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We propose the existence of a topological object, a Newtonian knot, in the framework of an Abelian
Chern-Simons gravity with a small but non-zero negative cosmological constant in empty (2+1)-dimensional
anti-de Sitter space-time. This proposal is based on the idea that the Ricci curvature tensor consists of a set
of curvature components satisfying the non-trivial Hopf maps, leading to topological structures. Working
within the Abelian Chern-Simons (first-order) framework, where the dreibein and spin connection are treated
as independent fields, we derive the corresponding field equations and present ansatz solutions for both fields.
Our results suggest that the Newtonian knot may be a novel topological feature in low-dimensional gravity.
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I. INTRODUCTION

It has been widely believed that topological objects
can not exist in linear theories. Topological theories are
inherently non-linear1. How, then, could a topological
object, like a Newtonian knot, exist in the linear theory,
such as an Abelian Chern-Simons theory?

It is well known that the general theory of gravitation
is identical to a gauge theory2–6. Cartan gravity makes
general relativity similar to a gauge theory.

The formulation of a gravitational knot for a
non-Abelian Chern-Simons action in empty (2+1)-
dimensional space-time has been proposed4,5,7–9. Also,
a weak gravitational knot and the Newtonian knot in
empty (2+1)-dimensional de Sitter space-time with a
small but non-zero positive cosmological constant has
been constructed10,11.

In this article, we propose the existence of a Newtonian
knot in empty (2+1)-dimensional anti-de Sitter space-
time formulated as an Abelian Chern-Simons action with
a small but non-zero negative cosmological constant writ-
ten using the Clebsch variables. The Newtonian limit is
related to the weak gravitational field and the objects
(e.g. the orbits of planets around the Sun) move very
slowly compared to the velocity of light. To the best of
our knowledge1,4,5,7–9,12–18, the formulation of such knot
has not been done yet.

We assume that, in analogy to the linearized Ricci cur-
vature tensor in (3+1)-dimensional space-time, the lin-
earized Ricci curvature tensor (with a small but non-
zero negative cosmological constant) is valid in (2+1)-
dimensional space-time. The existence of a topological
structure in empty three-dimensional space-time grav-
ity is similar to that in Maxwell’s theory of a vacuum1.
What we mean by an empty space-time is a space-time
where there is no matter source present and there exist

no physical fields except the gravitational field19. This
gravitational field does not disturb the emptyness, but
other fields do19. A vacuum is defined as a space with-
out charge and current20.

Analogous to Maxwell’s theory of a vacuum where
the field strength tensor could consist of a set of sub-
set fields1,21, complex scalar fields, we propose that the
Ricci curvature tensor (the set of the solutions of Ein-
stein field equations) could consist of a set of curvature
components, complex scalar potentials. So, scalar fields
in Maxwell’s theory are analogous to scalar potential in
gravity theory. This set of curvature components, such as
a set of subset fields, satisfies the non-trivial Hopf maps.
It means that the non-trivial Hopf maps could describe
the properties of a set of curvature components.

A set of curvature components is locally equal to the
linearized Ricci curvature tensor, i.e. the linearized Ricci
curvature tensor can be obtained by patching together
a set of curvature components (except in a zero-measure
set) but globally different. The difference is global, in-
stead of local, since a set of curvature components obeys
the topological quantum condition, but the linearized
Ricci curvature tensor does not. The linearized Ricci cur-
vature tensor satisfies the linear Ricci theory, but a set of
curvature components satisfies the non-linear Ricci the-
ory. Both, the linearized Ricci curvature tensor and a
set of curvature components, satisfy the linear Ricci the-
ory in the case of a weak-field limit where the non-linear
Ricci theory reduces to the linear Ricci theory.

II. METRIC PERTURBATIONS AS POTENTIALS

In gravity theory, the linearized metric perturbations
take a role as ”potentials”22. We consider these linearized
metric perturbations analogous to a set of curvature com-



ponents, scalar potentials. Because scalar potentials or
scalar fields could be complex, we consider that the lin-
earized metric perturbations could also be complex. In
the language of a wave, the linearized metric perturba-
tions could be written as23

h = ρ(~r, t) eiq(~r,t), h∗ = ρ(~r, t) e−iq(~r,t) (1)

where ρ(~r, t) is the amplitude, q(~r, t) is the phase, h∗ is
the complex conjugate of h, i is an imaginary number, ~r
is a position vector, t is time. From eq.(1), we take the
physical perturbation as its real part24.

The related (real) vector potential could be written as

hµ = f ∂µq (2)

where the Greek index, µ, denotes space-time coordi-
nates. In the (2+1)-dimensional space-time µ = 0, 1, 2.
The amplitude function, f , can be written as below

f = −1/
{

2π(1 + ρ2)
}

(3)

Here f and q are the Clebsch variables25 or the Gaussian
potentials7,26. Both, f and q, are scalars.

We will see that this vector potential (2) could be re-
lated to, in terms of the Cartan gravity, the gauge fields
(the dreibein, the spin connection). Following, we will
show that a set of curvature components satisfies the
non-trivial Hopf maps.

III. HOPF MAPS

The properties of a set of curvature components or the
complex scalar potentials could be described by the non-
trivial Hopf maps written below

h(~r), h∗(~r) : S3 → S2 (4)

where S3 and S2 denote the three and two-dimensional
spheres (space), respectively.

The Hopf maps (4) can be classified in homotopy
classes, labeled by the value of the corresponding
Hopf indexes, integer numbers, and the topological
invariants1,21. The other names of the topological invari-
ants are the topological charge, the winding number (the
degree of a continuous mapping). The topological charge
is metric tensor-independent. It could be interpreted as
energy27.

There exists (one) dimensional space reduction in the
Hopf maps (4). We interpret this dimensional reduction
as a consequence of the isotropic (well-defined) property
of the scalar potential for an infinite r. A set of curvature
components consisting of the complex scalar potentials
has properties that, by definition, its value for a finite
distance, r, depends on the magnitude and the direction
of the position vector, ~r. Still, for an infinite r, it is well-
defined21 (it depends on the magnitude only). In other
words, for an infinite r, the scalar potential is isotropic.

We see that these complex scalar potentials which sat-
isfy the non-trivial Hopf maps (4) are time-independent.

Analogous to the time-independent complex scalar fields,
this problem could be solved by interpreting some of the
quantities that appear in Hopf’s theories as Cauchy’s ini-
tial time values25.

IV. GAUGE POTENTIAL AND GAUGE FIELDS

We interpret the vector potential (2) as the gauge po-
tential which could be decomposed into the gauge fields
written below4,5,7

Aµ = eaµ Pa + ωaµ Ja (5)

where eaµ and ωaµ are components of the dreibein and the
spin connection, respectively. Pa, Ja, are the generators
of translation and Lorentz rotation of ISO(2,1) Poincare
group, respectively. The Latin index, a, denotes the local
Lorentz index. Eq.(5) shows that the dreibein and the
spin connection are treated as independent gauge fields.

The linearized Ricci curvature tensor in the case of
the weak-field limit and a small but non-zero negative
cosmological constant, Λ < 0, |Λ| << 1, can be written
as10

Raνρ = ∂νω
a
ρ − ∂ρωaν −

Λ

3
εabc e

b
ν e

c
ρ (6)

where εabc is the Levi-Civita symbol which has a role
as the structure constants (the structure coefficients)28,
showing explicitly there exists an interaction between the
dreibein. Eq.(6) is a linear equation in terms of the spin
connection. The cosmological constant, Λ, is a dimen-
sionful parameter with units of (length)−229. It is equiv-
alent to the energy density of the vacuum29,30. The cos-
mological constant is vanishingly small compared to the
energy scale of, say, the Planck scale31.

The extension to the Newtonian limit could be worked
by neglecting time derivatives in the linearized Ricci cur-
vature tensor (6), we obtain

Ratj = −∂jωat −
Λ

3
εabc e

b
t e

c
j (7)

and

Rajk = ∂jω
a
k − ∂kωaj −

Λ

3
εabc e

b
j e

c
k (8)

where t denotes the time index, j, k = 1, 2, denote spatial
indices.

V. ABELIAN CHERN-SIMONS ACTION

Using the linearized Ricci curvature tensor written in
eqs.(7), (8), an Abelian Chern-Simons action could be
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written as below

ICS =

∫
M

{
εitj eia

(
−∂jωat −

Λ

3
εabc e

b
t e

c
j

)

+ εijk eia

(
∂jω

a
k − ∂kωaj −

Λ

3
εabc e

b
j e

c
k

)}
d2+1x

(9)

This Abelian Chern-Simons action, (9), is topological32.

VI. FIELD EQUATIONS

The field equations can be derived by applying the vari-
ational principle to an Abelian Chern-Simons action, (9),
concerning the dreibein and the spin connection. We ob-
tain the field equations as written below

εijk ∂jeia = 0 (10)

εitj (−∂jωat −
Λ

3
εabc e

b
t e

c
j)

+ εijk (∂jω
a
k − ∂kωaj −

Λ

3
εabc e

b
j e

c
k) = 0 (11)

Eqs.(10), (11), are the field equations obtained by vary-
ing the spin connection and the dreibein, respectively.
Eq.(10) shows that the dreibein satisfies the torsion-free
condition. Eq.(11) is analogous to Einstein field equa-
tions in an empty (3+1)-dimensional space-time.

We would like to point out that the invertibility of the
dreibein is essential to ensure that the metric remains
non-singular, thereby maintaining a well-defined space-
time structure. This condition guarantees the existence
of a globally well-defined inverse dreibein at every point
in space-time, preventing degeneracies (the vanishing of
the determinant of the dreibein matrix) that could lead
to ill-defined geometries.

VII. NEWTONIAN KNOT AS SOLUTION

The Newtonian knot in this context is the special solu-
tion of eqs.(10), (11). Consequently, the linearized Ricci
curvature tensor, especially the dreibein and the spin
connection, has a non-trivial topology. In other words,
we could say that the Newtonian knot has a non-trivial
holonomy, anholonomy. What we mean with anholon-
omy here is after parallel transporting the phase gradi-
ent along a closed curve (loop) in a given space-time and
then bringing it back to its starting point, the phase gra-
dient has rotated or changed due to the curvature of the
space-time.

Analogous to hydrodynamics, eq.(10) is identical to
the curl-free velocity, Ω = 0, where the vorticity Ω =
εij ∂ivj

26, vj is the velocity. We see from (10) that the
dreibein is identical to the velocity, and the vorticity is
identical to the curvature. Eq.(10) imposes a constraint

on the components of the dreibein. The consequence
of the curl-free vector field, such as the velocity or the
dreibein, is the vector field could be written as the gra-
dient of a scalar function33. It implies that the dreibein
could be written as

eia = fe ∂iqea (12)

where fe is an amplitude function of the dreibein and qea
is the dreibein phase. This formulation of the dreibein
(12) is analogous to the vector potential (2), where fe is
analogous to eq.(3).

Mathematically, to ensure that the curl-free vector field
can be replaced by the gradient of a scalar function, we
should take the scalar function fe (12) as a constant, so
that its derivative vanishes. Analogous to electromag-
netism the amplitude is constant in a vacuum, the am-
plitude is constant in an empty space-time (we assume
that vacuum is analogous to an empty space-time), and
we could take it has a very small value but non-zero, so
that ρ2 in eq.(3) could be ignored. Then, eq.(3) becomes

fe = −1/2π (13)

This value of fe satisfies the mathematical requirement
that the scalar function fe is a constant. A very small but
non-zero amplitude combined with the neglect of time
derivatives of the spatial components of the spin connec-
tion is consistent with the Newtonian limit.

The phase q is mathematically well-defined as long as
the amplitude is not equal to zero. Because, if the ampli-
tude is zero then the linearized metric perturbation (1)
is also zero. It implies that the phase becomes physically
meaningless or undetermined since any phase choice gives
the same trivial result.

In an empty space-time where the amplitude is con-
stant and has a very small value but not zero, the phase
could be a multivalued function. This multi-valued func-
tion of the phase is the consequence of the non-trivial
topology of the linearized Ricci structure as we men-
tioned previously. The multi-valued phase could be writ-
ten as

qea = mθea + crea (14)

where m is an integer number, c is a constant. Eq.(14)
is the dreibein phase ansatz.

By substituting eqs.(13), (14), into (12), we obtain

eia = − 1

2π
∂i(mθea + crea) (15)

Eq.(15) is the dreibein ansatz. Analogous to eq.(15), we
have

ebt = − 1

2π
∂t(mθ

b
e + crbe) (16)

ebj = − 1

2π
∂j(mθ

b
e + crbe) (17)

ecj = − 1

2π
∂j(mθ

c
e + crce) (18)
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eck = − 1

2π
∂k(mθce + crce) (19)

Let us see whether the dreibein ansatz (15) satisfies as
the solutions of the field equations (10). By substituting
eq.(15) into (10), we obtain

− 1

2π
εijk ∂j∂i(mθea + crea) = 0 (20)

Eq.(20) shows that the dreibein ansatz (15) satisfies the
solutions of the field equations for the dreibein (10). The
zero result is due to the second derivative of an integer,
m, and a constant, c.

Let us analyze the field equations of the spin connec-
tion (11). Since the spin connection is also a fundamental
field derived from the Abelian Chern-Simons action such
as the dreibein, its structure is expected to exhibit sim-
ilar topological features, making it reasonable to assume
a similar gradient-based form such as the dreibein. So,
we assume that the solution of eq.(11) is analogous to
eq.(12), written below

ωat = fω ∂tq
a
ω (21)

ωaj = fω ∂jq
a
ω (22)

ωak = fω ∂kq
a
ω (23)

where fω, qaω, are the amplitude function and the phase of
the spin connection, respectively. Eq.(21) suggests that
even in a Newtonian limit, the system may exhibit slowly
evolving topological or geometric phases. We consider
that, due to the spin connection and the dreibein being
independent, the phases of the spin connection and the
dreibein are also independent.

In an empty space-time, such as the amplitude func-
tion and phase of the dreibein, we take the values of the
amplitude function of the spin connection as follows

fω = −1/2π (24)

and the multi-valued spin connection phase as

qaω = mθaω + craω (25)

By substituting eqs.(24), (25), into (21), (22), (23), we
obtain

ωat = − 1

2π
∂t(mθ

a
ω + craω) (26)

ωaj = − 1

2π
∂j(mθ

a
ω + craω) (27)

ωak = − 1

2π
∂k(mθaω + craω) (28)

By substituting eqs.(16)-(19), (26)-(28), into eq.(11),
we obtain

εitj

(
∂j∂t(mθ

a
ω + craω)

− 1

2π

Λ

3
εabc ∂t(mθ

b
e + crbe) ∂j(mθ

c
e + crce)

)

+
1

2π
εijk

(
[∂k, ∂j ](mθ

a
ω + craω)

− 1

4π2

Λ

3
εabc ∂j(mθ

b
e + crbe) ∂k(mθce + crce)

)
= 0

(29)

The non-commutativity in eq.(29) could be written as

[∂k, ∂j ] = fkjl ∂l (30)

where fkjl are the non-zero antisymmetric structure coef-
ficients (the structure constants), the non-zero constants.
This non-zero commutation relation in eq.(26) arises be-
cause space has a non-commutative structure (an intrin-
sic curvature).

By substituting eq.(30) into (29), we obtain

εitj

(
∂j∂t(mθ

a
ω + craω)

− 1

2π

Λ

3
εabc ∂t(mθ

b
e + crbe) ∂j(mθ

c
e + crce)

)

+
1

2π
εijk

(
fkjl ∂l(mθ

a
ω + craω)

− 1

4π2

Λ

3
εabc ∂j(mθ

b
e + crbe) ∂k(mθce + crce)

)
= 0

(31)

Eq.(31) suggests that the non-commutative nature of
space is induced by the presence of a cosmological con-
stant. In other words, the structure constants, fkjl,
which determine the non-commutativity of spatial deriva-
tives, could be a consequence of a non-zero cosmological
constant. This aligns with the idea that a curved space
(e.g., with constant curvature due to the cosmological
constant) naturally leads to a modification of coordinate
algebra, making the space non-commutative.

VIII. STABILITY OF NEWTONIAN KNOT

A physical system is considered stable if small pertur-
bations do not grow uncontrollably over time. Math-
ematically, this means that the perturbation equations
should not have exponentially growing solutions in time.
To examine the stability of our model, we need to ana-
lyze the evolution of perturbations in the dreibein and
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spin connection fields and determine whether they re-
main bounded over time.

Let us define the perturbations to the dreibein and spin
connection, respectively, as follows

eia = e0
ia + δeia, e

b
t = eb0t + δebt , e

c
j = ec0j + δecj

ebj = eb0j + δebj , e
c
k = ec0k + δeck (32)

ωat = ωa0
t + δωat , ω

a
j = ωa0

j + δωaj

ωak = ωa0
k + δωak (33)

where e.g. e0
ia are the unperturbed solutions or the equi-

librium configurations of the dreibein, δeia are the small
perturbations from the equilibrium. The same applies to
the spin connection.

By substituting eqs.(32)-(33) into the field equations,
(10), (11), we obtain the linearized perturbation equa-
tions written as below

εijk ∂jδeia = 0 (34)

εitj
{
−∂jδωat −

Λ

3
εabc (eb0t δecj + δebt e

c0
j )

}
+ εijk

{
∂jδω

a
k − ∂kδωaj −

Λ

3
εabc (eb0j δeck + δebj e

c0
k )

}
= 0 (35)

Eq.(34) imposes a topological constraint on the spatial
fluctuations of the dreibein. This suggests that the fluc-
tuations must satisfy a divergence-free condition. Eq.(35)
shows that the non-commutativity of the spin connection
variation arises from the structure of the original field
equations. This is a crucial point because it indicates
that the perturbations in the dreibein and spin connec-
tion are not independent, but instead are linked through
the Λ-dependent terms. Eqs.(34), (35), are called lin-
earized perturbation equations because they keep only
first-order terms in the perturbations which are linear.

The terms −Λ
3 εabc (eb0t δecj + δebt e

c0
j ) and similar ex-

pressions in eq.(35) act as mass-like terms. These terms
effectively provide a stabilizing effect by suppressing large
perturbation growth. It means that the cosmological
constant has a role as a stabilizing factor. A small but
non-zero negative cosmological constant restricting fluc-
tuation modes means that it places constraints on the
perturbations or fluctuations that can exist in the phys-
ical system. What we mean by the fluctuation modes
refers to the small deviations from the background field
configuration. These fluctuations are describing how the
physical system deviates from the equilibrium.

A small but non-zero negative cosmological constant
indeed defines a fundamental curvature scale in space-
time which could be written as34,35

lΛ ∼ 1/
√
|Λ| (36)

where lΛ is the characteristic length scale, the curvature
radius of anti de Sitter space-time which sets a lower

bound on the Newtonian knot structure sizes. The pres-
ence of this characteristic length scale prevents the New-
tonian knot from collapsing to an arbitrarily small size.
This means that the topology of the Newtonian knot is
protected from the singular behaviour at scales smaller
than lΛ. The classical constraint imposed by lΛ ensures
that the Newtonian knot can not shrink below that crit-
ical size, maintaining its topological stability.

IX. DISCUSSION AND CONCLUSION

A small but non-zero negative cosmological constant
contributes to the stability of the Newtonian knot by
modifying the perturbation dynamics, regulating fluctu-
ations through mass-like terms, the non-commutativity
constraints, and introducing a characteristic length scale
that acts as a classical constraint, setting a lower bound
on the critical size of the Newtonian knot.

We consider that due to the dreibein being indepen-
dent of the spin connection, then the dreibein and spin
connection phases are also independent. This suggests
that the dreibein and spin connection have their dis-
tinct phase structures. The dreibein phase comes from
the transformation properties of the local frame related
to diffeomorphisms (translations), while the spin con-
nection phase is associated with local Lorentz rotations.
The dreibein phase governs local frame orientation, the
spin connection phase governs local curvature and paral-
lel transport.

The existence of a multi-valued phase is crucial in
defining the topological properties of the system, par-
ticularly those associated with anholonomy. If the phase
is single-valued then the space-time does not support the
existence of the topological object which in our case is
the Newtonian knot.

Empirical or observational evidence supporting the
existence of the Newtonian knot in empty (2+1)-
dimensional anti de Sitter space-time is ensured by the
formal equivalence between the Newtonian knot and the
electromagnetic knot in vacuum Maxwell theory, where
knot solutions are known to exist.

As an addition, we consider that the existence of the
Newtonian knot in empty (2+1)-dimensional space-time
with the small but non-zero negative cosmological con-
stant does not support the wide belief36,37 that there ex-
ists no Newtonian limit in (2+1)-dimensional space-time.
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