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Abstract

This work presents a generalized wave equation for photons derived from their
relativistic energy-momentum relation. Using a scalar potential, the equation ex-
tends to include spatial and temporal variations, providing a comprehensive frame-
work for photon dynamics. A parametric formulation simplifies the solution process,
and in free space, the equation naturally reduces to Maxwell’s equations. The step-
by-step derivation elucidates the connections between classical electrodynamics and
quantum-inspired wave mechanics.
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1 Introduction

Schrödinger’s equation describes the quantum behavior of massive particles but is
unsuitable for photons due to its reliance on a non-relativistic dispersion relation. For
massless particles like photons, the relativistic energy-momentum relation:

E2 = p2c2,

forms the foundation of a wave equation tailored to photons. This paper derives such
an equation, extending it to include spatially varying potentials. A parametric form
simplifies the solution process, and in free space, the equation reduces to Maxwell’s
equations, providing a unifying perspective between quantum and classical descriptions
of light.

2 Derivation of the Generalized Wave Equation

2.1 Energy-Momentum Relation for Photons

The energy and momentum of a photon are related by:

E = ℏω, p =
E

c
=

ℏω
c
.

The relativistic dispersion relation:

E2 = p2c2,

governs photon behavior.

2.2 Operator Substitutions

Promote energy and momentum to operators in the quantum framework:

Ê = iℏ
∂

∂t
, p̂ = −iℏ∇.

Substituting these into the energy-momentum relation gives:

Ê2ψ = c2p̂2ψ,

or equivalently:

−ℏ2c2∇2ψ = ℏ2
∂2ψ

∂t2
.

This is the free-space wave equation for photons.
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2.3 Incorporating a Scalar Potential

To describe interactions, we introduce a scalar potential V (r), modifying the total
energy:

Etot = E − V (r).

Squaring both sides gives:
E2

tot = (E − V (r))2 .

Substituting quantum operators yields:

Ê2ψ = (ℏω − V (r))2 ψ.

Thus, the generalized wave equation becomes:

−ℏ2c2∇2ψ = (ℏω − V (r))2 ψ.

2.4 Time-Independent Form

For stationary states where ψ(r, t) = ψ(r)e−iωt, the time-independent form is:

−ℏ2c2∇2ψ(r) = (E − V (r))2 ψ(r).
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3 Parametric Formulation

3.1 Separation of Variables

Assume a separable solution:

ψ(r, θ, ϕ, t) = R(r)Θ(θ, ϕ)T (t).

Substituting into the wave equation and dividing through by ψ, we obtain:

1

R

d2R

dr2
+

1

r2Θ
∇2

ΩΘ− 1

c2T

d2T

dt2
= 0,

where ∇2
Ω is the angular Laplacian. Separate variables:

1

R

d2R

dr2
+
ℓ(ℓ+ 1)

r2
=

1

c2T

d2T

dt2
= −k2.

3.2 Radial and Angular Equations

The radial equation becomes:

d2R

dr2
+

2

r

dR

dr
+

[
k2 − ℓ(ℓ+ 1)

r2

]
R = 0.

The angular equation is:
∇2

ΩΘ+ ℓ(ℓ+ 1)Θ = 0,

with solutions given by spherical harmonics Y m
ℓ (θ, ϕ).

4



4 Connection to Maxwell’s Equations

4.1 Vector Form of the Wave Equation

The generalized wave equation for photons can be extended to a vector field Ψ(r, t),
which represents the electromagnetic wave:

−ℏ2c2∇2Ψ = ℏ2
∂2Ψ

∂t2
.

Dividing through by ℏ2 gives:

∇2Ψ− 1

c2
∂2Ψ

∂t2
= 0,

where c = 1√
µ0ε0

is the speed of light, and µ0 and ε0 are the permeability and

permittivity of free space, respectively.

This is the vector wave equation, describing the propagation of Ψ in free space.

4.2 Defining the Electromagnetic Fields

The electromagnetic fields E and B can be expressed in terms of the potentials:

E = −∇ϕ− ∂A

∂t
, B = ∇×A,

where: - ϕ(r, t) is the scalar potential, - A(r, t) is the vector potential.

In the Lorenz gauge:

∇ ·A+
1

c2
∂ϕ

∂t
= 0,

the wave equations for ϕ and A decouple:

∇2ϕ− 1

c2
∂2ϕ

∂t2
= 0, ∇2A− 1

c2
∂2A

∂t2
= 0.

4.3 Defining the Riemann-Silberstein Vector

The complex vector F = E+ icB (the Riemann-Silberstein vector) combines E and B.
Substituting Ψ = F into the vector wave equation gives:

∇2F− 1

c2
∂2F

∂t2
= 0.

Separating real and imaginary parts: - The real part (E) satisfies:

∇2E− 1

c2
∂2E

∂t2
= 0.

- The imaginary part (B) satisfies:

∇2B− 1

c2
∂2B

∂t2
= 0.
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4.4 Recovering Maxwell’s Equations

Maxwell’s equations in free space are:

∇ · E = 0, ∇ ·B = 0,

∇× E = −∂B
∂t
, ∇×B = µ0ε0

∂E

∂t
.

From the wave equation for Ψ, we can derive these step by step.

4.4.1 Gauss’s Law for E

The wave equation for E:

∇2E− 1

c2
∂2E

∂t2
= 0,

implies ∇ · E = 0 in free space because there are no sources (charges).

4.4.2 Gauss’s Law for B

Similarly, the wave equation for B:

∇2B− 1

c2
∂2B

∂t2
= 0,

implies ∇ ·B = 0 in free space because magnetic monopoles do not exist.

4.4.3 Faraday’s Law

Using the definition of B = ∇×A, take the curl of E:

∇× E = ∇×
(
−∂A
∂t

)
.

Because the curl and time derivative commute:

∇× E = − ∂

∂t
(∇×A) = −∂B

∂t
.

4.4.4 Ampère-Maxwell Law

From the wave equation for B:

∇×B =
1

c2
∂E

∂t
.

Substituting c2 = 1
µ0ε0

:

∇×B = µ0ε0
∂E

∂t
.
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4.4.5 Summary of Results

The vector wave equation for photons in free space produces:

∇ · E = 0, ∇ ·B = 0,

∇× E = −∂B
∂t
, ∇×B = µ0ε0

∂E

∂t
.

These are Maxwell’s equations in free space.
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5 Conclusion

We derived a generalized wave equation for photons based on their energy-momentum
relation and extended it to include scalar potentials. By adopting a parametric
approach, we simplified the analysis of spatial and temporal components. In free space,
the wave equation reduces to Maxwell’s equations, bridging quantum mechanics and
classical electromagnetism. This framework provides a foundation for further
exploration of photon dynamics in complex environments.
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