Ballistic Theory of Light

Rajeev Kumar*

Abstract

In this paper an argument has been presented in order to support the ballistic theory of light.

Keyword : Ballistic theory of light.

1 BALLISTIC THEORY OF LIGHT

Ballistic theory of light states that light emitted by a source moving with a velocity \mathbf{v} with respect to an observer has a velocity

$\mathbf{c} = \mathbf{c}_0 + k\mathbf{v}$	
\Rightarrow c = c ₀ + v	[k = 1]
$\Rightarrow c = c_0 + v$	[For one dimension]

where

 c_0 = velocity of emitted light from the same source at rest with respect to the observer

2 BINARY STAR SYSTEM

Let's consider two stars in a binary star system at a distance D from Earth and orbiting about their common center of mass in circular orbits with a period

$$T = \frac{2\pi}{\omega}$$

$$\omega = \frac{v}{r}$$

where

$$\omega = \text{angular speed}$$

v = orbital speed

r = radius of the orbit

Now consider a pulse emitted by a star at time ts, it will arrive at Earth at time

$$t_{E} = t_{S} + \frac{\left(D - r\sin\omega t_{S}\right)}{\left(c_{0} + v\cos\omega t_{S}\right)}$$
(*i*)
For D >> r and v << c_{o}, from (i), we get
$$t_{E} = t_{S} + \frac{D}{c_{0}} - \frac{r}{c_{0}}\sin\omega t_{S} - \frac{Dv}{c_{0}^{2}}\cos\omega t_{S}$$
(*ii*)

*rajeevkumar620692@gmail.com

Differentiating (ii) with respect to t_s, we get

$$\frac{dt_E}{dt_S} = 1 - \frac{v}{c_0} \cos \omega t_S + \frac{Dv\omega}{c_0^2} \sin \omega t_S \qquad (iii)$$

$$\Rightarrow \frac{dt_E}{dt_S} = 1 - \frac{v\sec \varphi}{c_0} \cos \left(\omega t_S + \varphi\right) \qquad (iv) \qquad \left[\tan \varphi = \frac{D\omega}{c_0} \right]$$
Now, if

ľ 1.

$$\frac{dt_E}{dt_S} < 0$$

it will appear that pulses arrive from more than one position in the orbit at the same received time, i.e., 'ghosting' of the star will occur. For no ghosting,

$$\frac{dt_{E}}{dt_{S}} > 0$$

$$\Rightarrow 1 - \frac{\operatorname{vsec} \varphi}{c_{0}} \cos(\omega t_{S} + \varphi) > 0$$

$$\Rightarrow \left| \frac{\operatorname{vsec} \varphi}{c_{0}} \right| < 1$$

$$\Rightarrow \frac{v}{c_{0}} \times \sqrt{1 + \left(\frac{D\omega}{c_{0}}\right)^{2}} < 1$$

$$\Rightarrow \sqrt{1 + \left(\frac{D\omega}{c_{0}}\right)^{2}} < \frac{c_{0}}{v} \qquad (v)$$

3 CONCLUSION

The condition (v) deduced for no ghosting of a star can be verified with the observed data and consequently ballistic theory of light can be confirmed.

References

1. Kenneth Brecher, "Is the Speed of Light Independent of the Velocity of the Source ?", 1977.