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Abstract

This work presents a generalized wave equation for photons derived from their
relativistic energy-momentum relation. Using a scalar potential, the equation ex-
tends to include spatial and temporal variations, providing a comprehensive frame-
work for photon dynamics. A parametric formulation simplifies the solution process,
and in free space, the equation naturally reduces to Maxwell’s equations. The step-
by-step derivation elucidates the connections between classical electrodynamics and
quantum-inspired wave mechanics.



1 Introduction

Schrodinger’s equation describes the quantum behavior of massive particles but is
unsuitable for photons due to its reliance on a non-relativistic dispersion relation. For
massless particles like photons, the relativistic energy-momentum relation:

E? = p*&,

forms the foundation of a wave equation tailored to photons. This paper derives such
an equation, extending it to include spatially varying potentials. A parametric form
simplifies the solution process, and in free space, the equation reduces to Maxwell’s
equations, providing a unifying perspective between quantum and classical descriptions
of light.

2 Derivation of the Generalized Wave Equation

2.1 Energy-Momentum Relation for Photons

The energy and momentum of a photon are related by:

E  hw
EF=hw, p=—=—.
c c
The relativistic dispersion relation:
E? = 22,

governs photon behavior.

2.2 Operator Substitutions

Promote energy and momentum to operators in the quantum framework:
E =ih—, p=—ihV.
Substituting these into the energy-momentum relation gives:
E*) = *py,
or equivalently:

8%

2 2x92,), __ 2

This is the free-space wave equation for photons.



2.3 Incorporating a Scalar Potential

To describe interactions, we introduce a scalar potential V'(r), modifying the total

energy:
Etot =F — V(I‘)

Squaring both sides gives:
2
Eiy = (E=V(r))".

Substituting quantum operators yields:
- 2
E*)p = (hw = V(r))" 4.
Thus, the generalized wave equation becomes:

12V = (hw — V(r))* 2.

2.4 Time-Independent Form

For stationary states where 1(r,t) = 1(r)e~**, the time-independent form is:

~IEEVH(r) = (B = V()" ¢ (r).



3 Parametric Formulation

3.1 Separation of Variables

Assume a separable solution:

U(r,0,0,t) = R(r)O(0,9)T'(t).
Substituting into the wave equation and dividing through by 1, we obtain:

1d*R 1 _, 1 d®T

-+ — ————=10
R dr? + r2@ 2T dt? ’
where V3 is the angular Laplacian. Separate variables:

1d®R  (((+1) 1 &T

- _ _ 2
RarZ T p AT dt? i
3.2 Radial and Angular Equations
The radial equation becomes:
d*’R  2dR , L(l+1)
W ;% + |:/€ — 2 :| R =0.

The angular equation is:
Va0 + (1 +1)0 =0,

with solutions given by spherical harmonics Y;"(6, ¢).



4 Connection to Maxwell’s Equations

4.1 Vector Form of the Wave Equation

The generalized wave equation for photons can be extended to a vector field ¥(r,t),
which represents the electromagnetic wave:

0*w
2 202y _ 12
SRV =
Dividing through by h? gives:
1 0*w
2 _
viw - =2 =,

1

JHogo
permittivity of free space, respectively.

where ¢ = is the speed of light, and pp and ¢ are the permeability and

This is the vector wave equation, describing the propagation of ¥ in free space.

4.2 Defining the Electromagnetic Fields

The electromagnetic fields E and B can be expressed in terms of the potentials:

0A
E:—VQS—E, BZVXA,

where: - ¢(r,t) is the scalar potential, - A(r,t) is the vector potential.

In the Lorenz gauge:

1 0¢
A+ 2 —
\Y + 2 0,
the wave equations for ¢ and A decouple:
1 0% 1 0’A

2 2
- —— = A———=0.
c2 Ot2 0,V 2 Ot? 0

4.3 Defining the Riemann-Silberstein Vector

The complex vector F = E + icB (the Riemann-Silberstein vector) combines E and B.
Substituting ¥ = F into the vector wave equation gives:

1 0°F
VQ _
K- 2 o2 0

Separating real and imaginary parts: - The real part (E) satisfies:

1 O’E
E—=— =0
v c? o0t?
- The imaginary part (B) satisfies:
1 9°B
2B o=
v c? ot? 0



4.4 Recovering Maxwell’s Equations

Maxwell’s equations in free space are:
V-E=0, V-B=0,

0B OE
VXE:—E, VXB:,U/()g(]E.

From the wave equation for ¥, we can derive these step by step.

4.4.1 Gauss’s Law for E

The wave equation for E:
1 0°E
VE - —— =0,

implies V - E = 0 in free space because there are no sources (charges).

4.4.2 Gauss’s Law for B

Similarly, the wave equation for B:

1 0°B
2 _
V'B- G5 =0

implies V - B = 0 in free space because magnetic monopoles do not exist.

4.4.3 Faraday’s Law

Using the definition of B =V x A, take the curl of E:

VxE:Vx<—%>.
ot

Because the curl and time derivative commute:

0B

0
E-=-— _
V x T

4.4.4 Ampere-Maxwell Law

From the wave equation for B:

1 0E
VxB=-22
% 2 ot
Substituting ¢ = ——:
H0€0 -
VxB= —
X Moo ot



4.4.5 Summary of Results

The vector wave equation for photons in free space produces:
V-E=0, V-B=0,

0B OE
VXE:—E, VXB:,U/()g(]E.

These are Maxwell’s equations in free space.



5 Conclusion

We derived a generalized wave equation for photons based on their energy-momentum
relation and extended it to include scalar potentials. By adopting a parametric
approach, we simplified the analysis of spatial and temporal components. In free space,
the wave equation reduces to Maxwell’s equations, bridging quantum mechanics and
classical electromagnetism. This framework provides a foundation for further
exploration of photon dynamics in complex environments.
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