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I. INTRODUCTION

It has been widely believed that topological objects
can not exist in linear theories. Topological theories are
inherently non-linear1. How, then, could a topological
object, like a gravitational knot, exist in the linear theory,
such as an Abelian Chern-Simons theory?

It is well known that the general theory of gravitation
is identical to a gauge theory2–6. Maxwell’s theory of
electromagnetism and Einstein’s theory of gravitation are
identical where the gauge potential and the field strength
tensor in Maxwell’s theory (in general, a non-Abelian
gauge theory, such as Yang-Mills theory) are identical
to the connection and the curvature in general relativ-
ity, respectively2. Both theories are the gauge theories,
where Maxwell’s theory is an Abelian U(1) gauge theory
of internal space and general relativity can be treated
as the gauge theory of translation of (3+1)-dimensional
(external) space-time3. The vierbein formalism of gen-
eral relativity (Cartan gravity) makes general relativity
similar to a gauge theory4. Nevertheless, in the case of
(3+1)-dimensional space-time, general relativity and a
gauge theory are definitely not equivalent. But, they are
precisely equivalent in (2+1)-dimensional space-time4.

Roughly speaking, gravity theory in (2+1)-
dimensional space-time is a simpler model than
general relativity in (3+1)-dimensional space-time.
Gravity theory in (2+1)-dimensional space-time shares
the important conceptual features of general relativ-
ity in (3+1)-dimensional space-time while avoiding
some of the computational difficulties. As a generally
covariant theory of space-time, (2+1)-dimensional
gravity has the same conceptual foundation as realistic
(3+1)-dimensional general relativity5.

With a few exceptions, (2+1)-dimensional solutions
are physically quite different from those in 3+1 dimen-
sions. The 2+1 dimensional model is not very helpful for
understanding the dynamics of realistic quantum grav-
ity. But for the analysis of conceptual problems e.g. the
nature of time, the construction of states and observable,

the role of topology and topology change, the model has
proven highly instructive5. In (2+1)-dimensional space-
time gravity, the dynamics is topology7. The (2+1)-
dimensional gravity theory could be interpreted as a
Chern-Simons three form4. The Chern-Simons theory
is topological gauge theory in (2+1)-dimensional space-
time7, where the Chern-Simons action precisely coincides
with the (2+1)-dimensional space-time of the Einstein-
Hilbert action4,6.

The Einstein-Hilbert action in (2+1)-dimensional
space-time, without a cosmological constant, is equiva-
lent to a gauge theory with gauge group ISO(2,1) and a
pure Chern-Simons action4. If we include a cosmologi-
cal constant in (2+1) general relativity, then Minkowski
(flat) space-time is replaced by space-time with a con-
stant curvature: de Sitter or anti-de Sitter depending on
the sign of a cosmological constant (plus for de Sitter
and minus for anti-de Sitter), and gauge group ISO(2,1)
is replaced by SO(3,1) or SO(2,2)4.

If the relation between general relativity and Chern-
Simons gauge theory is valid at the quantum level, then
there is a close relationship between general relativity and
knot theory, at least in (2+1)-dimensional space-time,
since Chern-Simons gauge theory in (2+1)-dimensional
space-time is intimately connected with knot theory4.
We consider the quantum level here to be related to the
topological quantum condition, the discreteness.

The formulation of a gravitational knot for a non-
Abelian Chern-Simons action in (2+1)-dimensional
empty space-time has been proposed4,6–9. In this arti-
cle, we propose the existence of a gravitational knot in
the weak-field limit in (2+1)-dimensional empty space-
time formulated as an Abelian Chern-Simons action with
a small positive cosmological constant written using the
Clebsch variables. To the best of our knowledge1,4,6–16,
the formulation of such weak gravitational knot has not
been done yet.

We assume that a topological structure in three-
dimensional gravity is similar to that in Maxwell’s theory
of vacuum space1. Analogous to the linearized Ricci cur-



vature tensor in (3+1)-dimensional space-time, the lin-
earized Ricci curvature tensor (with a small positive cos-
mological constant) in the case of the weak-field limit is
assumed to be valid in (2+1)-dimensional space-time.

In analogy to Maxwell’s theory of vacuum space where
the field strength tensor could consist of a set of sub-
set fields1,17, complex scalar fields, we propose that the
Ricci curvature tensor (the set of the solutions of Einstein
field equations) could consist of a set of curvature com-
ponents, complex scalar potentials. This set of curvature
components, such as a set of subset fields, satisfies the
non-trivial Hopf maps. This means that non-trivial Hopf
maps can describe the properties of a set of curvature
components.

A set of curvature components is locally equal to the
linearized Ricci curvature tensor, i.e. the linearized Ricci
curvature tensor can be obtained by patching together
a set of curvature components (except in a zero-measure
set) but globally different. The difference is global, in-
stead of local, since a set of curvature components obeys
the topological quantum condition, but the linearized
Ricci curvature tensor does not. The linearized Ricci cur-
vature tensor satisfies the linear Ricci theory, but a set of
curvature components satisfies the non-linear Ricci the-
ory. Both, the linearized Ricci curvature tensor and a set
of curvature components, satisfy the linear Ricci theory
in the case of a weak-field limit. This means that, in the
case of a weak-field limit, the non-linear Ricci theory is
reduced to the linear Ricci theory.

This article is organized as follows. In Section II,
we discuss in brief the (3+1)-dimensional gravity in
the case of sourceless and without a cosmological con-
stant. In Section III, the (2+1)-dimensional gravity in
the case of sourceless, without and with a cosmological
constant. In Section IV, we identify the relation between
the Einstein-Hilbert and the Chern-Simons actions in
(2+1)-dimensional space-time. In Section V, linearized
metric perturbations, scalar, and vector potentials are
discussed. In Section VI, we discuss in brief a set of cur-
vature components and Hopf maps. In Section VII, the
Hopf invariant, Hopf index, and Chern-Simons action are
discussed. Section VIII, we formulate the non-linear and
linear Ricci theories using complex scalar potentials and
vector potential in terms of the Clebsch variables. In Sec-
tion IX, the relation between the gauge potential and the
gauge fields is described. We formulate the gauge fields
in terms of Clebsch variables. In Section X, we formulate
the weak gravitational knot. In Section XI, a discussion
and conclusion are given.

II. (3+1) GRAVITY

The Einstein field equations in (3+1)-dimensional
space-time can be written as

Gµν + Λ gµν = −8πG Tµν (1)

where

Gµν ≡ Rµν −
1

2
gµν R (2)

Gµν is Einstein tensor, Rµν is the Ricci curvature tensor,
gµν is metric tensor, R is the Ricci scalar curvature, Λ is
a cosmological constant, G is the gravitational coupling
constant (the generalization to other dimensions of New-
ton’s constant)8, Tµν is the energy-momentum tensor of
matter.

A. Tµν = 0, Λ = 0

What we mean with an empty space-time is a vac-
uum space-time, Rµν = 0, where there is no matter
source present, Tµν = 0, and there exists no physical
fields except the gravitational field18. This gravitational
field does not disturb the emptyness, but other fields
do18. Einstein assumed that in (3+1)-dimensional empty
space-time, it constitutes his law of gravitation18.

In the absence of matter and without cosmological con-
stant, the Einstein field equations (1), (2), read9

Gµν ≡ Rµν −
1

2
gµν R = 0 (3)

In general, the vanishing of Gµν , hence of Rµν and R,
does not imply that the Riemann curvature tensor is zero,
i.e. the space-time need not be flat9. However, in (2+1)-
dimensional space-time the situation is different.

B. Tµν = 0, Λ 6= 0

In this article, we will not discuss the gravity the-
ory with a non-zero cosmological constant in (3+1)-
dimensional empty space-time.

III. (2+1) GRAVITY

In (2+1)-dimensional space-time manifold, M ,
Einstein-Hilbert action for gravity coupled to matter
can be written as5,19

IEH =
1

16πG

∫
M

d2+1x
√
−g (R− 2Λ) + Imatter (4)

where g = det(gµν) is the determinant of the metric ten-
sor matrix.

Equation of motion for the action (4) are5,19

Rµν −
1

2
gµν R+ Λ gµν = −8πG Tµν (5)

We see that the equation of motion (5) is the same as
(1). Eq.(5) are generally covariant, i.e. they are invari-
ant under the action of the group of diffeomorphisms
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(which can be viewed as a gauge group) of the space-
time5. Roughly speaking, we could say that a diffeo-
morphism is a smooth (continuously differentiable), re-
versible transformation between spaces or shapes that
preserves their smooth structure whereas an isometry20

(distance-preserving mapping) is a special case of a dif-
feomorphism.

In (2+1)-dimensional space-time, the relation between
the Einstein tensor and the Riemann curvature tensor
can be written as9

Gµν = −1

4
εµαβ ενγδ R

γδ
αβ (6)

where εµαβ is Levi-Civita symbols, µ, α, β, denote space-
time coordinates. Eq.(6) may be inverted as8

Rαµβν = εαµγ εβνδ G
δ
γ (7)

Eqs.(6),(7) are the identities linking Einstein tensor and
the Riemann curvature tensor.

A. Tµν = 0, Λ = 0

Eq.(7) without a cosmological constant implies that
if the Einstein tensor vanishes (as a consequence of the
absence of matter) then the Riemann curvature tensor
vanishes. In turn, the vanishing Riemann curvature ten-
sor implies that the Ricci curvature tensor and the Ricci
curvature scalar are equal to zero. So, the solution of
eq.(7) is flat space-time. We call the theory trivial, i.e.
it does not possess any propagating degrees of freedom9.

B. Tµν = 0, Λ 6= 0

In the case of an empty space-time and a non-zero
cosmological constant, eq.(5) can be replaced by

Gµν + Λ gµν = 0 (8)

and by substituting eq.(8) into eq.(7), we obtain9

Rαµβν = −Λ(gαβ gµν − gαν gβµ) (9)

which shows that without sources, all spaces that solve
(8) are of constant curvature: a closed de Sitter space for
Λ > 0 or a hyperbolic anti-de Sitter space for Λ < 09.
We consider that the constant curvature indicates that
the geometry of space-time is locally homogeneous4 and
isotropic in the sense that curvature is uniform.

Eq.(8) implies that the Ricci curvature tensor can be
written as

Rµν =
1

2
gµν R− Λ gµν (10)

It means that the Ricci curvature tensor is not simply
proportional to the metric tensor, gµν , scaled by a con-
stant R, but also has an additional term involving the
cosmological constant.

IV. EINSTEIN-HILBERT ACTION AS CHERN-SIMONS
ACTION

A. The Einstein-Hilbert action without a cosmological
constant

The Einstein-Hilbert action without a cosmologi-
cal constant in (2+1)-dimensional space-time manifold
would be4

IEH =
1

2

∫
M

εµνρ εabc e
a
µ

(
∂νω

bc
ρ − ∂ρωbcν + [ων , ωρ]

bc
)

d2+1x (11)

where eaµ is a dreibein, ωbcρ is a spin connection, εabc is the
Levi-Civita symbols in the internal (local Lorentz frame)
space. If a dreibein and a spin connection are interpreted
as gauge fields, it might conceivably to interpreted (11)
as a Chern-Simons action4.

From eq.(11), the Ricci curvature tensor can be written
as

R bc
νρ = ∂νω

bc
ρ − ∂ρω bc

ν + [ων , ωρ]
bc (12)

Eq.(12) is a non-linear equation. The nonlinearity is
shown by the commutation relation in the third term of
the right-hand side, [ων , ωρ]

bc. This commutation term
represents the self-interaction of the spin connection.

B. The Chern-Simons action without a cosmological
constant

The Chern-Simons action in (2+1)-dimensional space-
time manifold can be written as4,8

ICS =

∫
M

εµνρ eµa
(
∂νω

a
ρ − ∂ρω a

ν + εabc ω
b
ν ω

c
ρ

)
d2+1x

(13)

We raise the a index in εabc to show explicitly the contrac-
tion of the index. The Chern-Simons action (13) precisely
coincides with the Einstein-Hilbert action (11)4.

C. The Einstein-Hilbert action with a cosmological
constant

The generalized Einstein-Hilbert action in (2+1)-
dimensional space-time with a non-zero (a small nega-
tive) cosmological constant can be written as4

IEH =

∫
M

εµνρ
{
eµa

(
∂νω

a
ρ − ∂ρωaν

)
+ εabc e

a
µ ω

b
ν ω

c
ρ

− Λ

3
εabc e

a
µ e

b
ν e

c
ρ

}
d2+1x (14)

The equations of motion (14) say that space-time is not
flat but locally homogeneous with the curvature propor-
tional to a cosmological constant4.
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The simply connected covering space of such a space-
time is not a portion of Minkowski space, but a por-
tion of de Sitter or anti-de Sitter space. The spaces of
de Sitter and anti-de Sitter have for their symmetries
SO(3,1) and SO(2,2), respectively. It is different from a
flat space-time of Minkowski which has for its symme-
try ISO(2,1)4. Thus, it is reasonable to guess that if the
gravity theory without a cosmological constant in (2+1)-
dimensional space-time is related to the gauge theory of
ISO(2,1), then the gravity theory with a cosmological
constant in (2+1)-dimensional space-time will be related
to gauge theory of SO(3,1) and SO(2,2)4.

We see from eq.(14), the Ricci curvature tensor could
be written as6

Raνρ = ∂νω
a
ρ − ∂ρωaν + εabc ω

b
ν ω

c
ρ −

Λ

3
εabc e

b
ν e

c
ρ (15)

In terms of the spin connection, eq.(15) is a non-linear
equation due to there exists the multiplication term of
the spin connection in the third term of the right-hand
side, ωaν ω

a
ρ , such as in eq.(12).

D. The weak-field limit and a small negative cosmological
constant

In the case of the weak-field limit of the gauge fields
and a small negative cosmological constant, Λ < 0,
|Λ| << 1, eq.(15) reduces to a linearized Ricci curvature
tensor written below

Raνρ = ∂νω
a
ρ − ∂ρωaν −

Λ

3
εabc e

b
ν e

c
ρ (16)

In terms of the spin connection, eq.(16) is a linear equa-
tion. There is no self-interaction of the spin connection.
Although, at first sight, eq.(16) looks like a non-linear
equation, because there exists a quadratic form (as a
product of the dreibein components) in the third term
of eq.(16). Here, the dreibein components can be viewed
as the fixed fields i.e. the fields that are considered given
or fixed externally, parameters. They are not variables
being solved for. The fixed dreibein fields due to a cosmo-
logical constant introduce a source term that is imposed
on the curvature.

E. The Chern-Simons action with a cosmological constant

The generalized (non-Abelian) Chern-Simons action
with a non-zero (a small negative) cosmological constant
could be written as4,6

ICS =

∫
M

εµνρ eµa

×
{
∂νω

a
ρ − ∂ρωaν + εabc

(
ωbν ω

c
ρ −

Λ

3
ebν e

c
ρ

)}
d2+1x

(17)

From eq.(17), the Ricci curvature tensor can be written
as

Raνρ = ∂νω
a
ρ − ∂ρωaν + εabc

(
ωbν ω

c
ρ −

Λ

3
ebν e

c
ρ

)
(18)

We see that eq.(18) is equivalent to eq.(15).
In the case of the weak-field limit of the gauge fields

and a small negative cosmological constant, eq.(18) re-
duces to a linearized Ricci curvature tensor written be-
low

Raνρ = ∂νω
a
ρ − ∂ρωaν −

Λ

3
εabc e

b
ν e

c
ρ (19)

where εabc is the Levi-Civita symbol which has a role
as the structure constants (the structure coefficients)21.
Eq.(19) is a linear equation in terms of the spin connec-
tion. The reason is analogous to eq.(16).

Previously, we have formulated the linearized Ricci
curvature tensor in the case of the Newtonian limit and
a small positive cosmological constant, Λ > 0, |Λ| << 1
(de Sitter space)34. The extension to the Newtonian
limit with a small negative cosmological constant, Λ < 0,
|Λ| << 1 (anti-de Sitter space) could be worked by ne-
glecting time derivatives in the linearized Ricci curvature
tensor. We obtain the linearized Ricci curvature tensor
as written below

Rajk = ∂jω
a
k − ∂kωaj −

Λ

3
εabc e

b
j e

c
k (20)

where j, k = 1, 2, denote spatial indices, εabc is the Levi-
Civita symbol which has a role as the structure constants
(the structure coefficients)21 showing explicitly there ex-
ists an interaction between the dreibein.

F. The Abelian Chern-Simons action with a cosmological
constant

The Abelian Chern-Simons action with a small nega-
tive cosmological constant can be obtained from eq.(17)
by replacing the Ricci curvature tensor (18) with a lin-
earized Ricci curvature tensor (20), we have

ICS =

∫
M

εµνρ eia

(
∂jω

a
k − ∂kωaj −

Λ

3
εabc e

b
j e

c
k

)
d2+1x

(21)

where we replace eµa with eia. We will use this Abelian
Chern-Simons action (21) to formulate the Newtonian
knot.

V. LINEARIZED METRIC PERTURBATIONS, SCALAR
AND VECTOR POTENTIALS

The linearized (small) metric perturbations can be
written as

hµν = gµν − ηµν (22)
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where ηµν is the metric of Minkowski (flat) space-time.
The small metric perturbations means that |hµν | << 1
for all µ and ν.

In the language of a wave, the linearized metric per-
turbations can be written as22

hµν = ρµν e
i~k·~r (23)

where ρµν is the amplitude as a function of space-time, ~k

is the wave vector, ~r is the position vector, and ~k ·~r is the
phase, a function of space-time. In an empty space-time,
the amplitude is constant.

In the linearized gravity theory, the linearized metric
perturbations take a role as ”potentials”22. We consider
the linearized metric perturbations analogous to a set of
curvature components, the scalar potentials, which could
be complex, written as23

h = ρ eiq, h∗ = ρ e−iq (24)

where ρ is the amplitude, q is the phase, h∗ is the complex
conjugate of h, i is an imaginary number. Both, ρ and q,
are the functions of space-time.

The related (real) vector potential could be written as

hµ = f ∂µq (25)

where the Greek index, µ, denotes the spatial index, f is
the amplitude function written as below

f = −1/
{

2π(1 + ρ2)
}

(26)

Here f and q are the Clebsch variables24 or the Gaussian
potentials8,25. Both, f and q, are scalars.

In the following, we will interpret the gauge potential
in a gauge theory as the gauge fields (the dreibein and
the spin connection) in general relativity and reformulate
the relation between the gauge potential and the gauge
fields written using the Clebsch scalar variables. First, it
is necessary to show that a set of curvature components
satisfies the non-trivial Hopf maps.

VI. A SET OF CURVATURE COMPONENTS AND
HOPF MAPS

The properties of the complex scalar potentials could
be described by the non-trivial Hopf maps written below

h(~r), h∗(~r) : S3 → S2 (27)

These non-trivial Hopf maps can be classified in ho-
motopy classes labeled by the value of the correspond-
ing Hopf indexes, integer numbers, and the topological
invariants1,17. The other names of the topological invari-
ants are the topological charge, and the winding num-
ber (the degree of a continuous mapping, such as the
Hopf maps). The topological charge is metric tensor-
independent, it can be interpreted as energy27.

The complex scalar potentials in the non-trivial Hopf
maps (27) are time-independent. Analogous to the time-
independent complex scalar fields, this problem could be

solved by interpreting some of the quantities that ap-
pear in Hopf’s theories as Cauchy’s initial time values24.
We consider that the two-dimensional spheres, S2, as
codomain in the Hopf maps, could be interpreted as two-
dimensional spheres with constant curvature. In turn,
we will interpret these two-dimensional spheres with con-
stant curvature as de Sitter space.

VII. HOPF INVARIANT, HOPF INDEX,
CHERN-SIMONS ACTION

The Hopf invariant, H, can be expressed as15,28,29

H =

∫
S3

εµνρ Ωµ ∂νΩρ d
3x (28)

where Ωµ can be interpreted as a connection one-form,
a gauge potential, d3x represents the volume element on
S3. In hydrodynamics, this partial derivative of connec-
tion one-form, ∂νΩρ = Wνρ, can be interpreted as the
vorticity.

The Hopf invariant can be related to the Hopf index,
H, written explicitly as1

H = H γ2 (29)

where γ is the total strength of the field1.

The concept of the Hopf invariant arises naturally from
the geometry of the Hopf maps. It measures the degree
(number) of linking of the preimages on S3 mapped to a
point on S2 under the Hopf maps. The linking number
tells us how many times one of these loops wraps around
the other. If the linking (integer) number is zero, it means
that there is no entanglement between two loops. These
two loops can be separated or untangled without cut-
ting. We could call these two separated loops the distant
union of two unknots (the unknot is the knot) which is
a perfectly fine link. It is because links do not actually
need to be linked30. If the linking number is not zero,
then there exists an entanglement in the Hopf maps, the
(continuous) non-trivial maps.

The Hopf invariant is identical to the circulation in
hydrodynamics25 where Ω and dΩ in the Hopf invari-
ant are identical to the velocity field and the vorticity in
hydrodynamics, respectively. If we relate hydrodynam-
ics (self-helicity) to a gauge theory, it can be interpreted
naturally that the Hopf invariant has a deep relation-
ship with the Chern-Simons action (the Chern-Simons
integral)15. The Hopf invariant is just the winding num-
ber of Gauss mapping15. The Hopf invariant is an im-
portant topological invariant in describing the topologi-
cal characteristics of the knot family. More precisely, the
Hopf invariant or the Chern-Simons action is the total
sum of all the linking and all the self-linking numbers of
the knot family15,16. The linking and self-linking num-
bers by themselves have a topological structure.
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VIII. NON-LINEAR AND LINEAR RICCI THEORIES

Analogous to a non-linear field theory in Maxwell’s
theory1, the non-trivial Hopf maps (27) have a conse-
quence that we could write a non-linear Ricci theory as

Rµν =
1

(1 + h∗h)2
(∂µh

∗∂νh− ∂νh∗∂µh) (30)

The nonlinearity of eq.(30) is shown by the h∗h term in
the denominator.

In the case of a weak-field limit, the complex scalar
potentials are very small, |h∗h| << 1, so eq.(30) reduces
to a linear Ricci theory as written below

Rµν = ∂µh
∗∂νh− ∂νh∗∂µh (31)

If eq.(31) is written using the (real) vector potential (25),
then we obtain

Rµν = ∂µhν − ∂νhµ (32)

This linear Ricci theory (32) is equivalent to the lin-
earized Ricci curvature tensor31,32

Rµν = ∂αΓαµν − ∂νΓαµα (33)

It means that the linearized Ricci curvature tensor (33)
could be interpreted the same as the linear Ricci the-
ory (32) where the vector potential, hµ is equivalent to
the Christoffel symbol, Γαµα. The curvature, Rµν , in
eqs.(32), (33), are equivalent. Both are the second rank
tensor which is symmetric in µ and ν.

By using the vector potential (25), the linear Ricci the-
ory (32) could be written as

Rµν = ∂µ(f ∂νq)− ∂ν(f ∂µq) (34)

This is the linear Ricci theory written in terms of the
Clebsch scalar variables. We see that the vector poten-
tial written using the Clebsch variables (34) is equivalent
to the Levi-Civita connection (the Christoffel symbol) in
eq.(33).

IX. GAUGE POTENTIAL AND GAUGE FIELDS

In the dreibein formalism of general relativity, we have
the gauge fields (the dreibein and the spin connection).
These gauge fields could be viewed identically to the
gauge potential. In this case, the gauge potential can
be written as4,6,8

Aµ = eaµ Pa + ωaµ Ja (35)

where eaµ is a component of the vierbein (the transla-
tional part), eaµ Pa is the vierbein field or shortly the
vierbein, ωaµ is a component of the spin connection (the
rotational part), ωaµ Ja is the spin connection field or the
spin connection, Pa, Ja, are the generators of translation
and rotation, respectively.

Analogous to (25), we could write the gauge potential
as

Aµ = f ∂µq (36)

By substituting eq.(36) into (35), we obtain

f ∂µq = eaµPa + ωaµJa (37)

If we assume that the components of the vierbein and
the spin connection could be written using the Clebsch
variables, they could be written respectively, as

eaµ = fe ∂µq
a
e (38)

and

ωaµ = fω ∂µq
a
ω (39)

where fe, fω, are the amplitude functions of the vier-
bein and the spin connection, respectively. Both of them
relate to gravitational ”strength” or scaling effects, i.e.
they scale the contributions of ∂µq

a
e and ∂µq

a
ω. qae , qaω,

are the phase of the vierbein and the spin connection,
respectively. Their gradient encodes information about
the direction or orientation of the gravitational field.

By substituting eqs.(38), (39), into (37), the gauge po-
tential becomes

f ∂µq = fe ∂µq
a
e Pa + fω ∂µq

a
ω Ja (40)

where the amplitude functions of the vierbein and the
spin connection are constant due to the amplitude in an
empty space-time is constant.

In the case of the Newtonian limit, eqs.(38), (39), (40),
become

eai = fe ∂iq
a
e (41)

ωai = fω ∂iq
a
ω (42)

f ∂iq = fe ∂iq
a
e Pa + fω ∂iq

a
ω Ja (43)

X. THE NEWTONIAN KNOT

By substituting eqs.(41), (42), into eq.(21), and by as-
suming that fe, fω, are constants (we could take as 1),
we obtain

ICS =

∫
M

εijk ∂iqea {(∂j∂k − ∂k∂j)qaω

− Λ

3
εabc ∂jq

b
e ∂kq

c
e

}
d2+1x (44)

The action, ICS (44), could be interpreted as the Newto-
nian knot. The Levi-Civita symbols have a role as struc-
ture constants that couple the interaction between the
gauge fields. The amplitude functions, fe, fω, have a role
as scale factors. We see that the Chern-Simons action
(44) is identical to the Hopf invariant (28). This New-
tonian knot could be interpreted as an integer number.
That is what we mean by a set of curvature components
obeying the topological quantum condition.
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XI. THE FIELD EQUTIONS AND SOLUTIONS

The field equations or the equations of motion can
be derived by applying the least action principle to an
Abelian Chern-Simons action (44). We obtain the field
equations below

εijk ∂keia = 0 (45)

and

εijk
(
∂jω

a
k − ∂kωaj

)
=

Λ

3
εijk εabc e

b
j e

c
k (46)

Analogous to hydrodynamics, eq.(45) is identical to
the curl-free velocity, Ω = 0, where the vorticity Ω =
εij ∂ivj

25, vj is the velocity. We see from (45) the
dreibein is identical to the velocity, and the vorticity is
identical to the curvature. Eq.(45) imposes a constraint
on the components of the dreibein.

The consequence of the curl-free vector field, such as
the velocity or the dreibein, is the vector field could be
written as the gradient of a scalar function26. It implies
that the dreibein could be written as

eia = fe ∂iqea (47)

where fe is an amplitude function of the dreibein and qea
is the dreibein phase. Mathematically, to ensure that the
curl-free vector field can be replaced by the gradient of a
scalar function, we should take the scalar function fe as a
constant, so that its derivative vanishes. Physically, this
corresponds to the fact that fe takes a constant value
in an empty space-time. In such a space-time, we can
assume that the dreibein phase is a linear scalar function.

The linear scalar function of the dreibein phase could
be written in two spatial dimensions of the polar coordi-
nate as

qea = ker r δar + keθ θ δaθ (48)

where ker, keθ, are constants (as tuning parameters), δar
is the Kronecker delta. To give the non-zero result, we
take a = r, θ, and for simplicity in this article, ker =
keθ = 1, then we obtain

qea = r + θ (49)

By substituting eq.(49) into (47) and for simplicity in
this article we take fe = 1, we obtain

eia = ∂i(r + θ) (50)

Assume that r and θ are linear functions, we can write
both as

r = aix
i = xi, θ = aix

i = xi (51)

where ai are constants and we set ai = 1, xi = r, θ. In
(2+1)-dimensional space-time, i = 1, 2. In polar coordi-
nates, we can write x1 = r and x2 = θ.

By substituting (51) into (50), we obtain

eia = ∂i(x
i + xi) = ∂rr + ∂θθ = 2 (52)

By substituting (52) into (45), we obtain

εijk∂k(2) = 0 (53)

This shows that the second derivative of a linear scalar
function gives a zero result. It means that there exists
no curvature.

Let us analyze the second field equations, especially
the right-hand side of eq.(46). Analogous to (47)-(52),
we obtain

ebj = 2 (54)

and

eck = 2 (55)

Let us consider the term of eq.(46) below

εijk εabc = εijk ηad εdbc (56)

where ηad is the Minkowski metric written using the
Lorentz indices. From eq.(56), we could write

εijk εdbc = δid δ
j
b δ

k
c − δid δjc δkb + δib δ

j
c δ

k
d − δib δ

j
d δ

k
c

+ δic δ
j
d δ

k
b − δic δ

j
b δ

k
d (57)

where δid is the Kronecker delta.
If we contract eq.(57) with ηad, this will replace d with

a, giving

εijk ηad εdbc = δia δ
j
b δ

k
c − δia δjc δkb + δib δ

j
c δ

k
a − δib δja δkc

+ δic δ
j
a δ

k
b − δic δ

j
b δ

k
a (58)

If we assume that i = a, j = b, k = c, eq.(58) or (56)
becomes

εijk εabc = 1 (59)

By substituting eqs.(54), (55), (59), into the term of
the right-hand side of eq.(46), we obtain

εijk εabc e
b
j e

c
k = (1)(2)(2) = 4 (60)

By substituting eq.(60) into eq.(46), we obtain

εijk
(
∂jω

a
k − ∂kωaj

)
=

4

3
Λ (61)

Let us analyze the left-hand side of the eq.(61). We
assume that the solution of eq.(61) is analogous to the
solution of eq.(45), so we propose a similar ansatz field
as the solution for the spin connection written below

ωaj = fω ∂jq
a
ω (62)

where fω, qaω, are the amplitude function and the phase of
the spin connection, respectively. In empty space-time,
such as the amplitude function of the dreibein, fω takes
a constant value.

If we set fω = 1, then eq.(62) becomes

ωaj = ∂jq
a
ω (63)
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The same procedures apply to ωak , then we obtain

ωak = ∂kq
a
ω (64)

By substituting eqs.(63), (64), into eq.(61), we obtain

εijk (∂j∂k − ∂k∂j) qaω =
4

3
Λ (65)

In commutation notation, eq.(65) can be written as

εijk [∂j , ∂k]qaω =
4

3
Λ (66)

where

[∂j , ∂k] = fjkl ∂l (67)

fjkl are the non-zero antisymmetric structure coefficients
(the structure constants), the non-zero constants. This
non-zero commutation relation in eqs.(66)-(67) arises be-
cause space has a non-commutative structure (an in-
trinsic curvature). A (constant) curvature which is due
to the non-zero cosmological constant shows this non-
commutative structure of space.

Analogous to the case of the dreibein above, we assume
that the spin connection phase is a linear scalar function
of space written below

qaω = kωr r δ
a
r + kωθ θ δ

a
θ = r + θ (68)

where kωr, kωθ, are constants and we set kωr = kωθ = 1,
a = r, θ, and

r = alx
l = xl, θ = alx

l = xl (69)

where al are constants and we set al = 1. By substituting
eq.(69) into eq.(68), we obtain

qaω = xl + xl = 2xl (70)

By substituting eqs.(70), (67), into (66), we obtain

εijk fjkl =
2

3
Λ (71)

where εijk is fully antisymmetric in its indices, fjkl are
antisymmetric in the first two indices, j and k. We see
that the non-zero contraction result of εijk fjkl (71) is
guaranteed by the non-zero commutation relation (67)
in turn by the non-zero cosmological constant.

If we treat the contraction εijk fjkl as a non-zero scalar
quantity, λ, then eq.(71) becomes

λ =
2

3
Λ (72)

Equation (72) shows that the contraction result λ is di-
rectly proportional to the cosmological constant Λ, with
a proportionality factor of 2/3. This factor acts as a scal-
ing parameter that relates the structure constants to the
cosmological constant. The positive sign in eq.(72) indi-
cates that the contribution of the structure constants to
the curvature aligns constructively with the effect intro-
duced by the cosmological constant, rather than opposing
it.

XII. DISCUSSION AND CONCLUSION

It has been realized that the role of topology has be-
come more and more important in recent days and the
future of physics. But to understand topology is com-
plicated enough because topology is inherently related
to nonlinearity. It has been widely believed that topo-
logical objects can not exist in linear theories, such as an
Abelian Chern-Simons action in the topological quantum
field theory. But this belief can no longer be maintained.
The discovery of the electromagnetic knot in vacuum
Maxwell’s theory more than thirty years ago has shown
that the topological object could exist in the linear the-
ory.

We adopt the idea1 of the electromagnetic knot and ap-
ply it to gravity. This is because electromagnetism and
gravity are similar. The electromagnetic or Maxwell’s
theory is a gauge theory and gravity theory (the general
theory of relativity) could be treated as a gauge theory.
Maxwell’s theory is an Abelian U(1) local gauge theory
of internal space and general relativity, a non-linear the-
ory, is a gauge theory of translation in (3+1)-dimensional
(external) space-time. The gauge potential and the field
strength tensor in electromagnetism are identical to the
connection and the curvature in gravity theory, respec-
tively.

In (2+1) empty space-time, the curvature can be non-
zero due to a non-zero cosmological constant. This (con-
stant) curvature causes the gravitational fields to interact
with themselves, as shown by the term −Λ

3 εabc e
a
i e

b
j e

c
k

(14) and its equivalent form in a gauge theory (17), giv-
ing rise to non-trivial topological objects, such as gravi-
tational knots. The gravitational field can be visualized
as a string to form a closed loop, a knot. These knots
are localized in space-time because it is related to the
interaction between gravitational fields or curvature that
occur locally.

We propose that the curvature i.e. the Ricci theory has
a set of curvature components. We consider this set of
curvature components analogous to the linearized (small)
metric perturbations, i.e. a set of curvature components
could consist of the scalar potentials. It is because, the
linearized metric perturbations take a role as potentials,
i.e. the linearized metric perturbations are the scalar
potentials. A set of curvature components could be com-
plex, such as in the case of the electromagnetic knot, a
set of subset fields could consist of the complex scalar
fields. It has a consequence that the complex scalar po-
tentials could be interpreted equivalently as the complex
scalar fields. In other words, a set of curvature com-
ponents could be interpreted equivalently as the complex
scalar fields. It means that, roughly speaking, the curved
space-time could be treated as the complex fields. What
does it imply?

The scalar potentials, such as the scalar fields, could be
described using wave language. Both could be denoted
by the amplitude times the exponential of iq, where q is
the phase, and i is the imaginary number. The related
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(real) vector potential can be written using the Clebsch
(scalar) variables, f , and q (25). We chose the real part of
the related vector potential because we still do not know
what the consequence of the imaginary part formulation
in physics.

The Clebsch variables are not uniquely defined, but
many different choices are possible for them. In this way,
the vector potential can be understood simply. These
Clebsch variables are related to any divergenceless vector
field, i.e. the divergence of any vector field gives the zero
result. Examples of a divergenceless vector field are the

vorticity in hydrodynamics, i.e. ~∇· ~W = 0, so ~W = ~∇×~v
where ~v is the velocity field vector, and in electromag-

netism ~∇ · ~B = 0, ~B = ~∇ × ~A where ~B is the magnetic

field, ~A is the potential.

The condition ~∇ · ~W = 0 implies that vorticity is
solenoidal, meaning it is sourceless or has no sinks. The
vorticity originates from the curl of the velocity field.
This means that the ”source” of vorticity is the rota-
tional motion of the velocity field rather than a scalar
charge such as in electromagnetism. We can observe the
non-zero vorticity phenomenon in the rotational flows of
fluids, e.g. a whirlpool. We see from eqs.(21), (44), the
vorticity is identical to the curvature, and the velocity
field is identical to the gauge fields (the dreibein).

In the case of the weak-field limit in (2+1)-dimensional
empty space-time with a small negative cosmological con-
stant, a non-linear Ricci curvature tensor (15) is reduced
to a linearized Ricci curvature tensor (16). This small
constant curvature accommodates our model in the limit
of the infinite radius where the space-time is isotropic.
What we mean by a linearized Ricci curvature tensor is,
in terms of the spin connection, the Ricci curvature ten-
sor is linear. We see that a linearized Ricci curvature
tensor in a gauge theory (19) is precisely equivalent to a
linearized Ricci curvature tensor in gravity theory (16).

The main difference between a non-Abelian and an
Abelian gravity (a gauge theory) is that the curvature
term, εabc ω

b
j ω

c
k, in gravity (15) or a gauge theory (18) is

no longer exist in a linearized curvature in gravity (16) or
a gauge theory (19). In the case of the weak-field limit,
the multiplication between the weak fields gives a very
small result that we can assume to be ignored. It means
there is no interaction between the spin connections in
an Abelian gravity or an Abelian gauge theory. In terms
of the spin connection, an Abelian Chern-Simons action
(21) is a linear equation.

The dreibein formalism of general relativity makes gen-
eral relativity similar to a gauge theory. For this reason,
we need to reformulate the gauge potential related to the
gauge (vector) fields, i.e. in terms of the dreibein and
the spin connection, as written in eq.(35). Analogous to
the vector potential (25), the gauge potential could be
written using the Clebsch variables (36). The gauge po-
tential is not a total derivative, otherwise, it would be a
pure gauge24. A pure gauge in this context means that
the field configuration does not produce any observable
curvature or field strength. Since the gauge potential is

not a total derivative then it is not a pure gauge and
therefore represents a physical, non-trivial field configu-
ration.

Analogous to the gauge potential, we assume that the
gauge fields could be written using the Clebsch variables,
(38), (39). So, the relation between the gauge potential
and the gauge fields could be written using the Clebsch
variables (40). We could interpret the first term on the
right-hand side (40), fe ∂iq

a
e Pa, as the rate of translation,

fe being an amplitude (scaling) factor that scales this
translation rate. The second term on the right-hand side
(40), fω ∂iq

a
ω Ja, shows the rate of rotation, fω being a

scaling factor that scales this rotational rate.

Expressing the gauge potential and the gauge fields in
terms of the Clebsch variables simplifies the formulation.
The Clebsch variables, by showing explicitly the ampli-
tude function and the phase, enable the separation of the
underlying physical dynamics (the amplitude function,
the phase) and certain properties of the gauge potential
and the gauge fields, such as topological structures. Sep-
arating the gauge potential and the gauge fields into their
amplitude function and phase makes the topological fea-
tures (related to non-zero vorticity) inherent in the gauge
potential and the gauge fields more apparent.

The problems in the higher dimension can often be
more complex than those in the lower dimension. By
mapping onto the lower dimensional space, such as in
the non-trivial Hopf maps, the problem becomes sim-
pler, without losing the information about the non-trivial
topological properties of space. If we relate the non-
trivial Hopf maps to physics, we could interpret the Hopf
maps to represent the properties of a set of curvature
components, consisting of the complex scalar potentials.
In the infinite radius, the value of the complex scalar
potentials is weak. The complex scalar potentials have
isotropic (well-defined) properties in the infinite radius.

We show that a set of curvature components satisfies
the non-trivial Hopf maps (27). We assume that the
time-independent problems of a set of curvature compo-
nents, such as in the case of the electromagnetic knot,
could be solved by interpreting some of the quantities
that appear in Hopf’s theories as Cauchy’s initial time
values.

There exists (one) dimensional reduction in the non-
trivial Hopf maps. Physically, we could relate this dimen-
sional reduction to the isotropic (well-defined) property
of the complex scalar potentials, in turn, the gauge po-
tential and the gauge fields. The isotropic (well-defined)
property of the complex scalar potentials could be inter-
preted as an empty (a vacuum) space-time where space-
time is homogeneous (isotropic). A space-time without
a source but with a small negative cosmological constant
can be viewed to be an empty space-time with a constant
negative curvature (anti-de Sitter space-time).

The non-zero constant negative curvature resulting
from a small negative cosmological constant (44) is re-
flected in the non-commutativity between ∂ν and ∂ρ.
This non-zero curvature is linked to the non-trivial
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(which can not be smoothly or continuously deformed
into the trivial configurations, such as a point) topologi-
cal configurations of the gauge fields. In particular, the
non-zero vorticity term (∂j∂k − ∂k∂j)qaω (44), can indeed
contribute to a topological invariant, such as the winding
number (an integer number). These non-trivial configu-
rations are supporting evidence for the existence of the
weak gravitational knot. We could say that the phe-
nomenon of the weak gravity knot is related to the pres-
ence of the local vortex in space-time. The gravitation
field could be imagined as a line (a field line)33. The
winding number counts how often this field line winds
around. The winding number is related to the energy of
the field configuration.

Theoretically, the empirical or the observational evi-
dence to support the existence of the weak gravity knot
in (2+1)-dimensional empty space-time is guaranteed by
the formal equivalence between the weak gravity knot
and the electromagnetic knot formulations for which
the electromagnetic knot solutions had been known to
exist1,11.

Experimentally, probably, we could observe the exis-
tence of the weak gravity knot by observing the grav-
itational wave (the ripples of space-time) as it passes
through space-time influenced by the weak gravity knot.
The presence of topological structures, such as the weak
gravity knot, might influence the propagation of these
ripples, detectable through their specific polarization
modes. The weak gravity knot could change the prop-
erties of the gravitational waves. These changes would
appear as additional or modified polarization modes (be-
yond the standard + and ×) in the detected gravitational
waves.

The existence of the Newtonian knot in empty (2+1)-
dimensional space-time with the small negative cosmo-
logical constant (anti-de Sitter space-time) does not sup-
port the wide belief5,35 that there exists no Newtonian
limit in (2+1)-dimensional space-time. The Newtonian
knot in empty (2+1)-dimensional space-time with a small
positive cosmological constant is discussed separately34.
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