elliptic curves over Number field Q are classical 2-variable ”mixed”-polynomial-
degree 3 Genus 1 curves having degree 2 L-functions of Analytic rank 0, 1, 2, 3, 4, 5....
The Number field Q represented by Normalized defining polynomial ±x [or simply x]
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is the ”simplest” 1-variable polynomial-degree 1 Genus 0 (non-elliptic) curve having
L-function of Analytic rank 0. This curve is represented by Analytically continued (self-
dual) L-function [LMFDB Number field 1.1.1.1:Q] of Dirichlet eta function η(s), which
is derived from Riemann zeta function ζ(s); and DO NOT respect Z(t) positivity under
our [incorrect] Sign normalization [see Figure 6]. ζ(s) is the prototypical L-function,
the only L-function of degree 1 and conductor 1, and (conjecturally) the only primitive
L-function with a pole. It is a self-dual L-function that originated from Dirichlet
character χ1(1, ·) having even parity. Its unique pole is located at s = 1. The first
nontrivial zero of Analytic rank 0 η(s) [proxy function for ζ(s)], at height ≈14.134, is
higher than that of any other algebraic L-function. Then any other algebraic L-function
[with Analytic rank 0, 1, 2, 3, 4, 5...] will comparatively have more frequent nontrivial
zeros that first occur at a relatively lower height [for L-functions with Analytic rank
0], up to and including (lowest) height of 0 [for L-functions with Analytic rank 1 or
higher] . *As an example of Analytic rank 0 Genus 0 curves of degree 1 respecting
Z(t) positivity without exception: LMFDB Analytic rank 0 L-function 1-5-5.4-r0-0-
0 Genus 0 curve of degree 1 that originated from Dirichlet character χ5(4, ·) clearly
manifests Z(t) positivity. It has functional equation Λ(s) = 5s/2ΓR(s)L(s) = Λ(1− s).
After Riemann zeta function, the analytic conductor in this self-dual L-function (of
even parity with Sign: +1) is the smallest among L-functions of degree 1.*

4 Functional equations of Generic L-functions and
their associated Gamma factors

An (analytic) L-function is a Dirichlet series that has an Euler product and satisfies
a certain type of functional equation, and allows analytic continuation. Then this
L-function is also called Dirichlet L-function, associated with its Dirichlet L-series,
which can be meromorphically continued to the complex plane, have an Euler product

L(s, χ) =
∏
p

(1− χ(p)p−s)−1, and satisfy a functional equation of the form Λ(s, χ) =

q
s
2ΓR(s)L(s, χ) = εχΛ(1− s), where q is the conductor of χ.

The two complex functions ΓR(s) := π− s
2Γ(

s

2
) and ΓC(s) := 2(2π)−sΓ(s) that

appear in functional equation of an L-function are known as gamma factors. Here

Γ(s) :=

∫ ∞

0

e−tts−1dt is Euler’s gamma function, with poles located at s = 0, −1, −2,

−3, −4, −5.... The gamma factors satisfy ΓC(s) = ΓR(s)ΓR(s+1) and is also viewed as
”missing” factors of Euler product of an L-function corresponding to (real or complex)
archimedean places. Completely Predictable trivial zeros are zeros of an L-function

L(s) that occur at poles of its gamma factors. An L-function L(s) =

∞∑
n=1

ann
−s is called

arithmetic if its Dirichlet coefficients an are algebraic numbers. Thus for arithmetic
L-functions, the poles are at certain negative integers.

All known analytic L-functions have functional equations that can be written in

the form [whereby Λ(s) is now called the completed L-function] Λ(s) := N
s
2

J∏
j=1

ΓR(s+
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µj)

K∏
k=1

ΓC(s+ νk) · L(s) = εΛ(1− s) where N is an integer, ΓR and ΓC are defined in

terms of the Γ-function, Re(µj) = 0 or 1 (assuming Selberg’s eigenvalue conjecture),
and Re(νk) is a positive integer or half-integer,

∑
µj+2

∑
νk is real, and ε is the Sign

of functional equation. With these restrictions on spectral parameters [viz, the numbers
µj and νk that appear as shifts in gamma factors ΓR and ΓC (respectively)], the data in
the functional equation is specified uniquely. The integer d = J+2K is the degree of the
L-function. The integer N is the conductor (or level) of the L-function. The pair [J,K]
is the signature of the L-function. **The Sign ε, as complex number, appears as the
fourth component of the Selberg data of L(s); viz, (d,N, (µ1, . . . , µJ : ν1, . . . , νK), ε).
If all of the coefficients of the Dirichlet series defining L(s) are real, then necessarily

ε = ±1. If the coefficients are real and ε = −1, then L(
1

2
) = 0**.

The axioms of the Selberg class are less restrictive than given above. Note that the

functional equation above has the central point at s =
1

2
, and relates s ↔ 1 − s. As

already stated previously, for many L-functions there is another normalization which
is natural. The corresponding functional equation relates s ↔ w + 1 − s for some
positive integer w, called the motivic weight of the L-function. The central point is

at s =
(w + 1)

2
, and the arithmetically normalized Dirichlet coefficients ann

w/2 are

algebraic integers.
The gamma factor ΓR(s) in functional equation for even Analytic rank 0

polynomial-degree 1 Genus 0 curve with L-function of degree 1 η(s) / ζ(s) over Number
field K = Q as given by Normalized defining polynomial ±x / x [of polynomial-degree
1] is Λ(s) = ΓR(s)L(s) = Λ(1− s)

An L-function L(s) =

∞∑
n=1

ann
−s is called arithmetic if its Dirichlet coefficients an

are algebraic numbers. A rational L-function L(s) is an arithmetic L-function with
coefficient field Q; equivalently, its Euler product in the arithmetic normalization can

be written as a product over rational primes L(s) =
∏
p

Lp(p
−s)−1 with Lp ∈ Z[T ].

The gamma factor ΓR(s) is present in functional equations for Degree 3
Conductor 1 Sign 1 Genus 0 curve via (even) Analytic rank 0 dual L-
functions 3-1-1.1-r0e3-m0.24m25.28p25.52-0 AND its ”counterpart” related object
3/1/1.1/r0e3/p0.24p25.28m25.52/0 whereby both of these dual L-functions orig-
inated from e.g. GL3 Maass form that are NOT self-dual / NOT rational
/ NOT arithmetic. Their respective functional equations consist of Λ(s) =
ΓR(s − 25.2i)ΓR(s − 0.243i)ΓR(s + 25.5i)L(s) = Λ(1 − s) AND Λ(s) = ΓR(s +
25.2i)ΓR(s + 0.243i)ΓR(s − 25.5i)L(s) = Λ(1 − s). The t-valued [infinitely-many]
nontrivial zeros (spectrum) for them[5] as transcendental (irrational) numbers
are ...−22.812865, −19.882193, −17.687387, −16.327596, −14.304332, −12.718105,
−9.820639, −7.744307, −6.757323, −3.647261, 2.721292, 5.404222, 8.838084,
10.034902, 11.938378, 13.965832, 16.042992, 18.823934, 19.919083, 22.010794...
AND [with ”reverse” pattern] ...−22.010794, −19.919083, −18.823934, −16.042992,
−13.965832, −11.938378, −10.034902, −8.838084, −5.404222, −2.721292, 3.647261,
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Fig. 11 Graph of Z-function along [Analytically normalized] ℜ(s) =
1

2
-critical line for −∞ < t < ∞

depicting UNIQUE nontrivial zeros spectrum for Elliptic curve LMFDB label 389.a1 [with non-zero
Analytic rank of 2]. Note **Line Symmetry of vertical y-axis and trajectory intersecting Origin point.
Integral points are (−2, 0), (−2, −1), (−1, 1), (−1, −2), (0, 0), (0, −1), (1, 0), (1, −1), (3, 5), (3,
−6), (4, 8), (4, −9), (6, 15), (6, −16), (39, 246), (39, −247), (133, 1539), (133, −1540), (188, 2584),
(188, −2585).

6.757323, 7.744307, 9.820639, 12.718105, 14.304332, 16.327596, 17.687387, 19.882193,
22.812865... resulting in individual Z(t) plots having Z(t) positivity but manifesting
neither Line Symmetry nor Point Symmetry. However, they manifest the [combined]
Line Symmetry of vertical y-axis.

The gamma factor ΓC(s) in [Analytically normalized] functional equations for
polynomial-degree 3 Genus 1 elliptic curves with self-dual L-functions of degree 2 over
Number field K = Q e.g.:
even Analytic rank 2 E 389.a1 {y2 + y = x3 + x2 − 2x} [see Figure 11] is
Λ(s) = 389s/2ΓC(s+ 1/2)L(s) = Λ(2− s)
odd Analytic rank 3 E 5077.a1 {y2 + y = x3 − 7x + 6} [see Figure 2] is
Λ(s) = 5077s/2ΓC(s+ 1/2)L(s) = −Λ(2− s)
odd Analytic rank 3 E 21858.a1 {y2 + xy = x3 + x2 − 32x + 60} [see Figure 3] is
Λ(s) = 21858s/2ΓC(s+ 1/2)L(s) = −Λ(2− s)

The gamma factor ΓC(s) in [Analytically normalized] functional equation for odd
Analytic rank 1 polynomial-degree 3 Genus 1 E 14.1-b6 {y2 + xy+ y = x3 − 2731x−
55146} with self-dual L-function of degree 4 over Real quadratic field K = Q(

√
7) is

Λ(s) = 10976s/2ΓC(s+ 1/2)2L(s) = −Λ(2− s)
The gamma factor ΓC(s) in [Analytically normalized] functional equation for odd

Analytic rank 3 polynomial-degree 3 Genus 1 E 44563.1-a1 {y2 + axy + ay = x3 −
x2 +(−2a+ 1)x} with self-dual L-function of degree 4 over Imaginary quadratic field
K = Q(

√
−3) is Λ(s) = 401067s/2ΓC(s+ 1/2)2L(s) = −Λ(2− s)

The gamma factor ΓC(s) in [Analytically normalized] functional equation for odd
Analytic rank 3 polynomial-degree 4 Genus 2 curve 35131.a.35131.1 {y2 + x3y =
x4 − 3x3 +4x2 − 3x+1} with self-dual L-function of degree 4 over Number field K =
Q is Λ(s) = 35131s/2ΓC(s+ 1/2)2L(s) = −Λ(2− s)
Remark 4.1. We document some analyzed Genus 0, 1 and 2 curves with minimal
Weierstrass equations. Akin to satisfying unitary pairing condition at prime p e.g.
ΓR(s− 0.2)ΓR(s+ 0.2)ΓR(s)

3ΓR(s+ 0.9)ΓR(s+ 1.1)× ΓC(s+ 0.7)ΓC(s+ 1.3)2ΓC(s+
1.7)ΓC(s + 7) and ΓR(s − 0.2 + 3i)ΓR(s + 0.2 + 3i)ΓR(s + 1)ΓR(s + 1 − 8i) × ΓC(s +
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0.7)ΓC(s+1.3)ΓC(s+1.3− 7i)ΓC(s+1.7− 7i): ΓR(s) ⇔ ”good” primes and ΓC(s) ⇔
”bad” primes[2]. Involving gamma factor ΓC(s), all Analytic rank 0, 1, 2, 3, 4, 5...
e.g. the polynomial-degree 3 Genus 1 elliptic curves with L-functions of degree 2 over
Q satisfy Sign normalization which will likely depend on even-versus-odd Analytic
ranks, (BSD) Invariants, degree of L-function, Special value, etc.

5 Sign normalization on Graphs of Z-function as the
Z(t) plots of Nontrivial zeros

We adopt the traditional anti-clockwise notation of Quadrant (Q) I, II, III and IV.
We deduce our Q I Z(t) positivity / Q IV Z(t) negativity in Graphs of Z-function can
be further shortened, without ambiguity, to Z(t) positivity / Z(t) negativity for range
0 < t < +∞. The solutions to

√
x become ”larger values” for x sufficiently close to

0 e.g.
√
9 = 3,

√
4 = 2,

√
0.002 = ”larger value” 0.0447213...,

√
0.0002 = ”larger

value” 0.014142..., etc. Although this statement is true per se, it is not the reason for
performing LMFDB’s Sign normalization on Z(t) plots (see Axiom 1).

Analytic rank r of elliptic curves E consist of even r = 0, 2, 4, 6, 8, 10... [with

’+ve even’ Line symmetry, ε = 1 and ε
1
2 = +1 or −1 that can arbitrarily be chosen

to display Z(t) plots in two reciprocal manners ”+1 Z(t)” or ”−1 Z(t)”], and odd r

= 1, 3, 5, 7, 9... [with ’−ve odd’ Point symmetry, ε = −1 and ε
1
2 = +i or −i that

can arbitrarily be chosen to display Z(t) plots in two reciprocal manners ”+i Z(t)”
or ”−i Z(t)”]. Note: r = 0 for (non-elliptic) Riemann zeta function ζ(s) / Dirichlet

eta function η(s). Polar graphs e.g. all Analytically normalized σ =
1

2
-Critical Line

Polar graphs of E, Polar graph Figure 12 on σ =
1

2
-Critical Line for (non-elliptic)

ζ(s) / η(s), etc manifest features of even functions [when having even r] and odd
functions [when having odd r]. Caveat: The horizontal x-axis and vertical y-axis are
arbitrarily chosen such that Line Symmetry is [dependently] the horizontal x-axis for
Polar graphs having even r, but Point Symmetry is [independently] the Origin point
for Polar graphs having odd r. Cf: Line Symmetry is [dependently] the vertical y-axis
for Graphs of Z-functions having even r, but Point Symmetry is [independently] the
Origin point for Graphs of Z-functions having odd r. Considering 0 < t < +∞ range
in plotted trajectory of Polar graph or Graph of Z-function, let distance d = difference
between P1 (trajectory initially intersecting horizontal x-axis of Polar graph / vertical
y-axis in Graph of Z-function) and P2 (trajectory initially intersecting Origin point of
Polar graph / Graph of Z-function). Then (i) d = P2 − P1 ̸= 0 for r = 0 ζ(s) / η(s)
and for r = 0 E, and (ii) d = P2−P1 = 0 for r = 1, 2, 3, 4, 5... E [with these findings
being equally valid for −∞ < t < 0 range].

Axes definitions for Polar graph VERSUS Graph of Z-function. Complex
variable s = σ ± it for range −∞ < t < +∞. For complete validity, we notationally
replace ζ(s) (having Convergence for σ > 1) with η(s) (having Convergence for σ > 0)

since nontrivial zeros only occur at σ =
1

2
-Critical Line [whereby for elliptic curves, this

require Analytic normalization]. Polar graphs [e.g. represented by Figure 12, whereby
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Fig. 12 OUTPUT at σ = 1
2
-Critical Line. Polar graph of ζ( 1

2
+ ıt) / η( 1

2
+ ıt) plotted for real values

of t between −30 and +30 [viz, for s = σ ± ıt range]. Horizontal axis: Re{η( 1
2
+ ıt)}. Vertical axis:

Im{η( 1
2
+ ıt)}. Origin intercept points ≡ nontrivial zeros are present. There is manifested perfect

Mirror symmetry about horizontal x-axis acting as Line Symmetry.

its 0-dimensional σ =
1

2
-Origin point ≡ 1-dimensional σ =

1

2
-Critical Line]: Horizontal

axis is Re{η(1
2
± it)}. Vertical axis is Im{η(1

2
± it)}. Graph of Z-function: Horizontal

axis is variable t. Vertical axis is Z(t). We use Z(t) = ε
1
2
γ( 12 + it)

|γ( 12 + it)|
L(

1

2
+ it) [with

√
ϵ;

viz, with LMFDB’s Sign normalization]. One could also use Z(t) = ε
γ( 12 + it)

|γ( 12 + it)|
L(

1

2
+

it) [without
√
ϵ; viz, without LMFDB’s Sign normalization].

Let δ =
1

∞
[an infinitesimal small number value]. We select the square root

that makes Z(δ) +ve for very small +ve δ. Viz, eventhough it is a completely
arbitrary choice, we will always achieve [inevitable] standardization by choosing
whichever square root makes Z(δ) > 0 ≡ LMFDB’s Sign normalization. Then this
Sign normalization ≡ resultant manifestation of Z(t) positivity.

Let r = Analytic rank. Which square root we take; viz,
√
−1 = +i or −i for odd r

and
√
+1 = +1 or −1 for even r is exactly the one needed to make Z(δ) > 0. Example

1: Manifesting Z(t) positivity, the r = 1 self-dual L-function from semistable elliptic
curve 37.a1 (see Figure 1) requires

√
ϵ = +i. By way of note, this elliptic curve is

of minimal conductor with positive rank. It is also a model for quotient of modular
curve X0(37) by its Fricke involution w37; this quotient is also denoted X+

0 (37). This
is the smallest prime N ∈ N such that X0(N)/⟨wN ⟩ is of positive genus. Example
2: Manifesting Z(t) positivity, the r = 3 self-dual L-function from semistable elliptic
curve 5077.a1 (see Figure 2 and its famous history in section 3) requires

√
ϵ = −i.

Recall the following: The Sign (root number) of functional equation of an analytic
L-function is complex number ε that appears in the functional equation of Λ(s) =

εΛ(1 − s). An L-function L(s) =

∞∑
n=1

an
ns

is called self-dual if its Dirichlet coefficients
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an are real. Thus self-dual L-functions with odd Analytic rank must have Sign (root
number) −1, and with even Analytic rank must have Sign (root number) +1.

A character has odd/even parity if it is odd/even as a function. The dual of an L-

function L(s) =

∞∑
n=1

an
ns

is the complex conjugate L̄(s) =

∞∑
n=1

ān
ns

. A Dirichlet character

χ : Z → C is odd if χ(−1) = −1 and even if χ(−1) = 1. The L-function 1-5-5.2-
r1-0-0, as an example of Genus 0 curve dual L-function of Analytic rank 0 degree 1
odd parity, originate from Dirichlet character χ5(2, ·) [see Figure 7] with having its
functional equation as Λ(s) = 5s/2ΓR(s + 1)L(s) = (0.850 + 0.525i)Λ(1 − s). Here,
the Sign (root number) of 0.850 + 0.525i for [NOT self-dual] L-function 1-5-5.2-r1-
0-0 could be anything of modulus 1. In contrast: Respectively, the Analytic rank 0
degree 1 L-function 1-2e2-4.3-r1-0-0 having odd parity and 1-2e3-8.5-r0-0-0 having
even parity as two examples of Genus 0 curve, originating from Dirichlet character
χ4(3, ·) and χ8(5, ·), have functional equations Λ(s) = 4s/2ΓR(s + 1)L(s) = Λ(1 − s)
and Λ(s) = 8s/2ΓR(s + 1)L(s) = Λ(1 − s). The Sign (root number) ϵ is +1 because
both [even Analytic rank 0] L-functions are self-dual.

The nontrivial zeros, as denoted by +ve R γ values, of an L-function L(s) are

complex numbers ρ for which L(ρ) = L(
1

2
+ iγ) = 0. (Hardy or Riemann-Siegel) Z-

function for Genus 0 curve Riemann zeta-function ζ(s) / Dirichlet eta function η(s)
is a real-valued function defined in terms of values of ζ(s) / η(s) on Critical Line via

formula Z(t) := eiθ(t)ζ

(
1

2
+ it

)
/ Z(t) := eiθ(t)η

(
1

2
+ it

)
, where θ(t) is Riemann-

Siegel theta function θ(t) := arg

(
Γ

(
2it+ 1

4

))
− log π

2
t. There is a bijection between

zeros t0 of Z(t) and zeros
1

2
+ it0 of ζ(s) / η(s). Here, ζ(s) =

η(s)

γ
≡ η(s) = γ · ζ(s)

whereby γ = (1− 21−s) is the proportionality factor.
Z-function of a general L-function is a smooth real-valued function of a real variable

t such that |Z(t)| = |L(1
2
+ it)|. Specifically, if we write the completed L-function as

Λ(s) = γ(s)L(s), where Λ(s) satisfies functional equation Λ(s) = εΛ(1− s), then Z(t)

is defined by Z(t) = ε
1
2
γ( 12 + it)

|γ( 12 + it)|
L(

1

2
+ it). Reiterating: In portion ϵ

1
2 =

√
ϵ, the

square root is chosen so that Z(t) > 0 for sufficiently small t > 0 ≡ LMFDB’s Sign
normalization. The multiset of zeros of [perpetual oscillatory function] Z(t) matches

that of L(
1

2
+it) and Z(t) changes sign [for infinitely-many times] at zeros of L(

1

2
+it)

of odd multiplicity.
Analogical concepts for LMFDB’s Sign normalization: Recall the parity of (simple)

polynomial functions to be EITHER ± even functions OR ± odd functions: [I] e.g.
y = ±x0,2,4,6,8,10... being even functions with corresponding entire functions of −∞ <
x < +∞ range are located in Quadrant I and II when ”y is a +ve function” and in
Quadrant III and IV when ”y is a −ve function”. [II] e.g. y = ±x1,3,5,7,9,11... being odd
functions with corresponding entire functions of −∞ < x < +∞ range are located in
Quadrant I and III when ”y is a +ve function” and in Quadrant II and IV when ”y
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is a −ve function”. Nomenclature: Let elliptic curve be denoted by E. Let y and its
exponents be denoted by ±Z(t) and r. We analyze 0 < t < +∞ range utilizing the
[so-called] ”first sinusoidal wave” of plotted Z-function for E whereby we arbitrarily
choose in a consistent de-facto manner +Z(t) in even r [viz, Q I Z(t) positivity], and
+Z(t) in odd r [viz, Q I Z(t) positivity]. Our analogical equivalent approach to Sign
normalization is valid despite Z(t) plots perpetually oscillating above/below horizontal
t axis an infinite number of times after the ”first sinusoidal wave”.

Additionally through various Incompletely Predictable complex interactions, we
intuitively expect frequency and complexity of nontrivial zeros (spectrum) and the
integer N values of conductor (or level) in self-dual L-functions of elliptic curves to be
empirically correlated with Analytic rank 0, 1, 2, 3, 4, 5....

6 Conclusions

Irrespective of L-function source and always with one UNIQUE set of nontrivial zeros
per each L-function, the infinitely-many nontrivial zeros as Incompletely Predictable

entities are ONLY located on (Analytically normalized) σ =
1

2
-Critical Line. With

respecting Remark 2.1, this profound statement insightfully describe intractable open
problem in Number theory of (Generalized) Riemann hypothesis. Graphs of Z-function
on Genus 1 elliptic curves with non-zero Analytic rank 1, 2, 3, 4, 5... have trajectories
that intersect Origin point. Graphs of Z-function on Genus 1 elliptic curves with Ana-
lytic rank 0 [viz, having zero independent basis point (with infinite order) which are
associated with either finitely many or zero E(Q) solutions] DO NOT have trajectories
that intersect Origin point. Ditto for Graph of Z-function on Genus 0 (non-elliptic)
Riemann zeta function / Dirichlet eta function with Analytic rank 0 [viz, it DOES
NOT have trajectory that intersect Origin point]. This implies ”simplest version” of
BSD conjecture to be true; and simultaneously implies ”simplest version” of Riemann
hypothesis to be true (with rigorous proof previously provided in [7]). Adopting the Z(t)
positivity in Graphs of Z-function as part of LMFDB’s Sign normalization occurs for
both odd and even Analytic rank elliptic curves. Geometrically studying non-trivial
zeros (spectrum) using Graphs of Z-function plots versus Polar graphs plots to detect
altered patterns, symmetry, frequency, etc promises to be a useful [experimental ]
method to characterize L-functions of Analytic rank 0, 1, 2, 3, 4, 5....

L-functions literally encode arithmetic information e.g. Riemann zeta function
connects through values at +ve even integers (and −ve odd integers) to Bernoulli
numbers, with appropriate generalization of this phenomenon obtained via p-adic
L-functions, which describe certain Galois modules. The distribution of nontrivial
zeros (spectrum), orders, and conductors, often manifesting as self-similarity or large
fractal dimension, are theoretically connected to Chaos theory and Fractal geometry,
random matrix theory and quantum chaos.
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