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Abstract

In this document, we fully review the theory and applications of the Eshelby Ellipsoidal Elastic Inclusion Problem. We
rigorously derive all the equations related to the Eshelby Ellipsoidal Elastic Inclusion Problem and its applications to various
Micro-mechanics problems like Ellipsodial Inhomogenity, Cracks, and Dislocations.
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1 Summary of Eshelby’s Inclusion and Inhomogeneity Problem

Eshelby’s Inclusion and Inhomogeneity problem is a fundamental concept in the field of continuum mechanics, particularly in the
study of elastic fields and material science. It deals with the elastic behavior of a region within a homogeneous material (the matrix)
that has different material properties or experiences different strains compared to the surrounding matrix. This problem is crucial in
understanding how inhomogeneities such as voids, inclusions, or other defects within a material affect its overall mechanical properties.

1.1 Basic Definitions

• Inclusion: An inclusion is a region within a material that has different elastic properties (stiffness, for example) from the
surrounding material (the matrix). The inclusion is assumed to be embedded in the matrix and can have its own distinct
material properties.

• Inhomogeneity: An inhomogeneity refers to a region within a material where the material properties differ from the surrounding
matrix. It is a broader term that includes inclusions but also refers to regions where properties such as density, thermal expansion,
or other physical characteristics differ.

1.2 Eshelby’s Inclusion Problem

• Eshelby’s Tensor: At the core of Eshelby’s inclusion problem is the Eshelby tensor, which describes the elastic field inside
and around an inclusion when it is subjected to an external stress or strain. This tensor is a fourth-order tensor that relates the
applied strain to the strain inside the inclusion.

• Ellipsoidal Inclusions: Eshelby’s work showed that for ellipsoidal inclusions, the strain inside the inclusion is uniform and
can be related to the external strain through the Eshelby tensor. This remarkable result simplifies the analysis of inclusions
significantly, as it reduces the complexity of the problem.

• Inclusion vs. Matrix: The key idea is that when an inclusion is subjected to a uniform external stress or strain, the strain field
inside the inclusion remains uniform, although different from the strain field in the surrounding matrix. The specific relationship
between these strains is governed by the shape of the inclusion and the Eshelby tensor.

1.3 Mathematical Formulation

• Eigenstrain: The concept of eigenstrain (or transformation strain) is central to Eshelby’s analysis. Eigenstrain refers to a strain
that would exist in the inclusion if it were isolated from the matrix and allowed to undergo a strain freely. When the inclusion
is embedded in the matrix, the surrounding material restricts this strain, leading to an interaction between the inclusion and
the matrix.

• Elastic Field Equations: The elastic field due to an inclusion is governed by the equations of elasticity. For a linear elastic
material, these equations are linear partial differential equations (PDEs) involving the stress and strain fields, which are solved
subject to boundary conditions at the inclusion-matrix interface.
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• Eshelby’s Solution: Eshelby provided an analytical solution for the elastic field both inside and outside an ellipsoidal inclusion
in an infinite medium. His solution showed that the strain inside the inclusion is constant and can be calculated using the Eshelby
tensor.

1.4 Inhomogeneity Problem

• Difference from Inclusion: In the case of an inhomogeneity, the material properties of the region differ from those of the
matrix, leading to a more complex interaction between the region and the surrounding material. Unlike an inclusion, where the
material inside the inclusion can be imagined as having the same properties as the matrix, an inhomogeneity represents a real
difference in material properties.

• Complexity: The solution to the inhomogeneity problem is more complex than the inclusion problem because the contrast
in material properties must be accounted for. This typically requires solving the elasticity equations with variable material
coefficients.

• Perturbation Techniques: In practice, solutions to inhomogeneity problems often involve perturbation techniques, where the
problem is treated as a small deviation from the homogeneous case, or numerical methods, where the equations are solved using
computational techniques.

1.5 Applications

• Material Science: Eshelby’s inclusion theory is widely used in materials science to predict how inclusions and inhomogeneities
affect the mechanical properties of composites, polycrystals, and other heterogeneous materials.

• Micromechanics: The theory forms the basis for many micromechanical models that predict the behavior of materials with
microstructural features such as voids, fibers, or precipitates.

• Fracture Mechanics: In fracture mechanics, Eshelby’s theory is used to understand how cracks and other defects influence
the stress distribution in materials, which is crucial for predicting failure.

1.6 Extensions and Generalizations

• Non-Ellipsoidal Inclusions: While Eshelby’s original work focused on ellipsoidal inclusions, subsequent research has extended
the theory to non-ellipsoidal shapes, though these cases generally require numerical solutions or approximations.

• Anisotropic Materials: The theory has also been extended to anisotropic materials, where the material properties differ in
different directions, adding another layer of complexity to the problem.

1.7 Limitations and Challenges

• Finite Boundaries: Eshelby’s solution assumes an infinite medium, which is an idealization. In real-world applications, the
finite size of the material can influence the stress and strain fields, requiring corrections or alternative methods.

• Nonlinear Materials: The theory is based on linear elasticity, and its application to nonlinear materials is limited. In such
cases, more advanced models are needed.

In summary, Eshelby’s Inclusion and Inhomogeneity problem provides a powerful framework for understanding how embedded regions
within a material interact with their surroundings and affect the material’s overall properties. The theory’s simplicity and analytical
nature make it a cornerstone of material science, despite the challenges in extending it to more complex scenarios.

We start with the derivation of the 2 double derivatives dxj(dxi(r)) and dxi
(
dxj

(
dxk

(
dxl r

3
)))

, where r is the radius in Carte-

sian coordinates r =
√
x21 + x22 + x23 and their integration over the surface S of the inclusion. These double derivatives and their

integration over the surface S of the inclusion will be used to find the displacement impressed on the material in stage III (using
the Love 1927 equation (shown in Section 6) of Displacement at r due to point force Fi at r’) due to the application of the force
distribution Fj = pTjknk over S to make the body free of external force (but in a state of self-stress because of the transformation of
the inclusion).

2 Derivation of double derivative and their integration over the surface S

In this section, we compute the double derivative dxj(dxi(r)) where r is the radius in Cartesian coordinates r =
√
x21 + x22 + x23 and

their integration over the surface S. We start with computing dxj(dxi(r)):

Step 1: The first derivative of the radius with respect to xi is:

dxi(r) =
∂r

∂xi
=
xi
r

Step 2: The second derivative is:

dxj(dxi(r)) =
∂

∂xj

(xi
r

)
Applying the product rule:

dxj(dxi(r)) =
δij
r

− xixj
r3

where δij is the Kronecker delta. Let’s now integrate the above double derivative multiplied with the vector nj over the surface.
Before doing note the following important identity for the solid angle ω

dω =
niridS

r3
=
nilidS

r2

⇒ nilidS = r2dω

Therefore the integration of the above double derivative dxj(dxi(r)) multiplied with the vector nj over the surface S shall be∫
S

dxj(dxi(r))njdS =

∫
S

(
δij
r

− xixj
r3

)njdS
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⇒
∫
S

dxj(dxi(r))njdS =

∫
S

(
δij
r
)njdS −

∫
S

(
lilj
r

)njdS

Substituting the relations nj ljdS = r2dω in the above boxed equation

⇒
∫
S

dxj(dxi(r))njdS =

∫
S

(
δijnj
r

)dS −
∫ 4π

0

(
li
r
)r2dω

⇒
∫
S

dxj(dxi(r))njdS =

∫
S

(
δijnj
r

)dS −
∫ 4π

0

lirdω

⇒
∫
S

dxj(dxi(r))njdS =

∫
S

(
δijnj
r

)dS −
∫ 4π

0

r(l)lidω(l)

Let’s define the tensor F in indicial notation as follows

Fij =
δij
r

Using the Gauss Divergence theorem we can therefore say that∫
S

(
δijnj
r

)dS =

∫
S

(F.n)dS =

∫
V

(∇.F )dV =

∫
V

∂Fij

∂xj
dV

Now note that ∫
V

∂Fij

∂xj
dV =

∫
V

∂

∂xj
(
δij
r
)dV =

∫
V

δij
∂

∂xj
(
1

r
)dV =

∫
V

δij(−
xj
r3

)dV = −
∫
V

(
xi
r3

)dV

⇒
∫
S

(
δijnj
r

)dS = −
∫
V

(
xi
r3

)dV

Let us compute the volume integral by integrating over an elementary cone dΩ centred on the direction l = (l1, l2, l3) = (l,m, n) with
its vertex at x. The volume dV of this elementary cone is

dV = r2drdω

Therefore the integral
∫
V
(xi

r3 )dV can be therefore written as∫
V

(
xi
r3

)dV =

∫ 4π

0

∫ r

0

xi
r
drdω =

∫ 4π

0

∫ r

0

lidrdω =

∫ 4π

0

li

∫ r

0

drdω =

∫ 4π

0

r(l)lidω(l)

⇒
∫
S

(
δijnj
r

)dS = −
∫ 4π

0

r(l)lidω(l)

Therefore we have ∫
S

dxj(dxi(r))njdS =

∫
S

(
δijnj
r

)dS −
∫ 4π

0

lirdω

⇒
∫
S

dxj(dxi(r))njdS = −
∫ 4π

0

r(l)lidω(l)−
∫ 4π

0

r(l)lidω(l)

⇒
∫
S

dxj(dxi(r))njdS = −2

∫ 4π

0

r(l)lidω(l)

3 Derivation of Quadruple derivative and their integration over the surface S

In this section, we do the derivation of the double derivative dxi
(
dxj

(
dxk

(
dxl r

3
)))

, where r is the radius in Cartesian coordinates

r =
√
x21 + x22 + x23 and their integration over the surface S using 3 different methods.

3.1 Method 1: With Using the Exchanging of Integration and Differentiation Operator

We now derive dxi
(
dxj

(
dxk

(
dxl r

3
)))

, where r =
√
x21 + x22 + x23. Therefore we have

r3 = (x21 + x22 + x23)
3/2

Step 1: The first derivative of r3 with respect to xl is:

dxl
(
r3
)
=
∂r3

∂xl
= 3r2

xl
r

= 3rxl

Step 2: The second derivative is:

dxk (3rxl) = 3

(
∂r

∂xk
xl + r

∂xl
∂xk

)
= 3

(xk
r
xl + rδlk

)
= 3

(xkxl
r

+ rδlk

)
Therefore the integration of the second derivative shall be∫

S

dxk(dxl(r
3))nldS =

∫
S

3
(xkxl

r
+ rδlk

)
nldS =

∫
S

3 (xkll + rδlk)nldS

⇒
∫
S

dxk(dxl(r
3))nldS = 3

∫
S

(llxk)nldS + 3

∫
S

(rδlk)nldS

⇒
∫
S

dxk(dxl(r
3))nldS = 3

∫
V

∂

∂xl
(llxk)dV + 3

∫
V

∂

∂xl
(rδlk)dV = 3

∫
V

∂

∂xl
(llxk)dV + 3

∫
V

∂

∂xk
(r)dV
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⇒
∫
S

dxk(dxl(r
3))nldS = 3

∫
V

∂

∂xl
(llxk)dV + 3

∫
V

lkdV

Now note that we have
∂

∂xl
(llxk) = ll

∂

∂xl
(xk) + xk

∂

∂xl
(ll) = ll

∂

∂xl
(xk) + xk

∂

∂xl
(
xl
r
)

⇒ ∂

∂xl
(llxk) = ll

∂

∂xl
(xk) + xk

(r ∂
∂xl

(xl)− xl
∂

∂xl
r)

r2
= ll

∂

∂xl
(xk) + xk

(3r − xlxl

r )

r2
= llδkl + xk

(3r − r)

r2

⇒ ∂

∂xl
(llxk) = 3lk

Therefore we have

⇒
∫
S

dxk(dxl(r
3))nldS = 12

∫
V

lkdV

Differentiating both sides with respect to xi and xj we get

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∂2

∂xi∂xj

∫
V

lkdV

Integration
∫
and differentiation ∂2

∂xi∂xj
can be exchanged since they are linear operators

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫
V

∂2

∂xi∂xj
(lk)dV

The differentiation ∂2

∂xi∂xj
(lk) can be written as

∂2

∂xi∂xj
(lk) =

∂2

∂xi∂xj
(
xk
r
) =

∂

∂xi
(
∂

∂xj
(
xk
r
)) =

∂

∂xi
(
(r ∂

∂xj
xk − xk

∂
∂xj

r)

r2
)

⇒ ∂2

∂xi∂xj
(lk) =

∂

∂xi
(
(rδjk − xkxj

r )

r2
) =

∂

∂xi
(
δjk
r

− xkxj
r3

)

⇒ ∂2

∂xi∂xj
(lk) = δjk

∂

∂xi
(
1

r
)− ∂

∂xi
(
xkxj
r3

) = −δjkxi
r3

− 1

r3
(xk

∂

∂xi
xj + xj

∂

∂xi
xk)− xkxj

∂

∂xi
(
1

r3
)

⇒ ∂2

∂xi∂xj
(lk) = −δjkxi

r3
− 1

r3
(xkδji + xjδki)− xkxj

∂

∂xi
(
1

r3
)

⇒ ∂2

∂xi∂xj
(lk) = −δjkxi

r3
− 1

r3
(xkδji + xjδki) + 3

xkxjxi
r5

⇒ ∂2

∂xi∂xj
(lk) = − 1

r3
(xiδjk + xkδji + xjδki) + 3

xkxjxi
r5

⇒ ∂2

∂xi∂xj
(lk) =

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)

Therefore we have

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫
V

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)dV

Let us compute the volume integral by integrating over an elementary cone dΩ centred on the direction l = (l1, l2, l3) = (l,m, n) with
its vertex at x. The volume dV of this elementary cone is

dV = r2drdω

Therefore we have
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

∫ r

0

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)r

2drdω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(liδjk + lkδji + ljδki) + 3lklj li)

∫ r

0

drdω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

r(−(liδjk + lkδji + ljδki) + 3lklj li)dω

3.2 Method 2: With Using Exchanging of Integration and Differentiation Operator

We now derive dxi
(
dxj

(
dxk

(
dxl r

3
)))

, where r =
√
x21 + x22 + x23. Therefore we have

r3 = (x21 + x22 + x23)
3/2

Step 1: The first derivative of r3 with respect to xl is:

dxl
(
r3
)
=
∂r3

∂xl
= 3r2

xl
r

= 3rxl

Step 2: The second derivative is:

dxk (3rxl) = 3

(
∂r

∂xk
xl + r

∂xl
∂xk

)
= 3

(xk
r
xl + rδlk

)
= 3

(xkxl
r

+ rδlk

)
5



Therefore the integration of the second derivative shall be∫
S

dxk(dxl(r
3))nldS =

∫
S

3
(xkxl

r
+ rδlk

)
nldS =

∫
S

3 (xkll + rδlk)nldS

⇒
∫
S

dxk(dxl(r
3))nldS = 3

∫
S

(llnl)xkdS + 3

∫
S

(rδlk)nldS

We know that
llnldS = r(l)2dω

Here r(l) is the distance between the point inside the volume V to the surface dS in the direction of l = (l1, l2, l3) = (l,m, n). Therefore
we have ∫

S

dxk(dxl(r
3))nldS = 3

∫ 4π

0

r(l)2xkdω + 3

∫
S

(r(l)nk)dω

Differentiating both sides with respect to xi and xj we get

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r(l)2xkdω) + 3
∂2

∂xi∂xj
(

∫
S

r(l)nkdS)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) + 3
∂2

∂xi∂xj
(

∫
V

(
∂

∂xk
r)dV )

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) + 3
∂2

∂xi∂xj
(

∫
V

(
xk
r
)dV )

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) + 3
∂2

∂xi∂xj
(

∫
V

lkdV )

Let us compute the volume integral by integrating over an elementary cone dΩ centred on the direction l = (l1, l2, l3) = (l,m, n) with
its vertex at x. The volume dV of this elementary cone is

dV = r2drdω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) + 3
∂2

∂xi∂xj
(

∫ 4π

0

∫ r

0

(lkr
2)drdω)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) + 3
∂2

∂xi∂xj
(

∫ 4π

0

lk

∫ r

0

r2drdω)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) +
∂2

∂xi∂xj
(

∫ 4π

0

lkr
3drdω)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω)

We shall now show that the Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
can be exchanged if and only if when the

measure of the integration variable is independent of the Differentiation operator variables xi, xj . We shall explain this concept
using 6 different cases which are as follows

1. Assuming that the incremental solid angle measure dω is independent of the Differentiation operator variables xi, xj .

2. Assuming that the incremental volume measure dV = r(l)3

3 dω (subtended by a cone emanating from a point inside the volume
V to the surface dS which is at a distance r(l) in the direction l = (l1, l2, l3) = (l,m, n) from the point) is independent of the
Differentiation operator variables xi, xj .

3. Assuming that the incremental surface area measure dS = r(l)2dω (subtended by a cone emanating from a point inside the
volume V to the surface dS which is at a distance r(l) in the direction l = (l1, l2, l3) = (l,m, n) from the point) is independent
of the Differentiation operator variables xi, xj .

4. Assuming that the incremental volume measure dV = r2drdω is independent of the Differentiation operator variables xi, xj .

5. Assuming that the incremental angular direction measure dω and incremental volume measure dV is independent of the
Differentiation operator variables xi, xj in the first integration and second integration respectively.

6. Assuming that the incremental angular direction measure lkdω is independent of the Differentiation operator variables xi, xj .

We shall prove that all the above-mentioned 6 cases except the Case 4: ”Assuming that the incremental volume measure dV = r2drdω
is independent of the Differentiation operator variables xi, xj” will lead to a wrong answer. Only Case 4: ”Assuming that the incremental

volume measure dV = r2drdω is independent of the Differentiation operator variables xi, xj” will lead to the Correct answer as
derived in Method 1.

3.2.1 Assuming that the incremental solid angle measure dω is constant with respect to the Differentiation operator
variables xi, xj

In this subsection, we shall show that Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged when we

assume that the incremental solid angle measure dω is independent of the Differentiation operator variables xi, xj . Note that we
have earlier derived

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω)

Let’s see what happens when we interchange Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
in the RHS of the above

equation
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) = 4(

∫ 4π

0

∂2

∂xi∂xj
(r2xk)dω)
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⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4(

∫ 4π

0

∂2

∂xi∂xj
(r2xk)dω)

The first differentiation ∂2

∂xi∂xj
(r2xk) can be written as

∂2

∂xi∂xj
(r2xk) =

∂

∂xi
(
∂

∂xj
(r2xk)) =

∂

∂xi
(xk

∂

∂xj
(r2) + r2

∂

∂xj
(xk)) =

∂

∂xi
(2xjxk + r2δjk)

⇒ ∂2

∂xi∂xj
(r2xk) =

∂

∂xi
(2xjxk + r2δjk) = 2xj

∂

∂xi
xk + 2xk

∂

∂xi
xj +

∂

∂xi
(r2δjk)

⇒ ∂2

∂xi∂xj
(r2xk) = 2xjδki + 2xkδji + δjk

∂

∂xi
(r2) = 2xjδki + 2xkδji + 2xiδjk

⇒ ∂2

∂xi∂xj
(r2xk) = 2xjδki + 2xkδji + 2xiδjk = 2r(ljδki + lkδji + liδjk)

Therefore we can write

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4(

∫ 4π

0

∂2

∂xi∂xj
(r2xk)dω) = 8

∫
S

r(ljδki + lkδji + liδjk)dω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 8

∫
S

r(ljδki + lkδji + liδjk)dω

As we discussed earlier in Section 3.1, the correct answer for the ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS) shall be

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

Therefore exchanging the Integration operator
∫
and Differentiation operator ∂2

∂xi∂xj
under the assumption that the incremental solid

angle measure dω is independent of the Differentiation operator variables xi, xj leads to wrong answer. Hence Integration operator∫
and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged under the assumption that the incremental solid angle measure dω is

independent of the Differentiation operator variables xi, xj .

3.2.2 Assuming that the incremental volume measure dV = r3

3 dω is independent of the Differentiation operator

variables xi, xj

In this subsection, we shall show that Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged when we

assume that the incremental volume measure dV = r3

3 dω (subtended by a cone emanating from a point inside the volume V to the
surface dS which is at a distance r from the point) is independent of the Differentiation operator variables xi, xj . Note that we
have earlier derived

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω)

Let’s see what happens when we interchange Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
in the RHS of the above

equation
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) = 4

∫ 4π

0

∂2

∂xi∂xj
(r2xkdω)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∫ 4π

0

∂2

∂xi∂xj
(r2xkdω)

Since we have assumed that dV = r3

3 dω is independent of the Differentiation operator variables xi, xj , the differentiation with

respect to xi shall be zero i.e. ∂
∂xi

dV = 0, therefore we can write

∂

∂xi
dV =

∂

∂xi
(
r3

3
dω) =

∂

∂xi
(
r3

3
)dω +

r3

3

∂

∂xi
dω

⇒ ∂

∂xi
dV =

∂

∂r
(
r3

3
)
∂

∂xi
(r)dω +

r3

3

∂

∂xi
dω

⇒ ∂

∂xi
dV = r2(

xi
r
)dω +

r3

3

∂

∂xi
(dω)

⇒ ∂

∂xi
dV = rxidω +

r3

3

∂

∂xi
(dω)

The incremental volume dV remains constant irrespective change of xi, i.e
∂

∂xi
dV = 0 therefore we have

0 = rxidω +
r3

3

∂

∂xi
(dω)

⇒ (
−3rxi
r3

)dω =
∂

∂xi
(dω)

⇒ ∂

∂xi
(dω) = (

−3xi
r2

)dω

This shows that the solid angle integration measure dω is not independent of Differentiation operator variables xi, xj when we

assume that the incremental volume measure dV = r3

3 dω is independent of the Differentiation operator variables xi, xj . The

differentiation ∂2

∂xi∂xj
(r2xkdω) within the integral

∫ 4π

0
∂2

∂xi∂xj
(r2xkdω) can be written as

∂2

∂xi∂xj
(r2xkdω) =

∂

∂xi
(
∂

∂xj
(r2xkdω)) =

∂

∂xi
(xk

∂

∂xj
(r2dω) + r2dω

∂

∂xj
(xk))
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⇒ ∂2

∂xi∂xj
(r2xkdω) =

∂

∂xi
(xk(r

2 ∂

∂xj
(dω) + dω

∂

∂xj
(r2)) + r2dω

∂

∂xj
(xk))

⇒ ∂2

∂xi∂xj
(r2xkdω) =

∂

∂xi
(xkr

2 ∂

∂xj
(dω) + xkdω

∂

∂xj
(r2) + r2dω

∂

∂xj
(xk))

⇒ ∂2

∂xi∂xj
(r2xkdω) =

∂

∂xi
(xkr

2 ∂

∂xj
(dω) + 2xkxjdω + r2dωδkj)

Substituting the equation ∂
∂xj

(dω) =
−3xj

r2 dω which we derived earlier into the above boxed equation we get

⇒ ∂2

∂xi∂xj
(r2xkdω) =

∂

∂xi
(−3xjxkdω + 2xkxjdω + r2dωδkj)

⇒ ∂2

∂xi∂xj
(r2xkdω) =

∂

∂xi
(−xjxkdω + r2dωδkj) =

∂

∂xi
(−xjxkdω) + δkj

∂

∂xi
(r2dω)

⇒ ∂2

∂xi∂xj
(r2xkdω) = (−xkdω

∂

∂xi
xj − xjdω

∂

∂xi
xk − xkxj

∂

∂xi
dω) + δkj(dω

∂

∂xi
(r2) + r2

∂

∂xi
(dω))

⇒ ∂2

∂xi∂xj
(r2xkdω) = (−xkdω

∂

∂xi
xj − xjdω

∂

∂xi
xk − xkxj

∂

∂xi
dω) + δkj(2xidω + r2

∂

∂xi
(dω))

Substituting the equation ∂
∂xi

(dω) = −3xi

r2 dω which we derived earlier into the above boxed equation we get

∂2

∂xi∂xj
(r2xkdω) = (−xkδijdω − xjδikdω + 3

xkxjxi
r2

dω) + δkj(2xidω − 3xidω)

⇒ ∂2

∂xi∂xj
(r2xkdω) = (−xkδijdω − xjδikdω + 3

xkxjxi
r2

dω)− xiδkjdω

⇒ ∂2

∂xi∂xj
(r2xkdω) = −(xkδij + xjδik + xiδkj)dω + 3

xkxjxi
r2

dω

Therefore we can write

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4(

∫ 4π

0

∂2

∂xi∂xj
(r2xkdω)) = 4

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

As we discussed earlier in Section 3.1, the correct answer for the ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS) shall be

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

Therefore exchanging the Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
under the assumption that the incremental

volume measure dV = r3

3 dω (subtended by a cone emanating from a point inside the volume V to the surface dS which is at a
distance r from the point) is independent of the Differentiation operator variables xi, xj leads to wrong answer. Hence Integration

operator
∫

and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged under the assumption that the incremental volume measure

dV = r3

3 dω.

3.2.3 Assuming that the incremental volume measure dV = r2drdω is independent of the Differentiation operator
variables xi, xj

In this subsection, we shall show that Integration operator
∫
and Differentiation operator ∂2

∂xi∂xj
can be exchanged when we assume

that the incremental volume measure dV = r2drdω is independent of the Differentiation operator variables xi, xj . Note that here r
is not the distance between the point inside the volume V and surface dS. We have earlier derived that

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r(l)2xkdω)

This can be alternatively written as

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

lkr(l)
3dω) = 4

∂2

∂xi∂xj
(

∫ 4π

0

3lk

∫ r(l)

0

r2drdω) = 12
∂2

∂xi∂xj
(

∫ 4π

0

lk

∫ r(l)

0

r2drdω)

Since the direction cosine lk remains constant as we integrate from 0 to r(l), we can take the direction cosine lk inside the second

integral
∫ r(l)

0
. Therefore we can write the above equation as

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∂2

∂xi∂xj
(

∫ 4π

0

∫ r(l)

0

lkr
2drdω)

Let’s see what happens when we interchange Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
in the RHS of the above

equation

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∂2

∂xi∂xj
(

∫ 4π

0

∫ r(l)

0

lkr
2drdω) = 12

∫ 4π

0

∫ r(l)

0

∂2

∂xi∂xj
(lkr

2drdω)

Since r2drdω is independent of the Differentiation operator variables xi, xj , we have ∂2

∂xi∂xj
(r2drdω) = 0. We can therefore write

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

∫ r(l)

0

(
∂2

∂xi∂xj
lk)r

2drdω
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The differentiation ∂2

∂xi∂xj
(lk) can be written as

∂2

∂xi∂xj
(lk) =

∂2

∂xi∂xj
(
xk
r
) =

∂

∂xi
(
∂

∂xj
(
xk
r
)) =

∂

∂xi
(
(r ∂

∂xj
xk − xk

∂
∂xj

r)

r2
)

⇒ ∂2

∂xi∂xj
(lk) =

∂

∂xi
(
(rδjk − xkxj

r )

r2
) =

∂

∂xi
(
δjk
r

− xkxj
r3

)

⇒ ∂2

∂xi∂xj
(lk) = δjk

∂

∂xi
(
1

r
)− ∂

∂xi
(
xkxj
r3

) = −δjkxi
r3

− 1

r3
(xk

∂

∂xi
xj + xj

∂

∂xi
xk)− xkxj

∂

∂xi
(
1

r3
)

⇒ ∂2

∂xi∂xj
(lk) = −δjkxi

r3
− 1

r3
(xkδji + xjδki)− xkxj

∂

∂xi
(
1

r3
)

⇒ ∂2

∂xi∂xj
(lk) = −δjkxi

r3
− 1

r3
(xkδji + xjδki) + 3

xkxjxi
r5

⇒ ∂2

∂xi∂xj
(lk) = − 1

r3
(xiδjk + xkδji + xjδki) + 3

xkxjxi
r5

⇒ ∂2

∂xi∂xj
(lk) =

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)

Therefore we have

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫
V

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)dV

Let us compute the volume integral by integrating over an elementary cone dΩ centred on the direction l = (l1, l2, l3) = (l,m, n) with
its vertex at x. The volume dV of this elementary cone is

dV = r2drdω

Therefore we have
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

∫ r

0

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)r

2drdω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(liδjk + lkδji + ljδki) + 3lklj li)

∫ r

0

drdω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

r(−(liδjk + lkδji + ljδki) + 3lklj li)dω

As we discussed earlier in Section 3.1, the correct answer for the ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS) shall be

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

Therefore exchanging the Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
under the assumption that the incremental

volume measure dV = r2drdω is independent of the Differentiation operator variables xi, xj leads to correct answer. Hence Inte-

gration operator
∫
and Differentiation operator ∂2

∂xi∂xj
can be exchanged under the assumption that the incremental volume measure

dV = r2drdω is independent of the Differentiation operator variables xi, xj .

Reason why we are getting different answers

The reason why we get a different answer than when we consider the incremental volume measure dV = r3

3 dω to be indepen-
dent of the Differentiation operator variables xi, xj is due to the following reason: If we consider incremental volume measure
dV = r2drdω to be independent of the Differentiation operator variables xi, xj , i.e

∂
∂xi

(r2drdω) shall be zero. Then we get

∂

∂xi
dV =

∂

∂xi
(r2drdω) = r2dr

∂

∂xi
(dω) + r2dω

∂

∂xi
(dr) + dωdr

∂

∂xi
(r2)

⇒ ∂

∂xi
dV = r2dr

∂

∂xi
(dω) + r2dω

∂

∂xi
(dr) + dωdr

∂

∂xi
(r2)

⇒ ∂

∂xi
dV = r2dr

∂

∂xi
(dω) + 2xidωdr

The incremental volume dV remains constant irrespective change of xi, i.e
∂

∂xi
dV = 0 therefore we have

⇒ 0 = r2dr
∂

∂xi
(dω) + 2xidωdr

⇒ −2xidω = r2
∂

∂xi
(dω)

⇒ ∂

∂xi
(dω) = −2xi

r2
dω

But if we consider the incremental volume measure dV = r3

3 dω to be independent of the Differentiation operator variables xi, xj ,

i.e ∂
∂xi

( r
3

3 dω) shall be zero. Then we get

∂

∂xi
dV =

∂

∂xi
(
r3

3
dω) =

∂

∂xi
(
r3

3
)dω +

r3

3

∂

∂xi
dω

⇒ ∂

∂xi
dV =

∂

∂r
(
r3

3
)
∂

∂xi
(r)dω +

r3

3

∂

∂xi
dω
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⇒ ∂

∂xi
dV = r2(

xi
r
)dω +

r3

3

∂

∂xi
(dω)

⇒ ∂

∂xi
dV = rxidω +

r3

3

∂

∂xi
(dω)

The incremental volume dV remains constant irrespective change of xi, i.e
∂

∂xi
dV = 0 therefore we have

0 = rxidω +
r3

3

∂

∂xi
(dω)

⇒ (
−3rxi
r3

)dω =
∂

∂xi
(dω)

⇒ ∂

∂xi
(dω) = (

−3xi
r2

)dω

The ∂
∂xi

(dω) is different for different assumptions of integration measure independence with respect to the Differentiation operator

variables xi, xj . This leads to different values of ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS).

3.2.4 Assuming that the incremental angular direction measure lkdω is independent of the Differentiation operator
variables xi, xj

In this subsection, we shall show that Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged when we

assume that the incremental angular direction measure lkdω is independent of the Differentiation operator variables xi, xj . Note
that here r is not the distance between the point inside the volume V and surface dS. We have earlier derived that

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r(l)2xkdω)

Let’s see what happens when we interchange Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
in the RHS of the above

equation
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4

∂2

∂xi∂xj
(

∫ 4π

0

r(l)2xkdω) = 4

∫ 4π

0

∂2

∂xi∂xj
(r(l)2xkdω)

Since we have assumed that the incremental angular direction measure lkdω is independent of the Differentiation operator variables
xi, xj , the differentiation with respect to xi shall be zero i.e. ∂

∂xi
(lkdω) = 0, therefore we can write

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4(

∫ 4π

0

∂2

∂xi∂xj
(r(l)2xk)dω) = 4(

∫ 4π

0

∂2

∂xi∂xj
(r(l)3lk)dω) = 4(

∫ 4π

0

lk
∂2

∂xi∂xj
(r(l)3)dω)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 4(

∫ 4π

0

lk
∂2

∂xi∂xj
(r(l)3)dω)

We know that
∂2

∂xi∂xj
(r3) = 3

(xixj
r

+ rδij

)
= 3 (rlilj + rδij)

⇒ ∂2

∂xi∂xj
(r3) = 3r(lilj + δij)

Therefore can write

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12(

∫ 4π

0

r(lilj lk + δij lk)dω)

As we discussed earlier in Section 3.1, the correct answer for the ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS) shall be

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

Therefore exchanging the Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
under the assumption that the incremental

angular direction measure lkdω is independent of the Differentiation operator variables xi, xj leads to wrong answer. Hence

Integration operator
∫
and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged under the assumption that the incremental angular

direction measure lkdω is independent of the Differentiation operator variables xi, xj .

3.2.5 Assuming that the incremental angular direction measure dω and incremental volume measure dV is independent
of the Differentiation operator variables xi, xj in the first integration and second integration respectively

In this subsection, we shall show that Integration operator
∫
and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged when we assume

that the incremental angular direction measure dω and incremental volume measure dV is independent of the Differentiation operator
variables xi, xj in the first integration and second integration respectively. Note that here r is not the distance between the point
inside the volume V and surface dS. We have earlier derived that

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∂2

∂xi∂xj
(

∫ 4π

0

r2xkdω) + 3
∂2

∂xi∂xj
(

∫
V

lkdV )

Let’s see what happens when we interchange Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
in the RHS of the above

equation
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∫ 4π

0

∂2

∂xi∂xj
(r2xkdω) + 3

∫
V

∂2

∂xi∂xj
(lkdV )
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Since the incremental angular direction measure dω and incremental volume measure dV is independent of the Differentiation
operator variables xi, xj in the first integration and second integration respectively, we can write the above equation as

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 3

∫ 4π

0

∂2

∂xi∂xj
(r2xk)dω + 3

∫
V

∂2

∂xi∂xj
(lk)dV

The first differentiation ∂2

∂xi∂xj
(r2xk) can be written as

∂2

∂xi∂xj
(r2xk) =

∂

∂xi
(xk

∂

∂xj
(r2) + r2

∂

∂xj
(xk)) =

∂

∂xi
(2xkxj + r2δkj)

⇒ ∂2

∂xi∂xj
(r2xk) =

∂

∂xi
(2xkxj + r2δkj) = 2(xk

∂

∂xi
xj + xj

∂

∂xi
xk) + δkj

∂

∂xi
r2

⇒ ∂2

∂xi∂xj
(r2xk) =

∂

∂xi
(2xkxj + r2δkj) = 2(xkδij + xjδik) + 2xiδkj

⇒ ∂2

∂xi∂xj
(r2xk) = 2(xkδij + xjδik + xiδkj)

⇒ ∂2

∂xi∂xj
(r2xk) = 2r(lkδij + ljδik + liδkj)

The second differentiation ∂2

∂xi∂xj
(xk

r ) can be written as

∂2

∂xi∂xj
(
xk
r
) =

∂

∂xi
(
∂

∂xj
(
xk
r
)) =

∂

∂xi
(
(r ∂

∂xj
xk − xk

∂
∂xj

r)

r2
)

⇒ ∂2

∂xi∂xj
(
xk
r
) =

∂

∂xi
(
(rδjk − xkxj

r )

r2
) =

∂

∂xi
(
δjk
r

− xkxj
r3

)

⇒ ∂2

∂xi∂xj
(
xk
r
) = δjk

∂

∂xi
(
1

r
)− ∂

∂xi
(
xkxj
r3

) = −δjkxi
r3

− 1

r3
(xk

∂

∂xi
xj + xj

∂

∂xi
xk)− xkxj

∂

∂xi
(
1

r3
)

⇒ ∂2

∂xi∂xj
(
xk
r
) = −δjkxi

r3
− 1

r3
(xkδji + xjδki)− xkxj

∂

∂xi
(
1

r3
)

⇒ ∂2

∂xi∂xj
(
xk
r
) = −δjkxi

r3
− 1

r3
(xkδji + xjδki) + 3

xkxjxi
r5

⇒ ∂2

∂xi∂xj
(
xk
r
) = − 1

r3
(xiδjk + xkδji + xjδki) + 3

xkxjxi
r5

⇒ ∂2

∂xi∂xj
(
xk
r
) =

1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li)

Note that we have dV = r3

3 dω. Therefore can write

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 6

∫ 4π

0

r(lkδij + ljδik + liδkj)dω + 3

∫
V

(
1

r2
(−(liδjk + lkδji + ljδki) + 3lklj li))dV

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 6

∫ 4π

0

r(lkδij + ljδik + liδkj)dω +

∫
V

(r(−(liδjk + lkδji + ljδki) + 3lklj li))dω

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) =

∫ 4π

0

5r(lkδij + ljδik + liδkj)dω +

∫
V

(3lklj li)dω

As we discussed earlier in Section 3.1, the correct answer for the ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS) shall be

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

Therefore exchanging the Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
under the assumption that the the incremental

angular direction measure dω and incremental volume measure dV is independent of the Differentiation operator variables xi, xj
in the first integration and second integration respectively leads to wrong answer. Hence Integration operator

∫
and Differentiation

operator ∂2

∂xi∂xj
cannot be exchanged under the assumption that the incremental angular direction measure dω and incremental

volume measure dV is independent of the Differentiation operator variables xi, xj in the first integration and second integration
respectively.

3.2.6 Assuming that the incremental surface area measure dS = r(l)2dω is independent of the Differentiation operator
variables xi, xj

In this subsection, we shall show that Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged when we

assume that the incremental surface area measure dS = r(l)2dω (subtended by a cone emanating from a point inside the volume
V to the surface dS which is at a distance r(l) in the direction l = (l1, l2, l3) = (l,m, n) from the point) is independent of the
Differentiation operator variables xi, xj . Note that we have earlier derived∫

S

dxk(dxl(r(l)
3))nldS = 3

∫
S

(llnl)xkdS + 3

∫
S

(r(l)δlk)nldS

⇒
∫
S

dxk(dxl(r(l)
3))nldS = 3

∫
S

(llxk)nldS + 3

∫
S

(r(l)δlk)nldS
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Using Gauss Divergence theorem on the first integration, we can write the above equation as

⇒
∫
S

dxk(dxl(r(l)
3))nldS = 3

∫
V

∂

∂xl
(llxk)dV + 3

∫
S

(r(l)δlk)nldS

Now note that we have
∂

∂xl
(llxk) = ll

∂

∂xl
(xk) + xk

∂

∂xl
(ll) = ll

∂

∂xl
(xk) + xk

∂

∂xl
(
xl
r
)

⇒ ∂

∂xl
(llxk) = ll

∂

∂xl
(xk) + xk

(r ∂
∂xl

(xl)− xl
∂

∂xl
r)

r2
= ll

∂

∂xl
(xk) + xk

(3r − xlxl

r )

r2
= llδkl + xk

(3r − r)

r2

⇒ ∂

∂xl
(llxk) = 3lk

Therefore we have

⇒
∫
S

dxk(dxl(r(l)
3))nldS = 9

∫
V

lkdV + 3

∫
S

(r(l)δlk)nldS

⇒
∫
S

dxk(dxl(r(l)
3))nldS = 9

∫
V

lkdV + 3

∫
S

r(l)nkdS

Now not that we have ∂
∂xk

(r) = lk. Therefore using the Gauss Divergence theorem, we can write∫
V

lkdV =

∫
V

∂

∂xk
(r)dV =

∫
S

r(l)nkdS

⇒
∫
V

lkdV =

∫
S

r(l)nkdS

Therefore we can write

⇒
∫
S

dxk(dxl(r
3))nldS = 12

∫
S

r(l)nkdS

Let’s see what happens when we interchange Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
in the RHS of the above

equation
∂2

∂xi∂xj
(

∫
S

dxk(dxl(r(l)
3))nldS) = 12

∂2

∂xi∂xj
(

∫
S

r(l)nkdS) = 12

∫ 4π

0

∂2

∂xi∂xj
(r(l)nkdS)

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r(l)
3))nldS) = 12

∫ 4π

0

∂2

∂xi∂xj
(r(l)nkdS)

Since we assumed that the incremental surface area measure dS = r(l)2dω (subtended by a cone emanating from a point inside the
volume V to the surface dS which is at a distance r(l) in the direction l = (l1, l2, l3) = (l,m, n) from the point) is independent of
the Differentiation operator variables xi, xj , we have ∂

∂xi∂xj
(dS) = 0. Therefore the above-mentioned boxed equation becomes

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

∂2

∂xi∂xj
(r(l)nk)dS

Now we know that
lknk = r(l)2dω = dS

Differentiating both sides of the equation with respect to xj we get

∂

∂xj
(lknk) =

∂

∂xj
(dS)

Since we assumed that the incremental surface area measure dS = r(l)2dω is independent of the Differentiation operator variables

xi, xj , we have
∂

∂xj
(dS) = 0

⇒ lk
∂

∂xj
nk + nk

∂

∂xj
lk = 0

⇒ lk
∂

∂xj
nk + nk

∂

∂xj
(
xk
r
) = 0

⇒ lk
∂

∂xj
nk + nk

(r ∂
∂xj

xk − xk
∂

∂xj
r)

r2
= 0

⇒ lk
∂

∂xj
nk + nk

(rδjk − xkxj

r )

r2
= 0

⇒ ∂

∂xj
nk =

(
nj

r − nkxkxj

r3 )

lk

⇒ ∂

∂xj
nk =

(nj − nkxkxj

r2 )

xk

⇒ ∂

∂xj
nk =

nj
xk

− nkxj
r2

Similarly, we also have ljnj = r(l)2dω = dS and
∂

∂xi
(dS) = 0 , therefore we can similarly write

⇒ lj
∂

∂xi
nj + nj

∂

∂xi
lj = 0
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⇒ lj
∂

∂xi
nj + nj

∂

∂xi
(
xj
r
) = 0

⇒ lj
∂

∂xi
nj + nj

(r ∂
∂xi

xj − xj
∂

∂xi
r)

r2
= 0

⇒ lj
∂

∂xi
nj + nj

(rδij − xjxi

r )

r2
= 0

⇒ ∂

∂xi
nj =

(ni

r − njxjxi

r3 )

lk

⇒ ∂

∂xi
nj =

(ni − njxjxi

r2 )

xj

⇒ ∂

∂xi
nj =

ni
xj

− njxi
r2

To compute the double derivative ∂2

∂xi∂xj
(rnk) =

∂
∂xi

( ∂
∂xj

(rnk)). We need to first compute the 2 derivatives ∂
∂xj

(rnk) and
∂

∂xi
(rnj).

Note that we can write using the product rule
∂

∂xj
(rnk) = r

∂

∂xj
nk + nk

∂

∂xj
r

∂

∂xi
(rnj) = r

∂

∂xi
nj + nj

∂

∂xi
r

Substituting the expression for ∂
∂xj

nk that we got earlier in the above equation ∂
∂xj

(rnk) = r ∂
∂xj

nk + nk
∂

∂xj
r we get

⇒ ∂

∂xj
(rnk) = r(

nj
xk

− nkxj
r2

) +
nkxj
r

=
rnj
xk

−
�

��
nkxj
r

+
�

��
nkxj
r

⇒ ∂

∂xj
(rnk) =

rnj
xk

Substituting the expression for ∂
∂xi

nj that we got earlier in the equation ∂
∂xi

(rnj) = r ∂
∂xi

nj + nj
∂

∂xi
r we get

⇒ ∂

∂xi
(rnj) = r(

ni
xj

− njxi
r2

) +
njxi
r

=
rni
xj

−
�

��
njxi
r

+
�

��
njxi
r

⇒ ∂

∂xi
(rnj) =

rni
xj

Using the expression for ∂
∂xj

(rnk) that we derived earlier, we can write the double derivative ∂2

∂xi∂xj
(rnk) =

∂
∂xi

( ∂
∂xj

(rnk)) as

⇒ ∂2

∂xi∂xj
(rnk) =

∂

∂xi
(
∂

∂xj
(rnk)) =

∂

∂xi
(
rnj
xk

)

⇒ ∂2

∂xi∂xj
(rnk) =

(xk
∂

∂xi
(rnj)− rnj

∂
∂xi

(xk))

x2k

Using the expression for ∂
∂xi

(rnj) that we derived earlier,

⇒ ∂2

∂xi∂xj
(rnk) =

( rnixk

xj
− rnjδki)

x2k

⇒ ∂2

∂xi∂xj
(rnk) =

rni
xjxk

− rnjδki
x2k

⇒ ∂2

∂xi∂xj
(rnk) =

rni
xjxk

− rnj
x2i

Now we have derived earlier that

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

∂2

∂xi∂xj
(r(l)nk)dS

Substituting the above-mentioned boxed equation into the previous equation we get

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(
rni
xjxk

− rnj
x2i

)dS

As we discussed earlier in Section 3.1, the correct answer for the ∂2

∂xi∂xj
(
∫
S
dxk(dxl(r

3))nldS) shall be

⇒ ∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

(−(xkδij + xjδik + xiδkj) + 3
xkxjxi
r2

)dω

Therefore exchanging the Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
under the assumption that the incremental

surface area measure dS = r(l)2dω (subtended by a cone emanating from a point inside the volume V to the surface dS which is
at a distance r(l) in the direction l = (l1, l2, l3) = (l,m, n) from the point) is independent of the Differentiation operator variables

xi, xj leads to wrong answer. Hence Integration operator
∫

and Differentiation operator ∂2

∂xi∂xj
cannot be exchanged under the

assumption that the incremental surface area measure dS = r(l)2dω is independent of the Differentiation operator variables xi, xj .
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3.3 Method 3: Without Using Exchanging of Integration and Differentiation Operator

We now derive dxi
(
dxj

(
dxk

(
dxl r

3
)))

, where r =
√
x21 + x22 + x23. Therefore we have

r3 = (x21 + x22 + x23)
3/2

Step 1: The first derivative of r3 with respect to xl is:

dxl
(
r3
)
=
∂r3

∂xl
= 3r2

xl
r

= 3rxl

Step 2: The second derivative is:

dxk (3rxl) = 3

(
∂r

∂xk
xl + r

∂xl
∂xk

)
= 3

(xk
r
xl + rδlk

)
= 3

(xkxl
r

+ rδlk

)
Step 3: The third derivative is:

dxj

(
3
(xkxl

r
+ rδlk

))
= 3

(
∂

∂xj

(xkxl
r

)
+

∂

∂xj
(rδlk)

)
∂

∂xj

(xkxl
r

)
=
δjkxl + δjlxk

r
− xkxlxj

r3

∂

∂xj
(rδlk) =

xj
r
δlk

dxj

(
3
(xkxl

r
+ rδlk

))
= 3

(
δjkxl + δjlxk

r
− xkxlxj

r3
+
xj
r
δlk

)
Step 4: The fourth derivative is:

dxi

(
3

(
δjkxl + δjlxk

r
− xkxlxj

r3
+
xj
r
δlk

))
For the first term:

dxi

(
δjkxl + δjlxk

r

)
=
δjkδil + δjlδik

r
− (δjkxl + δjlxk)xi

r3

For the second term:

dxi

(
−xkxlxj

r3

)
= −3

xkxlxjxi
r5

+
δikxlxj + δilxkxj + δijxkxl

r3

For the third term:

dxi

(
xjδlk
r

)
=
δijδlk
r

− xjδlkxi
r3

Combining all the terms, we get:

dxi
(
dxj

(
dxk

(
dxl r

3
)))

= 3

(
δjkδil + δjlδik + δijδlk

r
− δjkxlxi + δjlxkxi + δilxkxj + δikxlxj + δlkxjxi + δijxkxl

r3
+

3xkxlxjxi
r5

)
Therefore the integral

∫
S
dxi

(
dxj

(
dxk

(
dxl r

3
)))

nldS shall be∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS =

∫
S

3

(
δjkδil + δjlδik + δijδlk

r
− δjkxlxi + δjlxkxi + δilxkxj + δikxlxj + δlkxjxi + δijxkxl

r3
+

3xkxlxjxi
r5

)
nldS

∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS =

∫
S

3

(
δjkδil + δjlδik + δijδlk

r
− δjkllli + δjllkli + δillklj + δiklllj + δlklj li + δij lkll

r
+

3lklllj li
r

)
nldS

Note that we can write
nilidS = r2dω

Therefore we can write∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS =

∫
S

3(
δjkδil + δjlδik + δijδlk

r
)nldS+

∫ 4π

0

r(9lklj li−3(δjkli+δiklj+δij lk))dω−
∫
S

3(
δjllkli + δillklj + δlklj li

r
)nldS

We shall compute each of the 2 surface integrals on the RHS one by one. Let us start by computing the 1st surface integral∫
S
3(

δjkδil+δjlδik+δijδlk
r )nldS. For this we define a tensor F in indicial notation as follows:

Fijkl = 3(
δjkδil + δjlδik + δijδlk

r
)

Using the Gauss Divergence theorem we can write∫
S

(F.n)dS =

∫
V

(∇.F)dV =

∫
V

(
∂Fijkl

∂xl
)dV

The volume integral
∫
V
(
∂Fijkl

∂xl
)dV can be written as∫

V

(
∂Fijkl

∂xl
)dV =

∫
V

∂

∂xl
(3(

δjkδil + δjlδik + δijδlk
r

))dV = 3(δjkδil+δjlδik+δijδlk)

∫
V

∂

∂xl
(
1

r
)dV = 3(δjkδil+δjlδik+δijδlk)

∫
V

(−xl
r3

)dV

Let us compute the volume integral by integrating over an elementary cone dω centred on the direction l = (l1, l2, l3) = (l,m, n) with
its vertex at x. The volume dV of this elementary cone is

dV = r2drdω
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Therefore the integral
∫
V
( xl

r3 )dV can be therefore written as∫
V

(
xl
r3

)dV =

∫ 4π

0

∫ r(l)

0

xl
r
drdω =

∫ 4π

0

∫ r(l)

0

lldrdΩ =

∫ 4π

0

ll

∫ r(l)

0

drdω =

∫ 4π

0

llr(l)dω

⇒
∫
V

(
xl
r3

)dV =

∫ 4π

0

r(l)lldω

Therefore the volume integral shall be∫
V

(
∂Fijkl

∂xl
)dV = 3(δjkδil + δjlδik + δijδlk)

∫
V

(−xl
r3

)dV = −3(δjkδil + δjlδik + δijδlk)

∫ 4π

0

r(l)lldω(l)

⇒
∫
V

(
∂Fijkl

∂xl
)dV = −3

∫ 4π

0

r(l)(δjkli + δiklj + δij lk)dω(l)

Therefore the surface integral shall be∫
S

3(
δjkδil + δjlδik + δijδlk

r
)nldS = −3

∫ 4π

0

r(l)(δjkli + δiklj + δij lk)dω(l)

Let us now compute the 2nd surface integral
∫
S
(
δjllkli+δillklj+δlklj li

r )nldS. For this define a tensor G in indicial notation as follows:

Gijkl =
δjllkli + δillklj + δlklj li

r

Using the Gauss Divergence theorem we can write∫
S

(G.n)dS =

∫
V

(∇.G)dV =

∫
V

(
∂Gijkl

∂xl
)dV

The volume integral
∫
V
(
∂Gijkl

∂xl
)dV can be written as

∫
V

(
∂Gijkl

∂xl
)dV =

∫
V

∂

∂xl
(
δjllkli + δillklj + δlklj li

r
)dV

We need to do differentiate (
δjllkli+δillklj+δkllj li

r ) before doing the volume integral. Given the function:

u =
δjl lkli + δil lklj + δkl lj li

r

Substituting li =
xi

r , lj =
xj

r , and lk = xk

r into the above expression for u, we get:

u =
1

r
(δjl

xk
r

xi
r

+ δil
xk
r

xj
r

+ δkl
xj
r

xi
r
)

⇒ u =
1

r3
(δjlxkxi + δilxkxj + δklxjxi)

Now, let’s compute the differentiation of u with respect to xl:

∂u

∂xl
=

∂

∂xl

(
1

r3

)
(δjlxkxi + δilxkxj + δklxjxi) +

1

r3
∂

∂xl
(δjlxkxi + δilxkxj + δklxjxi)

⇒ ∂u

∂xl
=

∂

∂r

(
1

r3

)
∂

∂xl
(r) (δjlxkxi + δilxkxj + δklxjxi) +

1

r3
∂

∂xl
(δjlxkxi + δilxkxj + δklxjxi)

⇒ ∂u

∂xl
= −3xl

r5
(δjlxkxi + δilxkxj + δklxjxi) +

1

r3
∂

∂xl
(δjlxkxi + δilxkxj + δklxjxi)

Now, let’s compute the differentiation ∂
∂xl

(δjlxkxi + δilxkxj + δklxjxi) term by term. For the first term we have:

∂

∂xl
(δjlxkxi) = δjl

∂

∂xl
(xkxi) = δjl

(
xi

∂

∂xl
xk + xk

∂

∂xl
xi

)
= δjl (δklxi + δilxk)

⇒ ∂

∂xl
(δjlxkxi) = δjkxi + δjixk

For the second term we have:

∂

∂xl
(δilxkxj) = δil

∂

∂xl
(xkxj) = δil(

∂

∂xl
(xk)xj +

∂

∂xl
(xj)xk) = δil(δklxj + δjlxk)

⇒ ∂

∂xl
(δilxkxj) = δikxj + δijxk

For the third term we have:

∂

∂xl
(δklxjxi) = δkl

∂

∂xl
(xjxi) = δkl(xi

∂

∂xl
(xj) + xj

∂

∂xl
(xi)) = δkl(δjlxi + δilxj)

⇒ ∂

∂xl
(δklxjxi) = δkjxi + δkixj

Therefore we have
∂

∂xl
(δjlxkxi + δilxkxj + δklxjxi) = 2(δkjxi + δkixj + δijxk)
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Therefore the differentiation ∂
∂xl

(δjlxkxi + δilxkxj + δklxjxi) shall be

∂u

∂xl
= −3xl

r5
(δjlxkxi + δilxkxj + δklxjxi) +

2

r3
(δkjxi + δkixj + δijxk)

⇒ ∂u

∂xl
= − 3

r5
(xjxkxi + xixkxj + xkxjxi) +

2

r3
(δkjxi + δkixj + δijxk)

⇒ ∂u

∂xl
= − 9

r5
xixkxj +

2

r3
(δkjxi + δkixj + δijxk)

⇒ ∂u

∂xl
= − 9

r2
lilklj +

2

r2
(δkj li + δkilj + δij lk)

⇒ d

dxl

(
δjllkli + δillklj + δkllj li

r

)
=

1

r2
(−9lilklj + 2δkj li + 2δkilj + 2δij lk)

This is the fully simplified expression for the derivative. Therefore the volume integral shall be∫
V

(
d

dxl

(
δjllkli + δillklj + δkllj li

r

)
)dV =

∫
V

1

r2
(−9lilklj + 2δkj li + 2δkilj + 2δij lk)dV

Let us compute the volume integral by integrating over an elementary cone dω centred on the direction l = (l1, l2, l3) = (l,m, n) with
its vertex at x. The volume dV of this elementary cone is

dV = r2drdω

Therefore the volume integral shall be∫
V

(
d

dxl

(
δjllkli + δillklj + δkllj li

r

)
)dV =

∫ 4π

0

∫ r(l)

0

1

r2
(−9lilklj + 2δkj li + 2δkilj + 2δij lk)r

2drdω

⇒
∫
V

(
d

dxl

(
δjllkli + δillklj + δkllj li

r

)
)dV =

∫ 4π

0

(−9lilklj + 2δkj li + 2δkilj + 2δij lk)

∫ r(l)

0

drdω

⇒
∫
V

(
d

dxl

(
δjllkli + δillklj + δkllj li

r

)
)dV =

∫ 4π

0

r(l)(−9lilklj + 2δkj li + 2δkilj + 2δij lk)dω

Therefore the surface integral shall be∫
S

(
δjllkli + δillklj + δlklj li

r
)nldS =

∫ 4π

0

r(l)(−9lilklj + 2δkj li + 2δkilj + 2δij lk)dω

Now we earlier derived that∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS =

∫
S

3(
δjkδil + δjlδik + δijδlk

r
)nldS+

∫ 4π

0

r(9lklj li−3(δjkli+δiklj+δij lk))dω−
∫
S

3(
δjllkli + δillklj + δlklj li

r
)nldS

Substituting the expressions of the 2 surface integrals that we derived earlier into the above equation we get∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS = −3

∫ 4π

0

r(l)(δjkli + δiklj + δij lk)dω(l) +

∫ 4π

0

r(l)(9lklj li − 3(δjkli + δiklj + δij lk))dω(l)

−3

∫ 4π

0

r(l)(−9lilklj + 2δkj li + 2δkilj + 2δij lk)dω(l)

⇒
∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS =

∫ 4π

0

r(l)(36lklj li − 12δjkli − 12δiklj − 12δij lk)dω(l)

⇒
∫
S

dxi
(
dxj

(
dxk

(
dxl r

3
)))

nldS = 12

∫ 4π

0

r(l)(3lklj li − δjkli − δiklj − δij lk)dω(l)

4 Betti’s Theorem and Reciprocity

Betti’s Theorem is a fundamental result in linear elasticity that provides a relationship between two different states of stress and
strain within an elastic body. The theorem states that if a body is subjected to two different sets of equilibrating forces, the work
done by one set of forces during the displacements caused by the other set is the same as the work done by the second set during the
displacements caused by the first set.

Let:

• u(1) be the displacement field due to traction force t(1) and body force b(1).

• u(2) be the displacement field due to traction force t(2) and body force b(2).

Then Betti’s Theorem is expressed as:∫
S

t
(1)
i u

(2)
i dS +

∫
V

b
(1)
i u

(2)
i dV =

∫
S

t
(2)
i u

(1)
i dS +

∫
V

b
(2)
i u

(1)
i dV

Or, in component form: ∫
S

t
(1)
i u

(2)
i dS +

∫
V

b
(1)
i u

(2)
i dV =

∫
S

t
(2)
i u

(1)
i dS +

∫
V

b
(2)
i u

(1)
i dV (1.82)

To prove Betti’s Theorem, we begin by noting the stress-strain relationships in each state:

σ
(1)
ij = Cijkle

(1)
kl and σ

(2)
ij = Cijkle

(2)
kl
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The strain energy densities for the two states are given by:

σ
(1)
ij e

(2)
ij = Cijkle

(1)
kl e

(2)
ij and σ

(2)
ij e

(1)
ij = Cijkle

(2)
kl e

(1)
ij

Since Cijkl is symmetric under interchange of the first and second pairs of indices (i.e., Cijkl = Cklij), we have:

σ
(1)
ij e

(2)
ij = σ

(2)
ij e

(1)
ij

Integrating this over the volume V , we obtain:∫
V

σ
(1)
ij e

(2)
ij dV =

∫
V

σ
(2)
ij e

(1)
ij dV (1.83)

Expanding the left-hand side: ∫
V

σ
(1)
ij e

(2)
ij dV =

∫
V

σ
(1)
ij u

(2)
j,i dV

Applying the divergence theorem: ∫
V

σ
(1)
ij u

(2)
j,i dV =

∫
V

(σ
(1)
ij u

(2)
j ),i dV −

∫
V

σ
(1)
ij,iu

(2)
j dV

Using the equilibrium condition σ
(1)
ij,i + b

(1)
i = 0:∫
V

σ
(1)
ij e

(2)
ij dV =

∫
S

t
(1)
i u

(2)
i dS +

∫
V

b
(1)
i u

(2)
i dV (1.85)

Similarly, for the second state: ∫
V

σ
(2)
ij e

(1)
ij dV =

∫
S

t
(2)
i u

(1)
i dS +

∫
V

b
(2)
i u

(1)
i dV

Equating these expressions gives Betti’s Theorem:∫
S

t
(1)
i u

(2)
i dS +

∫
V

b
(1)
i u

(2)
i dV =

∫
S

t
(2)
i u

(1)
i dS +

∫
V

b
(2)
i u

(1)
i dV

Betti’s Theorem can be used to derive the reciprocity relation for the Green’s function in elasticity. The Green’s function Gij(x, x
′)

represents the displacement in the i-th direction at point x due to a unit point force in the j-th direction at point x′. The reciprocity
relation states that:

Gij(x, x
′) = Gji(x

′, x) (1.86)

Consider two specific states:

• b
(1)
i = Fiδ(x− x(1)), i.e., a point force Fi at x

(1).

• b
(2)
i = Hiδ(x− x(2)), i.e., a point force Hi at x

(2).

The corresponding displacement fields are:

u
(1)
i (x) = Gij(x, x

(1))Fj and u
(2)
i (x) = Gij(x, x

(2))Hj

Substituting these into Betti’s Theorem:∫
V

Fiδ(x− x(1))Gij(x, x
(2))Hj dV =

∫
V

Hjδ(x− x(2))Gji(x, x
(1))Fi dV

Simplifying using the properties of the delta function:

FiHjGij(x
(1), x(2)) = FiHjGji(x

(2), x(1))

Since Fi and Hj are arbitrary, this implies the reciprocity of the Green’s function:

Gij(x
(1), x(2)) = Gji(x

(2), x(1)) (1.90)

The derivation provided above rigorously covers the theory and equations presented in Section 1.7 of the document. Betti’s Theorem
provides a powerful tool for understanding the relationship between different states of stress and strain in an elastic body, and it leads
directly to the important reciprocity relation for Green’s functions, which is essential in solving a wide range of problems in elasticity.

5 Derivation of the Green’s Function for Isotropic Medium

To derive the Love 1927 Solution of Displacement we need to first derive the Navier-Cauchy equations. The Navier-Cauchy
equations describe the equilibrium state of an isotropic elastic medium under applied forces. The equilibrium equation in the absence
of body forces is:

∇ · σ + f = 0

where σ is the stress tensor, and f represents the body forces. For an isotropic material, the stress tensor σ is related to the strain
tensor ϵ via Hooke’s law:

σij = λδijϵkk + 2µϵij

where λ and µ are the Lamé constants, and the strain tensor ϵij is:

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
Substituting the strain tensor into the stress tensor and then into the equilibrium equation gives:

∂

∂xj

(
λδij

∂uk
∂xk

+ 2µϵij

)
+ fi = 0

Expanding this, we have:
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λ
∂

∂xi

∂uk
∂xk

+ µ
∂2ui
∂x2j

+ µ
∂2uj
∂xi∂xj

+ fi = 0

Recognizing that
∂2uj

∂xi∂xj
= ∂2ui

∂x2
j
, we simplify to:

(λ+ µ)
∂

∂xi

∂uk
∂xk

+ µ∇2ui + fi = 0

In vector form, this is:

µ∇2u+ (λ+ µ)∇(∇ · u) + f = 0

This is the Navier-Cauchy equation in its general form. To find the Green’s function Gij(x,x0), we consider the Navier-Cauchy
equation with a point force applied at x0:

µ∇2Gij(x,x0) + (λ+ µ)
∂

∂xi

∂Gkj(x,x0)

∂xk
= −δijδ(x− x0)

Here, Gij(x,x0) represents the ith component of displacement at x due to a unit point force in the jth direction at x0. We take the
Fourier transform F of the Navier-Cauchy equation. The Fourier transform of a function f(r) in three dimensions is defined by:

F{f(r)}(k) = f̂(k) =

∫
R3

e−ik·rf(r) dr

We will now compute the Fourier transform of each term in the Navier-Cauchy equation separately. The term ∇2u is the Laplacian
of the displacement field. In three dimensions, the Laplacian of a vector field u(r) is:

∇2u =

(
∂2ui
∂x2j

)
Taking the Fourier transform:

F{∇2ui(r)}(k) = F

{
∂2ui(r)

∂x2j

}
(k)

Using the property of Fourier transforms:

F

{
∂2ui(r)

∂x2j

}
(k) = −k2j ûi(k)

we have:

F{∇2ui(r)}(k) = −k2ûi(k)

where k2 = kjkj . The term ∇(∇ · u) involves the gradient of the divergence of the displacement field. First, compute the Fourier
transform of ∇ · u:

F{∇ · u(r)}(k) = F
{
∂ui
∂xi

}
(k) = ikiûi(k)

Now, take the gradient:

F{∇(∇ · u)}(k) = F
{

∂

∂xj

(
∂ui
∂xi

)}
(k) = −kjkiûi(k)

For completeness, we also compute the Fourier transform of the body force term f :

F{f(r)}(k) = f̂(k)

In the case of a point force applied at r = r0, this becomes:

F{δ(r− r0)}(k) = e−ik·r0

Substituting these results into the Navier-Cauchy equation:

µ(−k2ûi(k)) + (λ+ µ)(−kikj ûj(k)) = −f̂i(k)

⇒ −µk2ûi(k)− (λ+ µ)kikj ûj(k) = −f̂i(k)

⇒ µk2ûi(k) + (λ+ µ)kikj ûj(k) = f̂i(k)

In matrix form, this can be written as: [
µk2δij + (λ+ µ)kikj

]
ûj(k) = f̂i(k)

To find ûj(k), we need to invert the matrix Aij = µk2δij + (λ+ µ)kikj . The matrix Aij can be decomposed into:

Aij = µk2δij + (λ+ µ)kikj

We need to find A−1
ij such that AijA

−1
jk = δik. We propose the inverse to be of the form:

A−1
ij =

1

µk2

(
αδij + β

kikj
k2

)
Multiplying Aij with the proposed inverse A−1

ij :

(
AijA

−1
ij = µk2δij + (λ+ µ)kikj

)(αδjk + β
kjkk

k2

µk2

)

⇒ AijA
−1
ij = αδik +

(
β +

α(λ+ µ)

µ
+
β(λ+ µ)

µ

)
kikk
k2
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For this to equal δik, we need:

α = 1, β = − λ+ µ

λ+ 2µ

Therefore we have:

A−1
ij =

1

µk2

(
δij −

λ+ µ

λ+ 2µ

kikj
k2

)
The displacement field ûj(k) is then:

ûj(k) = A−1
ij f̂i(k)

Substituting the inverse:

ûj(k) =
e−ik·r0

µk2

(
δij −

λ+ µ

λ+ 2µ

kikj
k2

)
The Green’s function Gij(r, r0) in real space is given by the inverse Fourier transform:

Gij(r, r0) = F−1
{
Ĝij(k)

}
(r) =

1

(2π)3

∫
R3

Ĝij(k)e
ik·(r−r0) dk

Substituting Ĝij(k):

Gij(r, r0) =
1

(2π)3

∫
R3

1

µk2

(
δij −

λ+ µ

λ+ 2µ

kikj
k2

)
eik·(r−r0) dk

The first integral involves
∫
R3

1
k2 e

ik·r dk. This is known to yield:

F−1

{
1

|k|2

}
(r) =

1

4πr

Let’s rigorously derive the Fourier transform of 1
|k|2 in three dimensions. The inverse Fourier transform of f̂(k) = 1

|k|2 is:

f(r) = F−1

{
1

|k|2

}
(r) =

1

(2π)3

∫
R3

eik·r

|k|2
dk

Here, k and r are three-dimensional vectors. The function 1
|k|2 is spherically symmetric in k-space. Therefore, we can simplify the

problem by transforming to spherical coordinates. In three dimensions, the spherical coordinates are:

k = (kx, ky, kz) = (k sin θ cosϕ, k sin θ sinϕ, k cos θ)

where: k = |k|, θ is the polar angle (angle with the z-axis), ϕ is the azimuthal angle (angle in the xy-plane). The volume element in
spherical coordinates is dk = k2 sin θ dk dθ dϕ. The integral becomes:

f(r) =
1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

eikr cos θ

k2
k2 sin θ dϕ dθ dk

Here, r = |r| and without loss of generality, we have aligned r along the z-axis, so k · r = kr cos θ. Simplifying the integrand:

f(r) =
1

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

eikr cos θ sin θ dϕ dθ dk

The integral over ϕ is straightforward
∫ 2π

0
dϕ = 2π. This simplifies the expression to:

f(r) =
1

(2π)2

∫ ∞

0

∫ π

0

eikr cos θ sin θ dθ dk

Next, consider the integral over the polar angle θ: ∫ π

0

eikr cos θ sin θ dθ

Let u = cos θ, hence du = − sin θ dθ, and the limits change from θ = 0 to θ = π correspond to u = 1 to u = −1:∫ π

0

eikr cos θ sin θ dθ =

∫ −1

1

eikru(−du) =
∫ 1

−1

eikrudu

This is a standard integral
∫ 1

−1
eikrudu = 2 sin(kr)

kr . Thus, the expression for f(r) becomes:

f(r) =
1

(2π)2r

∫ ∞

0

sin(kr) dk

Finally, we evaluate the integral over k: ∫ ∞

0

sin(kr)

k
dk =

π

2

Thus:

f(r) =
1

(2π)2r
· π
2
=

1

4πr

The inverse Fourier transform of 1
k2 is:

F−1

{
1

|k|2

}
(r) =

1

4πr

So, the first integral contributes:

1

µ

δij
4πr
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The second integral involves
∫
R3

kikj

k4 e
ik·r dk. The Fourier transform of kikj/k

4 gives:∫
R3

kikj
k4

eik·r dk = − ∂2

∂ri∂rj

(
4π

|r|

)
= −3rirj − r2δij

r5

Combining the results, the Green’s function for an isotropic elastic medium is:

Gij(r, r0) =
1

8πµr

[
(3− 4ν)δij +

rirj
r2

]
where r = |r−r0| and ν is Poisson’s ratio. This derivation rigorously follows from the Navier-Cauchy equations, through the application
of Fourier transforms, detailed inversion of the resulting matrix in Fourier space, and evaluation of inverse Fourier transforms. The
final Green’s function describes the displacement field due to a point force in an infinite isotropic elastic medium.

6 Displacement due to Spontaneous Change of Form of Inclusion

The Displacement at r due to point force Fi at r’ is (Love 1927)

Ui(r− r’) =
1

4πµ

Fi

|r− r’|
− 1

16πµ(1− σ)
Fj

∂2

∂xj∂xi
|r− r’|

which is Equation (2.5) of Eshelby’s classic paper 1957. Note that we have earlier derived

dxj(dxi(|r− r’|)) = δij
|r− r’|

− xixj
|r− r’|3

The Displacement (Love 1927) at r due to point force Fi at r’ can be therefore written as

Ui(r− r’) =
1

4πµ

Fi

|r− r’|
− 1

16πµ(1− σ)
Fj(

δij
|r− r’|

− xixj
|r− r’|3

)

⇒ Ui(r− r’) =
1

4πµ

Fjδji
|r− r’|

− 1

16πµ(1− σ)
Fj(

δji
|r− r’|

− xixj
|r− r’|3

)

⇒ Ui(r− r’) =
Fj

16πµ(1− σ)

4(1− σ)δji
|r− r’|

− Fj

16πµ(1− σ)

δji
|r− r’|

+
1

16πµ(1− σ)
Fj

xixj
|r− r’|3

⇒ Ui(r− r’) =
Fj

16πµ(1− σ)

(3− 4σ)δji
|r− r’|

+
1

16πµ(1− σ)
Fj

xixj
|r− r’|3

⇒ Ui(r− r’) =
Fj

16πµ(1− σ)
(
(3− 4σ)

|r− r’|
δji +

xixj
|r− r’|3

)

which is Equation (2.14) of Eshelby’s classic paper 1957. There are multiple ways to do the surface integral over S of the above-boxed
quantity. We shall mention 2 different methods in this article

6.1 Method 1: Simple Method using only Gauss Divergence Theorem

In Stage III, we apply a force distribution Fj = pTjknk over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage III is

uCi =

∫
S

Ui(r− r’)dS

⇒ uCi =

∫
S

(
Fj

16πµ(1− σ)
(
(3− 4σ)

|r− r’|
δji +

xixj
|r− r’|3

))dS

⇒ uCi =
1

16πµ(1− σ)

∫
S

Fj(
(3− 4σ)

|r− r’|
δji +

xixj
|r− r’|3

)dS

⇒ uCi =
1

16πµ(1− σ)

∫
S

pTjk(
(3− 4σ)

|r− r’|
δji +

xixj
|r− r’|3

)nkdS

Let’s proceed with a rigorous application of the Gauss Divergence Theorem to compute the given surface integral. We need to evaluate
the surface integral:

uCi =
1

16πµ(1− σ)

∫
S

pTjk

((
3− 4σ

r

)
δij +

xjxi
r3

)
nk dS

where:

• pTjk is the stress tensor, which is constant throughout the volume.

• nk is the k-th component of the unit normal vector to the surface S.

• δij is the Kronecker delta.

• r =
√
x21 + x22 + x23 is the radial distance from the origin.

Let us now apply the Gauss Divergence Theorem. The Gauss Divergence Theorem states:∫
S

Fknk dS =

∫
V

∂Fk

∂xk
dV

where Fk is a vector field. However, in this problem, we have a tensor field Fik defined as:

Fik = pTjk

((
3− 4σ

r

)
δij +

xjxi
r3

)
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The surface integral becomes:

I =

∫
S

Fiknk dS

Using the Gauss Divergence Theorem for tensor fields, this surface integral can be converted into a volume integral:

I =

∫
V

∂Fik

∂xk
dV

We need to compute the divergence of the Tensor Field ∂Fik

∂xk
:

∂Fik

∂xk
=

∂

∂xk

(
pjk

((
3− 4σ

r

)
δij +

xjxi
r3

))
Since pTjk is constant, it can be factored out:

∂Fik

∂xk
= pTjk

∂

∂xk

((
3− 4σ

r

)
δij +

xjxi
r3

)
Let’s differentiate each term of the above-mentioned boxed equation. The differentiation of the first term shall be

∂

∂xk

(
3− 4σ

r
δij

)
= δij

∂

∂xk

(
3− 4σ

r

)
Now note that we have

∂

∂xk

(
1

r

)
= −xk

r3

Therefore we can write

δij
∂

∂xk

(
3− 4σ

r

)
= −δij

xk(3− 4σ)

r3

The differentiation of the second term shall be
∂

∂xk

(xjxi
r3

)
This expands using the product rule:

∂

∂xk

(xjxi
r3

)
=
∂xj
∂xk

· xi
r3

+ xj
∂

∂xk

(xi
r3

)
Since

∂xj

∂xk
= δjk, the above equation can be written as

∂

∂xk

(xjxi
r3

)
= δjk

xi
r3

+ xj
∂

∂xk

(xi
r3

)
Note that for the second term of the above-equation we can write

∂

∂xk

(xi
r3

)
=
δik
r3

− 3
xixk
r5

Thus, the divergence of the tensor field Fik becomes:

∂Fik

∂xk
= pTjk

(
−δij

xk(3− 4σ)

r3
+ δjk

xi
r3

+ xj

(
δik
r3

− 3
xixk
r5

))
The surface integral now transforms into a volume integral:

uCi =
1

16πµ(1− σ)

∫
V

pTjk

(
−δij

xk(3− 4σ)

r3
+ δjk

xi
r3

+ xj

(
δik
r3

− 3
xixk
r5

))
dV

Now note that the above volume integral can be written as

uCi =
1

16πµ(1− σ)

∫
V

pTjk

(
−δij

xk(4− 4σ)

r3
+ δij

xk
r3

+ δjk
xi
r3

+ xj

(
δik
r3

− 3
xixk
r5

))
dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

pTjkδij
xk(4− 4σ)

r3
dV +

1

16πµ(1− σ)

∫
V

pTjk(δij
xk
r3

+ δjk
xi
r3

+ δik
xj
r3

− 3
xixjxk
r5

)dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

pTikxk
(4− 4σ)

r3
dV +

1

16πµ(1− σ)

∫
V

pTjk(δij
xk
r3

+ δjk
xi
r3

+ δik
xj
r3

− 3
xixjxk
r5

)dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

pTiklk
(4− 4σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk(δij
lk
r2

+ δjk
li
r2

+ δik
lj
r2

− 3
lilj lk
r2

)dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

pTiklk
(4− 4σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk
(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

(piklk + pTij lj)
(2− 2σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk
(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

(pTiklk + pTij lj)
2(1− σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk
(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

Due to balance of the angular momentum, the transformation stress matrix pT is symmetric, i.e

pTij = pTji
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Therefore we can write

uCi = − 1

16πµ(1− σ)

∫
V

(pTiklk + pTjilj)
2(1− σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk
(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

Now we can write
pTiklk = pTjkδij lk

pTjilj = pTjkδiklj

Therefore we can write

uCi = − 1

16πµ(1− σ)

∫
V

(pTjkδij lk + pTjkδiklj)
2(1− σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk
(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

⇒ uCi = − 1

16πµ(1− σ)

∫
V

pTjk(δij lk + δiklj)
2(1− σ)

r2
dV +

1

16πµ(1− σ)

∫
V

pTjk
(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

Since pTjk is constant inside the volume V , we can take pTjk outside the volume integral

uCi = −
pTjk

16πµ(1− σ)

∫
V

(δij lk + δiklj)
2(1− σ)

r2
dV +

pTjk
16πµ(1− σ)

∫
V

(δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

⇒ uCi =
pTjk

16πµ(1− σ)

∫
V

−2(δij lk + δiklj)(1− σ) + (δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

⇒ uCi =
pTjk

16πµ(1− σ)

∫
V

−(δij lk + δiklj)(1− 2σ)− (δij lk + δiklj) + (δij lk + δjkli + δiklj − 3lilj lk)

r2
dV

⇒ uCi =
pTjk

16πµ(1− σ)

∫
V

−(δij lk + δiklj)(1− 2σ)−���δij lk −���δiklj +���δij lk + δjkli +���δiklj − 3lilj lk
r2

dV

⇒ uCi =
pTjk

16πµ(1− σ)

∫
V

−(δij lk + δiklj)(1− 2σ) + δjkli − 3lilj lk
r2

dV

⇒ uCi = −
pTjk

16πµ(1− σ)

∫
V

(1− 2σ)(δij lk + δiklj)− δjkli + 3lilj lk
r2

dV

which is the first part of the Equation (2.15) of Eshelby’s Classic Paper.

6.2 Method 2: Eshelby’s Method of using the Gauss Divergence Theorem and a special variation of
Stokes’s theorem

Note the following 2 important identities in spherical co-ordiantes (r, θ, ϕ)

∇2r =
1

r2
∂

∂r
(r2

∂

∂r
(r)) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
(r)) +

1

r2 sin2 θ

∂2

∂θ2
(r) =

2

r

∇2r3 =
1

r2
∂

∂r
(r2

∂

∂r
(r3)) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
(r3)) +

1

r2 sin2 θ

∂2

∂θ2
(r) = 12r

The above-mentioned 2 identities can be written in cartesian co-ordinates as

∂2

∂xl∂xl
(r) =

2

r

∂2

∂xl∂xl
(r3) = 12r

The Displacement (Love 1927) at r due to point force Fi at r’ can be therefore written as

Ui(r− r’) =
1

8πµ
Fi

∂2

∂xl∂xl
(r)− 1

192πµ(1− σ)
Fj

∂2

∂xj∂xi
(

∂2

∂xl∂xl
(r3))

⇒ Ui(r− r’) =
1

8πµ
Fi

∂2

∂xl∂xl
(r)− 1

192πµ(1− σ)
Fj

∂4

∂xj∂xixl∂xl
(r3))

⇒ Ui(r− r’) =
1

8πµ
Fjδji

∂2

∂xl∂xl
(r)− 1

192πµ(1− σ)
Fj

∂4

∂xj∂xixl∂xl
(r3)

⇒ Ui(r− r’) =
1

192πµ(1− σ)
Fj(24(1− σ)

∂2

∂xl∂xl
(r)δji −

∂4

∂xj∂xixl∂xl
(r3))

Now note that we have Fj = pTjknk. Therefore the above-boxed identity can be written as

⇒ Ui(r− r’) =
1

192πµ(1− σ)
pTjk(24(1− σ)

∂2

∂xl∂xl
(r)δjink − ∂4

∂xj∂xixl∂xl
(r3)nk)

In Stage III, we apply a force distribution Fj = pTjknk over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage III is

uCi =

∫
S

Ui(r− r’)dS

Substituting the equation of displacement Ui(r− r’) that we got earlier in the above equation we get

uCi =

∫
S

(
1

192πµ(1− σ)
pTjk(24(1− σ)

∂2

∂xl∂xl
(r)δjink − ∂4

∂xj∂xixl∂xl
(r3)nk))dS
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⇒ uCi =
pTjkδji

8πµ

∫
S

(
∂2

∂xl∂xl
(r)nk)dS −

pTjk
192πµ(1− σ)

∫
S

(
∂4

∂xj∂xixl∂xl
(r3)nk)dS

We need to simplify the 2 integrals
∫
S
( ∂2

∂xl∂xl
(r)nk)dS and

∫
S
( ∂4

∂xj∂xixl∂xl
(r3)nk)dS. For this, we use the Gauss Divergence Theorem

twice once to convert the surface integral to volume integral and then convert the volume integral back again to surface integral but

with a different surface vector. The integral
∫
S
( ∂2

∂xl∂xl
(r)nk)dS can be written as∫

S

(
∂2

∂xl∂xl
(r)nk)dS =

∫
V

∂

∂xk
(

∂2

∂xl∂xl
(r))dV =

∫
V

∂

∂xl
(

∂2

∂xk∂xl
(r))dV =

∫
S

(
∂2

∂xk∂xl
(r)nl)dS

⇒
∫
S

(
∂2

∂xl∂xl
(r)nk)dS =

∫
S

(
∂2

∂xk∂xl
(r)nl)dS

The integral
∫
S
( ∂4

∂xj∂xixl∂xl
(r3)nk)dS can be written as∫

S

(
∂4

∂xj∂xixl∂xl
(r3)nk)dS =

∫
V

∂

∂xk
(

∂4

∂xj∂xixl∂xl
(r3))dV =

∫
V

∂

∂xl
(

∂4

∂xj∂xixk∂xl
(r3))dV =

∫
S

(
∂4

∂xj∂xixk∂xl
(r3)nl)dS

⇒
∫
S

(
∂4

∂xj∂xixl∂xl
(r3)nk)dS =

∫
S

(
∂4

∂xj∂xixk∂xl
(r3)nl)dS

From the above 2 boxed equations, we can write the displacement uCi as

uCi =
pTjkδji

8πµ

∫
S

(
∂2

∂xl∂xk
(r)nl)dS −

pTjk
192πµ(1− σ)

∫
S

(
∂4

∂xj∂xixl∂xk
(r3)nl)dS

Note that we earlier derived the following 2 identities∫
S

dxl(dxk(r))nldS = −2

∫ 4π

0

r(l)lkdω(l)

∂2

∂xi∂xj
(

∫
S

dxk(dxl(r
3))nldS) = 12

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l)

Substituting the above 2 identities in the equation for the displacement uCi , we get

uCi =
pTjkδji

8πµ
(−2

∫ 4π

0

r(l)lkdω(l))−
pTjk

192πµ(1− σ)
(12

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

⇒ uCi = −
pTjkδji

4πµ
(

∫ 4π

0

r(l)lkdω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

⇒ uCi = − pTik
16πµ(1− σ)

(

∫ 4π

0

r(l)4(1− σ)lkdω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

Since pTik is constant throughout the volume of the inclusion, we can take pTik inside of the integral. Therefore we have

⇒ uCi = − 1

16πµ(1− σ)
(

∫ 4π

0

r(l)4(1− σ)pTiklkdω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

⇒ uCi = − 1

16πµ(1− σ)
(

∫ 4π

0

r(l)2(1− σ)(pTiklk + pTij lj)dω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

Due to balance of the angular momentum, the transformation stress matrix pT is symmetric, i.e

pTij = pTji

Therefore we can write

⇒ uCi = − 1

16πµ(1− σ)
(

∫ 4π

0

r(l)2(1− σ)(pTiklk + pTjilj)dω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

Now we can write
pTiklk = pTjkδij lk

pTjilj = pTjkδiklj

Therefore we can write

⇒ uCi = − 1

16πµ(1− σ)
(

∫ 4π

0

r(l)2(1− σ)(pTjkδij lk + pTjkδiklj)dω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

⇒ uCi = −
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)2(1− σ)(δij lk + δiklj)dω(l))−
pTjk

16πµ(1− σ)
(

∫ 4π

0

r(l)(−(liδjk + lkδji + ljδki) + 3lklj li)dω(l))

⇒ uCi = −
pTjk

16πµ(1− σ)

∫ 4π

0

r(l)(2(1− σ)(δij lk + δiklj) + (−(liδjk + lkδji + ljδki) + 3lklj li))dω(l)

⇒ uCi = −
pTjk

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(δij lk + δiklj) + (���δij lk +�
��δiklj)− (liδjk +�

��lkδji +�
��ljδki) + 3lklj li)dω(l)

⇒ uCi = −
pTjk

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(δij lk + δiklj)− δjkli + 3lklj li)dω(l)
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To convert this into volume integral we note that the incremental solid angle is related to the incremental volume by the following
relation

r(l)dω(l) =

∫
dV

r(l)2

Therefore the equation for displacement uCi can be written as

⇒ uCi = −
pTjk

16πµ(1− σ)

∫
V

((1− 2σ)(δij lk + δiklj)− δjkli + 3lklj li)

r(l)2
dV

which is the first part of the Equation (2.15) of Eshelby’s Classic Paper. To derive Equation (3.1) and also the second part of the
Equation (2.15), we need to first state Hooke’s law

pTjk = λeTmmδjk + 2µeTjk

Substituting the above equation into the equation of displacement uCi that we derived earlier we get

uCi = −
(λeTmmδjk + 2µeTjk)

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(δij lk + δiklj)− δjkli + 3lklj li)dω(l)

⇒ uCi = − 1

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(λeTmmδjk + 2µeTjk)(δij lk + δiklj)− (λeTmmδjk + 2µeTjk)δjkli + 3(λeTmmδjk + 2µeTjk)lklj li)dω(l)

We can simplify the first term of the integrand in the above equation as

r(l)(1− 2σ)(λeTmmδjk + 2µeTjk)(δij lk + δiklj) = r(l)(1− 2σ)(λeTmmδjkδij lk + 2µeTjkδij lk + λemmδjkδiklj + 2µeTjkδiklj)

⇒ r(l)(1− 2σ)(λeTmmδjk + 2µeTjk)(δij lk + δiklj) = r(l)(1− 2σ)(λeTmmδiklk + 2µeTiklk + λeTmmδjilj + 2µϵjilj)

⇒ r(l)(1− 2σ)(λeTmmδjk + 2µeTjk)(δij lk + δiklj) = r(l)(1− 2σ)(λeTmmli + 2µeTiklk + λeTmmli + 2µeTjilj)

⇒ r(l)(1− 2σ)(λeTmmδjk + 2µeTjk)(δij lk + δiklj) = r(l)(1− 2σ)(2λeTmmli + 2µ(eTiklk + eTjilj))

Similarly the second term of the integrand in the above equation can be simplified as

r(l)(λeTmmδjk + 2µeTjk)δjkli = r(l)(λeTmmδjkδjkli + 2µeTjkδjkli)

⇒ r(l)(λeTmmδjk + 2µeTjk)δjkli = r(l)(λeTmmδjj li + 2µeTkkli)

⇒ r(l)(λeTmmδjk + 2µeTjk)δjkli = r(l)(3λeTmmli + 2µeTkkli)

Similarly the third term of the integrand in the above equation can be simplified as

r(l)(3(λeTmmδjk + 2µeTjk)lklj li) = r(l)(3λeTmmδjklklj li + 6µeTjklklj li)

r(l)(3(λemmδjk + 2µϵjk)lklj li) = r(l)(3λemmlj lj li + 6µϵjklklj li)

Since lj lj =
xjxj

r = r2

r = r, we can write the above equation as

r(l)(3(λemmδjk + 2µϵjk)lklj li) = r(l)(3λemmli + 6µϵjklklj li)

Therefore we can write the equation of displacement uCi that we derived earlier as

⇒ uCi = − 1

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(2λeTmmli + 2µ(eTiklk + eTjilj))− (3λeTmmli + 2µeTkkli) + (3λeTmmli + 6µeTjklklj li))dω(l)

⇒ uCi = − 1

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(2λeTmmli + 2µ(eTiklk + eTjilj))−����
3λeTmmli − 2µeTkkli +����

3λeTmmli + 6µeTjklklj li)dω(l)

⇒ uCi = − 1

16πµ(1− σ)

∫ 4π

0

r(l)((1− 2σ)(2λeTmmli) + 2µ(1− 2σ)(eTiklk + eTjilj)− 2µeTkkli + 6µeTjklklj li)dω(l)

Now note that we have eTmmli = eTkkli. Therefore we can write the above equation as

⇒ uCi = − 1

16πµ(1− σ)

∫ 4π

0

r(l)(2eTmmli(λ(1− 2σ)− µ) + 2µ(1− 2σ)(eTiklk + eTjilj) + 6µeTjklklj li)dω(l)

Now note that we can express the first lame parameter λ in terms of Poisson’s ratio σ and the second lame parameter µ as

λ =
2µσ

(1− 2σ)

Therefore we can write
⇒ λ(1− 2σ) = 2µσ

⇒ λ(1− 2σ)− µ = 2µσ − µ = µ(2σ − 1)

⇒ λ(1− 2σ)− µ = µ(2σ − 1)

Therefore we can write the equation for displacement uCi as

⇒ uCi = − 1

16πµ(1− σ)

∫ 4π

0

r(l)(2eTmmliµ(2σ − 1) + 2µ(1− 2σ)(eTiklk + eTjilj) + 6µeTjklklj li)dω(l)

⇒ uCi = − 1

8π(1− σ)

∫ 4π

0

r(l)(−eTmmli(1− 2σ) + (1− 2σ)(eTiklk + eTjilj) + 3eTjklklj li)dω(l)
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Now note that we have eTmmli = eTjkδjkli, e
T
iklk = eTjkδij lk, e

T
jilj = eTjkδiklj . Therefore we can write the equation for displacement uCi as

⇒ uCi = − 1

8π(1− σ)

∫ 4π

0

r(l)(−eTjkδjkli(1− 2σ) + (1− 2σ)(eTjkδij lk + eTjkδiklj) + 3eTjklklj li)dω(l)

Note that eTjk is constant throughout the inclusion volume. Therefore we take ejk outside of the integral

⇒ uCi = −
eTjk

8π(1− σ)

∫ 4π

0

r(l)(−δjkli(1− 2σ) + (1− 2σ)(δij lk + ϵjkδiklj) + 3lklj li)dω(l)

⇒ uCi = −
eTjk

8π(1− σ)

∫ 4π

0

r(l)((1− 2σ)(δij lk + ϵjkδiklj − δjkli) + 3lklj li)dω(l)

which is the Equation (3.1) of Eshelby’s Classic Paper. To convert this into volume integral we note that the incremental solid
angle is related to the incremental volume by the following relation

r(l)dω(l) =

∫
dV

r(l)2

Therefore the equation for displacement uCi can be written as

⇒ uCi = −
eTjk

8π(1− σ)

∫
V

((1− 2σ)(δij lk + ϵjkδiklj − δjkli) + 3lklj li)

r(l)2
dV

which is the second part of the Equation (2.15) of Eshelby’s Classic Paper.

dxl(dxk(dxj(dxi(r)))) = 3

(
δijxkxl
r5

− 5
xixjxkxl

r7
+
δilxjxk + δjlxixk + δklxixj

r5

)

7 Strain due to Spontaneous Change of Form of Inclusion

In the previous section, we stated that the Displacement at r due to point force Fi at r’ is (Love 1927)

Ui(r− r’) =
1

4πµ

Fi

|r− r’|
− 1

16πµ(1− σ)
Fj

∂2

∂xj∂xi
|r− r’|

In Stage III, we apply a force distribution Fj = pTjknk over S to make the body free of external force (but in a state of self-stress
because of the transformation of the inclusion). The displacement impressed on the material in stage III is

uCi =

∫
S

Ui(r− r’)dS

⇒ uCi =
1

4πµ

∫
S

pTjkδij

|r− r’|
nkdS − 1

16πµ(1− σ)

∫
S

pTjk
∂2

∂xj∂xi
|r− r’|nkdS

Since pTjk is constant throughout the surface S of the inclusion we can take pTjk outside the integral. Therefore we can write

⇒ uCi =
pTik
4πµ

∫
S

1

|r− r’|
nkdS −

pTjk
16πµ(1− σ)

∫
S

∂2

∂xj∂xi
|r− r’|nkdS

We have earlier proved using the Gauss Divergence theorem that the 2 integrals can be written as∫
S

1

|r− r’|
nkdS = − ∂

∂xk
(

∫
V

dV

|r− r’|
)

∫
S

∂2

∂xj∂xi
|r− r’|nkdS =

∂3

∂xj∂xixk
(

∫
V

|r− r’|dV ) = − ∂3

∂xi∂xjxk
(

∫
V

|r− r’|dV )

Therefore the displacement impressed on the material in stage III can be written as

⇒ uCi =
pTjk

16πµ(1− σ)
ψ,ijk − pTik

4πµ
ϕ,k

where

ψ =

∫
V

dV

|r− r’|

ϕ =

∫
V

|r− r’|dV

are the ordinary Newtonian potential and the biharmonic potential of attracting matter of unit density filling the volume V bounded
by S. We also proved earlier that

∇2ψ = 2ϕ

∇4ψ = 2∇2ϕ =

{
−8π, inside S

0, outside S

The strain in the material on stage III can be written as

eCil =
1

2
(
∂

∂xl
uCi +

∂

∂xi
uCl )

⇒ eCil =
1

2
(
∂

∂xl
(

pTjk
16πµ(1− σ)

ψ,ijk − pTik
4πµ

ϕ,k) +
∂

∂xi
(

pTjk
16πµ(1− σ)

ψ,ljk − pTlk
4πµ

ϕ,k))
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⇒ eCil =
pTjk

32πµ(1− σ)
(ψ,ijkl + ψ,ljki)−

pTik
8πµ

ϕ,kl −
pTlk
8πµ

ϕ,ki

⇒ eCil =
pTjk

16πµ(1− σ)
ψ,ijkl −

pTik
8πµ

ϕ,kl −
pTlk
8πµ

ϕ,ki

Therefore the dilatation in the material shall be

eCii =
pTjk

16πµ(1− σ)
ψ,ijki −

pTik
8πµ

ϕ,ki −
pTik
8πµ

ϕ,ki

⇒ eCii =
pTjk

16πµ(1− σ)
ψ,iijk − pTik

4πµ
ϕ,ki

Now we know that
∇2ψ = 2ϕ

⇒ ∂2

∂xi∂xi
ψ = 2ϕ

⇒ ∂2

∂xj∂xk
(

∂2

∂xi∂xi
ψ) = 2

∂2

∂xj∂xk
ϕ

⇒ ∂4

∂xi∂xi∂xj∂xk
ψ = 2

∂2

∂xj∂xk
ϕ

⇒ ψiijkl = 2ϕjk

Therefore the dilatation in the material shall be

eCii =
pTjk

16πµ(1− σ)
ψ,iijk − pTik

4πµ
ϕ,ki =

pTjk
8πµ(1− σ)

ϕ,jk − pTik
4πµ

ϕ,ki

Due to the balance of angular momentum, the stress tensor is symmetric i.e. pTik = pTki. Therefore we can write the above equation as

eCii =
pTjk

8πµ(1− σ)
ϕ,jk − pTik

4πµ
ϕ,ki =

pTjk
8πµ(1− σ)

ϕ,jk − pTki
4πµ

ϕ,ki

Repeated indices i, k on the second term can be given in any other name like k, j. Therefore we can write the above equation as

eCii =
pTjk

8πµ(1− σ)
ϕ,jk −

pTjk
4πµ

ϕ,jk =
pTjk

8πµ(1− σ)
ϕ,jk(1− 2(1− σ))

⇒ eCii =
pTjk

8πµ(1− σ)
ϕ,jk −

pTjk
4πµ

ϕ,jk = −
pTjk

8πµ(1− σ)
ϕ,jk(1− 2σ)

⇒ eCii = −
pTjk

8πµ(1− σ)
ϕ,jk(1− 2σ)

We have earlier derived that the strain in the material in stage III shall be

⇒ eCil =
pTjk

16πµ(1− σ)
ψ,ijkl −

pTik
8πµ

ϕ,kl −
pTlk
8πµ

ϕ,ki

Now note that for isotropic materials, we have

pTjk = λeT δjk + 2µeTjk, p
T
ik = λeT δik + 2µeTik, p

T
lk = λeT δlk + 2µeTlk

Substituting the above relations in the equation for the strain in the material in stage III shall be

eCil =
(λeT δjk + 2µeTjk)

16πµ(1− σ)
ψ,ijkl −

(λeT δik + 2µeTik)

8πµ
ϕ,kl −

(λeT δlk + 2µeTlk)

8πµ
ϕ,ki

⇒ eCil = (
λeT δjk

16πµ(1− σ)
ψ,ijkl +

2µeTjk
16πµ(1− σ)

ψ,ijkl)− (
λeT δik
8πµ

ϕ,kl +
2µeTik
8πµ

ϕ,kl)− (
λeT δlk
8πµ

ϕ,ki +
2µeTlk
8πµ

ϕ,ki)

⇒ eCil = (
λeT

16πµ(1− σ)
ψ,ijjl +

eTjk
8π(1− σ)

ψ,ijkl)− (
λeT

8πµ
ϕ,il +

eTik
4π
ϕ,kl)− (

λeT

8πµ
ϕ,li +

eTlk
4π
ϕ,ki)

⇒ eCil = (
λeT

16πµ(1− σ)
ψ,jjil +

eTjk
8π(1− σ)

ψ,ijkl)− (
λeT

8πµ
ϕ,il +

λeT

8πµ
ϕ,li)− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki)

Now we know that ψ,jjil = 2ϕ,il and ϕ,il = ϕ,li , we can therefore the equation as

⇒ eCil = (
λeT

8πµ(1− σ)
ϕ,il +

eTjk
8π(1− σ)

ψ,ijkl)−
λeT

4πµ
ϕ,il − (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki)

⇒ eCil = (
λeT

8πµ(1− σ)
ϕ,il −

λeT

4πµ
ϕ,il)− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijkl))

⇒ eCil = (
λeT

8πµ(1− σ)
ϕ,il(1− 2(1− σ)))− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijkl))

⇒ eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijkl))

⇒ eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijkl))
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If eT is a pure dilatation 1
3e

T δij , then we have

eTik =
1

3
eT δik, e

T
lk =

1

3
eT δlk, e

T
jk =

1

3
eT δjk

Therefore the above boxed equation can be written as

eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eT δik
12π

ϕ,kl +
eT δlk
12π

ϕ,ki −
eT δjk

24π(1− σ)
ψ,ijkl))

⇒ eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eT

12π
ϕ,il +

eT

12π
ϕ,li −

eT

24π(1− σ)
ψ,ijjl))

Since ϕ,li = ϕ,il, we can write the above equation as

⇒ eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eT

6π
ϕ,il −

eT

24π(1− σ)
ψ,jjil))

Now we know that ψ,jjil = 2ϕ,il , we can therefore the above equation as

⇒ eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eT

6π
ϕ,il −

eT

12π(1− σ)
ϕ,il))

⇒ eCil = ((
λ(2σ − 1)

8πµ(1− σ)
)− (

1

6π
− 1

12π(1− σ)
))eTϕ,il

⇒ eCil = (
(3λ(2σ − 1)− 4µ(1− σ) + 2µ)

24πµ(1− σ)
)eTϕ,il = (

(3λ(2σ − 1)− 2µ+ 4µσ)

24πµ(1− σ)
)eTϕ,il

Now the first lame constant λ can be written in terms of second lame constant µ and poisson’s ratio σ as

λ =
2µσ

1− 2σ

⇒ λ(2σ − 1) = −2µσ

⇒ 3λ(2σ − 1) = −6µσ

⇒ 3λ(2σ − 1)− 2µ+ 4µσ = −6µσ − 2µ+ 4µσ = −2µ− 2µσ = −2µ(1 + σ)

⇒ 3λ(2σ − 1)− 2µ+ 4µσ

24πµ(1− σ)
= − 2µ(1 + σ)

24πµ(1− σ)

⇒ 3λ(2σ − 1)− 2µ+ 4µσ

24πµ(1− σ)
= − (1 + σ)

12π(1− σ)

Therefore the strain eCil an be written as

⇒ eCil = (
(3λ(2σ − 1)− 4µ(1− σ) + 2µ)

24πµ(1− σ)
)eTϕ,il = (

(3λ(2σ − 1)− 2µ+ 4µσ)

24πµ(1− σ)
)eTϕ,il = − (1 + σ)

12π(1− σ)
eTϕ,il

⇒ eCil = − 1

4π

(1 + σ)

3(1− σ)
eTϕ,il

8 Discontinuities across inclusion interface

The second derivative of a scalar function U in a given direction, with the direction specified by a unit vector n = (ni, nj , nk), can be

calculated by applying the directional derivative operator twice in that direction. Given that the direction vector is n = niî+nj ĵ+nkk̂,
the first derivative of U in the direction of n is given by:

∂U

∂n
= ni

∂U

∂xi
+ nj

∂U

∂xj
+ nk

∂U

∂xk

To find the second derivative, we take the derivative of the above expression again in the direction of n:

∂2U

∂n2
=

∂

∂n

(
ni
∂U

∂xi
+ nj

∂U

∂xj
+ nk

∂U

∂xk

)
Applying the directional derivative operator again:

∂2U

∂n2
= ni

(
ni
∂2U

∂x2i
+ nj

∂2U

∂xi∂xj
+ nk

∂2U

∂xi∂xk

)
+ nj

(
ni

∂2U

∂xj∂xi
+ nj

∂2U

∂x2j
+ nk

∂2U

∂xj∂xk

)
+ nk

(
ni

∂2U

∂xk∂xi
+ nj

∂2U

∂xk∂xj
+ nk

∂2U

∂x2k

)
This can be simplified as:

∂2U

∂n2
=

3∑
p=1

3∑
q=1

npnq
∂2U

∂xp∂xq

Where p and q run over the components i, j, k. This expression gives the second derivative of the scalar function U in the direction
of the vector n. In indicial notation, the above formula can be written as

∂2U

∂n2
=

∂2U

∂xi∂xj
ninj

To prove the theorem, we proceed step by step, ensuring that each part of the proof is mathematically rigorous. The theorem can be
formally stated as:
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Theorem (Poincaré 1899): Let U(r) be a potential function that satisfies Poisson’s equation in three-dimensional space,

∇2U(r) = −4πρ(r)

where ρ(r) is the mass density. If there is a surface S with normal n across which the density ρ(r) undergoes a discontinuity ∆ρ, then
the second derivatives of the potential U(r) undergo a jump discontinuity given by[

∂2U

∂xi∂xj

]
= −4πninj∆ρ,

where the bracket [·] denotes the difference in the second derivative as one crosses the surface S. Given Poisson’s equation:

∇2U(r) = −4πρ(r),

where ρ(r) is the mass density distribution, the potential U(r) is related to the density ρ(r) by the integral:

U(r) =

∫
ρ(r′)

|r− r′|
d3r′.

Suppose that the density ρ(r) has a discontinuity across a surface S. Let ρ+ and ρ− denote the density values on either side of the
surface. The discontinuity in ρ is given by:

∆ρ = ρ+ − ρ−.

Consider the surface S with a unit normal vector n at each point. We need to investigate the behavior of the second derivatives of
U(r) as r crosses the surface S. The second derivative of U(r) in the direction ninj is:

∂2U

∂xi∂xj
=

∂

∂xj

(
∂U

∂xi

)
.

To find the jump condition, we apply the divergence theorem over a small pillbox-shaped volume V that straddles the surface S.
The pillbox has faces parallel and perpendicular to the surface S, with height ϵ in the direction normal to S. Integrating Poisson’s
equation over V , we have: ∫

V

∇2U dV = −4π

∫
V

ρ dV

Using the divergence theorem, the left-hand side can be rewritten as:∫
V

∇2U dV =

∮
∂V

∇U · dA

where dA is the area element on the boundary ∂V of the volume V . Let’s do the Evaluation on the Faces of the Pillbox. The
contribution to the surface integral comes from the faces of the pillbox parallel to the surface S. Let the area of these faces be A, and
the small height of the pillbox in the normal direction be ϵ. Then, the surface integral is dominated by the contributions from the
faces perpendicular to n: ∮

∂V

∇U · dA = A

[
∂U

∂n

]
,

where ∂U
∂n is the derivative of U in the direction of n. Let us find the Relation Between the Jump in Density and the Jump in the

Second Derivative. Now, consider the contribution of the jump in ρ to the integral:∫
V

ρ dV = Aϵ

(
ρ+ + ρ−

2

)
= Aϵ∆ρ.

This leads to:

A

[
∂U

∂n

]
= −4πAϵ∆ρ.

Simplifying, we obtain: [
∂2U

∂n2

]
= −4π∆ρ

We have earlier proved that the second derivatives in arbitrary directions xi and xj are related to ∂2U
∂n2 using the following relation

∂2U

∂n2
=

∂2U

∂xi∂xj

Therefore the above boxed equation can be written as:[
∂2U

∂xi∂xj

]
= −4πninj∆ρ

where ni and nj are the components of the normal vector to the surface S. We just proved the Poincare 1899 theorem which states
that the second derivatives of a potential function satisfying ∇2U = −4πρ will have a jump

∆U,ij = −4π∆ρninj

on crossing a surface with normal ni across which there is a change of density ∆ρ. Let us consider the Potential function U = ϕ.
Note that ∇2U = ∇2ϕ = −4π inside S and 0 outside S. There is a jump of density ∆ρ = −1 across the surface S. Therefore we can
write using the Poincare 1899 theorem that

ϕ,ij(out)− ϕ,ij(in) = 4πninj

Let us consider the Potential function U = ψ,ij . Note that ∇2U = ∇2ψ,ij = 2ϕ,ij = −4π(
−ϕ,ij

2π ). Therefore the Potential function

U = ψ,ij satisfies ∇2U = −4πρ with ρ =
−ϕ,ij

2π . There is a jump of density

∆ρ =
(ϕ,ij(in)− ϕ,ij(out))

2π
= −4πninj

2π
= −2ninj
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across the surface S. Therefore we can write using the Poincare 1899 theorem for the Potential function U = ψ,ij that

ψ,ijkl(out)− ϕ,ijkl(in) = −4π∆ρnknl = 8πninjnknl

⇒ ψ,ijkl(out)− ϕ,ijkl(in) = 8πninjnknl

We have earlier derived that the strain in the material at stage III shall be

eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijkl))

The trace of the strain tensor shall be

eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− (

eTik
4π
ϕ,ki +

eTik
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijki))

eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− (

eTik
2π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijki))

Since ϕki = ϕik and ψijki = ψiijk = 2ϕjk , the trace of the strain tensor shall be

eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− (

eTik
2π
ϕ,ik −

eTjk
4π(1− σ)

ϕ,jk))

Repeated indices i, k in the second term can be renamed as j, k. Therefore we can write the equation as

eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− (

eTjk
2π

ϕ,jk −
eTjk

4π(1− σ)
ϕ,jk))

⇒ eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− eTjkϕ,jk(

1

2π
− 1

4π(1− σ)
)) = (

λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− eTjkϕ,jk(

2(1− σ)− 1

4π(1− σ)
))

⇒ eCii = (
λ(2σ − 1)

8πµ(1− σ)
eTϕ,ii)− eTjkϕ,jk(

1− 2σ

4π(1− σ)
)

Now the first lame constant λ can be written in terms of second lame constant µ and poisson’s ratio σ as

λ =
2µσ

1− 2σ

⇒ λ(2σ − 1) = −2µσ

⇒ λ(2σ − 1)

8πµ(1− σ)
= − 2µσ

8πµ(1− σ)
= − σ

4π(1− σ)

⇒ λ(2σ − 1)

8πµ(1− σ)
= − σ

4π(1− σ)

Substituting the above equation in the trace of strain equation we get

⇒ eCii = −(
σ

4π(1− σ)
eTϕ,ii)− eTjkϕ,jk(

1− 2σ

4π(1− σ)
)

We know that there is jump for both ϕ,ii and ϕ,jk (according to Poncaire’s 1899 Theorem). The jumps are

∆ϕ,ii = ϕ,ii(out)− ϕ,ii(in) = 4π

∆ϕ,jk = ϕ,jk(out)− ϕ,jk(in) = 4πnjnk

Substituting the above equations in the previous equation for the trace of strain we get

⇒ eCii(out)− eCii(in) = −(
σ

4π(1− σ)
eT )(ϕ,ii(out)− ϕ,ii(in))− eTjk(ϕ,jk(out)− ϕ,jk(in))(

1− 2σ

4π(1− σ)
)

⇒ eCii(out)− eCii(in) = −(
σ

(1− σ)
eT )− eTjknjnk(

1− 2σ

(1− σ)
)

The strain tensor can be written in terms of hydrostatic and deviatoric components

eTjk =
1

3
eT δjk +′ eTjk

Substituting the above equation into the previous boxed equation we get

eCii(out)− eCii(in) = −(
σ

(1− σ)
eT )− (

1

3
eT δjk +′ eTjk)njnk(

1− 2σ

(1− σ)
)

⇒ eCii(out)− eCii(in) = −(
σ

(1− σ)
eT )− (

1

3
eT δjk)− njnk(

1− 2σ

(1− σ)
)−′ eTjknjnk(

1− 2σ

(1− σ)
)

⇒ eCii(out)− eCii(in) = −(
σ

(1− σ)
eT )− (

1

3
eT )njnj(

1− 2σ

(1− σ)
)−′ eTjknjnk(

1− 2σ

(1− σ)
)

⇒ eCii(out)− eCii(in) = −(
3σ

(1− σ)

eT

3
)− (

eT

3
)(

1− 2σ

(1− σ)
)−′ eTjknjnk(

1− 2σ

(1− σ)
)

⇒ eCii(out)− eCii(in) = −e
T

3
(

3σ

(1− σ)
+

1− 2σ

(1− σ)
)−′ eTjknjnk(

1− 2σ

(1− σ)
)
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⇒ eCii(out)− eCii(in) = −e
T

3
(
1 + σ

1− σ
)−′ eTjknjnk(

1− 2σ

1− σ
)

We have earlier derived that the strain in the material at stage III shall be

eCil = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,il)− (

eTik
4π
ϕ,kl +

eTlk
4π
ϕ,ki −

eTjk
8π(1− σ)

ψ,ijkl))

We know that there is jump for both ϕ,il, ϕ,kl, ϕ,ki and ψijkl (all 4 of them are according to Poncaire’s 1899 Theorem). The jumps are

∆ϕ,il = ϕ,il(out)− ϕ,il(in) = 4πninl

∆ϕ,kl = ϕ,kl(out)− ϕ,kl(in) = 4πnknl

∆ϕ,ki = ϕ,ki(out)− ϕ,ki(in) = 4πnkni

∆ψ,ijkl = ϕ,ijkl(out)− ϕ,ijkl(in) = 8πninjnknl

Therefore the jump in eCil shall be

∆eCil = eCil (out)− eCil (in) = (
λ(2σ − 1)eT

8πµ(1− σ)
(ϕ,il(out)− ϕ,il(in)))− (

eTik
4π

(ϕ,kl(out)− ϕ,kl(in)) +
eTlk
4π

(ϕ,ki(out)− ϕ,ki(in))

+
eTjk

8π(1− σ)
(ψ,ijkl(out)− ψ,ijkl(in)))

Substituting the boxed equations into the previous equations we get

∆eCil = eCil (out)− eCil (in) =
λ(2σ − 1)

2µ(1− σ)
eTninl − eTiknknl − eTlknkni +

eTjk
(1− σ)

ninjnknl

We have earlier derived that
λ(2σ − 1)

8πµ(1− σ)
= − σ

4π(1− σ)

⇒ λ(2σ − 1)

2µ(1− σ)
= − σ

(1− σ)

Therefore we have

∆eCil = eCil (out)− eCil (in) = − σ

(1− σ)
eTninl − eTiknknl − eTlknkni −

eTjk
(1− σ)

ninjnknl

The strain tensor can be written in terms of hydrostatic and deviatoric components

eTik =
1

3
eT δik +′ eTik

eTlk =
1

3
eT δlk +′ eTlk

eTjk =
1

3
eT δjk +′ eTjk

Therefore we can write

∆eCil = eCil (out)− eCil (in) = − σ

(1− σ)
eTninl − (

1

3
eT δik +′ eTik)nknl − (

1

3
eT δlk +′ eTlk)nkni +

( 13e
T δjk +′ eTjk)

(1− σ)
ninjnknl

∆eCil = eCil (out)− eCil (in) = − σ

(1− σ)
eTninl −

1

3
eT δiknknl −′ eTiknknl −

1

3
eT δlknkni −′ eTlknkni +

eT δjk
3(1− σ)

ninjnknl +
′eTjk

(1− σ)
ninjnknl

∆eCil = eCil (out)− eCil (in) = − σ

(1− σ)
eTninl −

1

3
eTninl −′ eTiknknl −

1

3
eTnlni −′ eTlknkni +

eT

3(1− σ)
ninjnjnl +

′eTjk
(1− σ)

ninjnknl

∆eCil = eCil (out)− eCil (in) = − σ

(1− σ)
eTninl −

1

3
eTninl −′ eTiknknl −

1

3
eTnlni −′ eTlknkni +

eT

3(1− σ)
ninl +

′eTjk
(1− σ)

ninjnknl

∆eCil = eCil (out)− eCil (in) = −eTninl(
σ

(1− σ)
+

2

3
− 1

3(1− σ)
)−′ eTiknknl −′ eTlknkni +

′eTjk
(1− σ)

ninjnknl

∆eCil = eCil (out)− eCil (in) = −eTninl(
(3σ + 2(1− σ)− 1)

3(1− σ)
)−′ eTiknknl −′ eTlknkni +

′eTjk
(1− σ)

ninjnknl

∆eCil = eCil (out)− eCil (in) = − (1 + σ)

3(1− σ)
eTninl −′ eTiknknl −′ eTlknkni +

′eTjk
(1− σ)

ninjnknl

Now note that ∆eCil shall be

∆eCil = ∆(
1

3
eCδil +

′ eCil ) =
1

3
δil∆e

C +∆′eCil

We have earlier derived that ∆eC shall be

∆eC = eCii(out)− eCii(in) = −e
T

3
(
1 + σ

1− σ
)−′ eTjknjnk(

1− 2σ

1− σ
)

Therefore ∆eCil shall be

∆eCil =
1

3
δil(−

eT

3
(
1 + σ

1− σ
)−′ eTjknjnk(

1− 2σ

1− σ
)) + ∆′eCil
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∆eCil = −e
T

9
(
1 + σ

1− σ
)δil −′ eTjknjnkδil(

1− 2σ

3(1− σ)
) + ∆′eCil

Therefore we can write the change in the deviatoric component of the strain tensor ∆′eCil as

∆′eCil = ∆eCil +
eT

9
(
1 + σ

1− σ
)δil +

′ eTjknjnkδil(
1− 2σ

3(1− σ)
)

⇒ ∆′eCil = − (1 + σ)

3(1− σ)
eTninl −′ eTiknknl −′ eTlknkni +

′eTjk
(1− σ)

ninjnknl +
eT

9
(
1 + σ

1− σ
)δil +

′ eTjknjnkδil(
1− 2σ

3(1− σ)
)

⇒ ∆′eCil = − (1 + σ)

3(1− σ)
eT (ninl −

1

3
δil)−′ eTiknknl −′ eTlknkni +

1

(1− σ)

′
eTjkninjnknl +

1− 2σ

3(1− σ)

′
eTjknjnkδil

9 Elastic field in a Spherical and Ellipsoidal Inclusion

In this section, we shall analyze the elastic field due to the spontaneous change of form of an ellipsoidal inclusion within an isotropic
elastic solid. We assume that the equation of ellipsoid is

X2

a2
+
Y 2

b2
+
Z2

c2
= 1

Let’s assume a point inside the r’ = (x, y, z) within this ellipsoidal inclusion. We define the distance of the point r’ to the incremental
surface dS in the direction l = (l1, l2, l3) = (l,m, n) as r(l). Therefore r(l) is the positive root of

(x+ r(l)l)2

a2
+

(y + r(l)m)2

b2
+

(z + r(l)n)2

c2
= 1

⇒ (x2 + r(l)2l2 + 2xr(l)l)

a2
+

(y2 + r(l)2m2 + 2yr(l)m)

b2
+

(z2 + r(l)2n2 + 2zr(l)n)

c2
= 1

⇒ r(l)2(
l2

a2
+
m2

b2
+
n2

c2
) + 2r(l)(

xl

a2
+
ym

b2
+
zn

c2
)− (1− x2

a2
− y2

b2
− z2

c2
) = 0

Let us define the following quantities

g =
l2

a2
+
m2

b2
+
n2

c2

f =
xl

a2
+
ym

b2
+
zn

c2

e = 1− x2

a2
− y2

b2
− z2

c2

The above boxed equation can therefore be written as

⇒ gr(l)2 + 2fr(l)− e = 0

Therefore the solution of the above boxed equation shall be

r(l) =
−2f ±

√
4f2 + 4ge

2g

⇒ r(l) =
−f
g

±

√
f2

g2
+
e

g

In the earlier section we derived that

⇒ uCi = −
eTjk

8π(1− σ)

∫ 4π

0

r(l)((1− 2σ)(δij lk + ϵjkδiklj − δjkli) + 3lklj li)dω(l) = −
eTjk

8π(1− σ)

∫ 4π

0

r(l)gijk(l)dω(l)

Substituting the expression r(l) = −f
g ±

√
f2

g2 + e
g in the above equation we get

⇒ uCi = −
eTjk

8π(1− σ)

∫ 4π

0

(
−f
g

±

√
f2

g2
+
e

g
)gijk(l)dω(l) = −

eTjk
8π(1− σ)

∫ 4π

0

−fgijk(l)
g

dω(l)±
eTjk

8π(1− σ)

∫ 4π

0

(

√
f2

g2
+
e

g
)gijk(l)dω(l)

Note that (
√

f(l)2

g(l)2 + e(l)
g(l) ) is an even function. To prove that we just need to show that (

√
f(l)2

g(l)2 + e(l)
g(l) ) = (

√
f(−l)2

g(−l)2 + e(−l)
g(−l) ). That

is easy to show once we realize that f(-l) = −f(l), hence f(-l)2 = f(l)2. We can also easily show that g(-l) = g(l), e(-l) = e(l) and

hence g(-l)2 = g(l)2. But gijk(l) is an odd function. Note that Integration of the Product of an even function (
√

f(l)2

g(l)2 + e(l)
g(l) ) and

odd function gijk(l) shall always be zero. Therefore we can write

eTjk
8π(1− σ)

∫ 4π

0

(

√
f2

g2
+
e

g
)gijk(l)dω(l) = 0

Therefore we have

uCi = −
eTjk

8π(1− σ)

∫ 4π

0

−fgijk(l)
g

dω(l)

⇒ uCi =
eTjk

8π(1− σ)

∫ 4π

0

fgijk(l)

g
dω(l)

Defining λ1 = l
a2 , λ2 = m

b2 , λ3 = n
c2 we can write f(l) as follows

f(l) =
xl

a2
+
ym

b2
+
zn

c2
= xmλm
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Therefore we can write the above boxed equation as

uCi =
eTjk

8π(1− σ)

∫ 4π

0

xmλmgijk(l)

g
dω(l)

Since the point r(l) = (x, y, z) inside the volume V is a fixed point, xm can be taken out of the integral. Therefore, we can write the
above equation as

uCi =
xme

T
jk

8π(1− σ)

∫ 4π

0

λmgijk(l)

g
dω(l)

uCl =
xme

T
jk

8π(1− σ)

∫ 4π

0

λmgljk(l)

g
dω(l)

The strain eCil shall be therefore

eCil =
1

2
(
∂uCi
∂xl

+
∂uCl
∂xi

) =
δmle

T
jk

16π(1− σ)

∫ 4π

0

λmgijk(l)

g
dω(l) +

δmie
T
jk

16π(1− σ)

∫ 4π

0

λmgljk(l)

g
dω(l)

⇒ eCil =
eTjk

16π(1− σ)

∫ 4π

0

(λlgijk(l) + λigljk(l))

g
dω(l)

We can write the relation between the constrained and stress-free strains in the inclusion as

eCil = Siljke
T
jk

where Siljk is the Eshelby Tensor defined as

Siljk =
1

16π(1− σ)

∫ 4π

0

(λlgijk(l) + λigljk(l))

g
dω(l)

9.1 Spherical Inclusion

Let’s first compute the for a spherical inclusion where we have a = b = c

Siljk =
1

16π(1− σ)

∫ 4π

0

(λlgijk(l) + λigljk(l))

g
dω(l) =

1

16π(1− σ)

∫ 4π

0

(llgijk(l) + ligljk(l))

a2g
dω(l)

Now note that we have
gijk = (1− 2σ)(δij lk + δiklj − δjkli) + 3lilj lk

gljk = (1− 2σ)(δlj lk + δlklj − δjkll) + 3lllj lk

Therefore we can write

Siljk =
1

16π(1− σ)

∫ 4π

0

(ll((1− 2σ)(δij lk + δiklj − δjkli) + 3lilj lk) + li((1− 2σ)(δlj lk + δlklj − δjkll) + 3lllj lk))

a2g
dω(l)

⇒ Siljk =
1

16π(1− σ)

∫ 4π

0

((1− 2σ)(δij lkll + δiklj ll + δlj lkli + δlklj li − 2δjklill) + 6lilj lkll)

a2g
dω(l)

⇒ Siljk =
(1− 2σ)

16π(1− σ)
(δij

∫ 4π

0

lkll
a2g

dω(l) + δik

∫ 4π

0

lj ll
a2g

dω(l) + δlj

∫ 4π

0

lkli
a2g

dω(l) + δlk

∫ 4π

0

lj li
a2g

dω(l)− 2δjk

∫ 4π

0

lill
a2g

dω(l))

+
3

8π(1− σ)

∫ 4π

0

lilj lkll
a2g

dω(l)

Using the Routh Integrals we can reduce the solid angle integral
∫ 4π

0
lkll
a2gdω(l) to simple integrals∫ 4π

0

lkll
a2g

dω(l) = δkl

∫ 4π

0

l2l
a2g

dω(l) = δkl(2πabc

∫ ∞

0

du

(a2 + u)∆
)

⇒
∫ 4π

0

lkll
a2g

dω(l) = δkl(2πabc

∫ ∞

0

du

(a2 + u)∆
)

where ∆ is given by the expression
∆ = (a2 + u)

1
2 (b2 + u)

1
2 (c2 + u)

1
2

For a spherical inclusion where we have a = b = c, the ∆ shall be

∆ = (a2 + u)
3
2

Therefore the integral shall be ∫ ∞

0

du

(a2 + u)∆
=

∫ ∞

0

du

(a2 + u)
5
2

To solve the integral
∫∞
0

1
(a2+u)5/2

du, we can use a standard technique for integrals of this form. Let’s set u = a2 tan2(θ). Then,

du = 2a2 tan(θ) sec2(θ) dθ. Substitute this into the integral:

∫ ∞

0

1

(a2 + u)5/2
du =

∫ π
2

0

1

(a2 + a2 tan2(θ))5/2
· 2a2 tan(θ) sec2(θ) dθ

The term inside the integral simplifies as follows:

a2(1 + tan2(θ)) = a2 sec2(θ)
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Thus, the integral becomes:∫ ∞

0

1

(a2 + u)5/2
du =

∫ π
2

0

2a2 tan(θ) sec2(θ)

(a2 sec2(θ))5/2
dθ =

∫ π
2

0

2a2 tan(θ) sec2(θ)

a5 sec5(θ)
dθ =

2

a3

∫ π
2

0

tan(θ)

sec3(θ)
dθ =

2

a3

∫ π
2

0

sin(θ) cos2(θ) dθ

We can evaluate the integral
∫ π

2

0
sin(θ) cos2(θ) dθ using the substitution x = cos(θ), dx = − sin(θ) dθ:

=
2

a3

∫ 0

1

−x2 dx =
2

a3

[
x3

3

]0
1

=
2

a3
· 1
3
=

2

3a3

The value of the integral is: ∫ ∞

0

1

(a2 + u)5/2
du =

2

3a3

Therefore the solid angle integral
∫ 4π

0
lkll
a2gdω(l) shall be∫ 4π

0

lkll
a2g

dω(l) = δkl(2πabc

∫ ∞

0

du

(a2 + u)∆
)

For spherical inclusion a = b = c, therefore the solid angle integral
∫ 4π

0
lkll
a2gdω(l) shall be∫ 4π

0

lkll
a2g

dω(l) = δkl(2πa
3

∫ ∞

0

du

(a2 + u)∆
) = δkl(2πa

3 2

3a3
) =

4π

3
δkl

⇒
∫ 4π

0

lkll
a2g

dω(l) =
4π

3
δkl

Similarly, we shall have

⇒
∫ 4π

0

lj ll
a2g

dω(l) =
4π

3
δjl

⇒
∫ 4π

0

lkli
a2g

dω(l) =
4π

3
δki

⇒
∫ 4π

0

lj li
a2g

dω(l) =
4π

3
δji

⇒
∫ 4π

0

lill
a2g

dω(l) =
4π

3
δil

Using the Routh Integrals we can reduce the solid angle integral
∫ 4π

0
lilj lkll
a2g dω(l) to simple integrals∫ 4π

0

lilj lkll
a2g

dω(l) =
1

3
(δikδjl + δilδjk + δijδlk)a

2

∫ 4π

0

l4l
a4g

dω(l) =
1

3
(δikδjl + δilδjk + δijδlk)a

2(2πabc

∫ ∞

0

du

(a2 + u)2∆
)

⇒
∫ 4π

0

lilllj lk
a2g

dω(l) =
2(δikδjl + δilδjk + δijδlk)πa

3bc

3

∫ ∞

0

du

(a2 + u)2∆

where ∆ is given by the expression
∆ = (a2 + u)

1
2 (b2 + u)

1
2 (c2 + u)

1
2

For a spherical inclusion where we have a = b = c, the ∆ shall be

∆ = (a2 + u)
3
2

Therefore the integral shall be ∫ ∞

0

du

(a2 + u)2∆
=

∫ ∞

0

du

(a2 + u)
7
2

To solve the integral
∫∞
0

1
(a2+u)7/2

du, we can follow a similar approach to the one used for the previous integral. Let u = a2 tan2(θ).

Then, du = 2a2 tan(θ) sec2(θ) dθ. Substituting into the integral:∫ ∞

0

1

(a2 + u)7/2
du =

∫ π
2

0

1

(a2 + a2 tan2(θ))7/2
· 2a2 tan(θ) sec2(θ) dθ

The expression simplifies as follows:∫ ∞

0

1

(a2 + u)7/2
du =

∫ π
2

0

2a2 tan(θ) sec2(θ)

(a2 sec2(θ))7/2
dθ =

∫ π
2

0

2a2 tan(θ) sec2(θ)

a7 sec7(θ)
dθ =

2

a5

∫ π
2

0

tan(θ)

sec5(θ)
dθ =

2

a5

∫ π
2

0

sin(θ) cos4(θ) dθ

We can evaluate the integral
∫ π

2

0
sin(θ) cos4(θ) dθ using the substitution x = cos(θ), dx = − sin(θ) dθ:

=
2

a5

∫ 0

1

−x4 dx =
2

a5

[
x5

5

]0
1

=
2

a5
· 1
5
=

2

5a5

The value of the integral is: ∫ ∞

0

du

(a2 + u)2∆
=

∫ ∞

0

1

(a2 + u)7/2
du =

2

5a5

Therefore
∫ 4π

0
lilj lkll
a2g dω(l) can be written as

⇒
∫ 4π

0

lilj lkll
a2g

dω(l) =
2(δikδjl + δilδjk + δijδlk)πa

3bc

3

∫ ∞

0

du

(a2 + u)2∆
= (δikδjl + δilδjk + δijδlk)

4πbc

15a2

33



For a spherical inclusion where we have a = b = c, therefore we have

⇒
∫ 4π

0

lilj lkll
a2g

dω(l) =
4π

15
(δikδjl + δilδjk + δijδlk)

Therefore the Eshelby Tensor Siljk shall be

Siljk =
(1− 2σ)

16π(1− σ)
(δij

∫ 4π

0

lkll
a2g

dω(l) + δik

∫ 4π

0

lj ll
a2g

dω(l) + δlj

∫ 4π

0

lkli
a2g

dω(l) + δlk

∫ 4π

0

lj li
a2g

dω(l)− 2δjk

∫ 4π

0

lill
a2g

dω(l))

+
3

8π(1− σ)

∫ 4π

0

lilj lkll
a2g

dω(l)

⇒ Siljk =
(1− 2σ)

16π(1− σ)
(δijδkl

4π

3
+ δikδjl

4π

3
+ δljδki

4π

3
+ δlkδji

4π

3
− 2δjkδil

4π

3
) +

1

10(1− σ)
(δikδjl + δilδjk + δijδlk)

⇒ Siljk =
(1− 2σ)

16π(1− σ)
(δijδkl

8π

3
+ δikδjl

8π

3
− δjkδil

8π

3
) +

1

10(1− σ)
(δikδjl + δilδjk + δijδlk)

⇒ Siljk =
(1− 2σ)

6(1− σ)
(δijδkl + δikδjl − δjkδil) +

1

10(1− σ)
(δikδjl + δilδjk + δijδlk)

⇒ Siljk = (δijδkl + δikδjl)(
(1− 2σ)

6(1− σ)
+

1

10(1− σ)
) + δilδjk(

1

10(1− σ)
− (1− 2σ)

6(1− σ)
)

⇒ Siljk = (δijδkl + δikδjl)(
5(1− 2σ) + 3

30(1− σ)
) + δilδjk(

−5(1− 2σ) + 3

30(1− σ)
)

⇒ Siljk = (δijδkl + δikδjl)(
8− 10σ

30(1− σ)
) + δilδjk(

10σ − 2

30(1− σ)
)

⇒ Siljk = (δijδkl + δikδjl)(
4− 5σ

15(1− σ)
) + δilδjk(

5σ − 1

15(1− σ)
)

Notice that there is no term of a, b, c in this equation. We can therefore say that the Eshelby tensor does not depend on the radius
of the spherical inclusion.

9.2 Ellipsoidal Inclusion

Let’s now compute the Eshelby tensor for Ellipsoidal Inclusion. The S1111, S1122, S1133, S1212, S1112, S1223, S1232 components of the
Eshelby Tensor shall be

S1111 =
1

16π(1− σ)

∫ 4π

0

(λ1g111(l) + λ1g111(l))

g
dω(l) =

∫ 4π

0

(lg111(l) + lg111(l))

a2g
dω(l)

S1122 =
1

16π(1− σ)

∫ 4π

0

(λ1g122(l) + λ1g122(l))

g
dω(l) =

∫ 4π

0

(lg122(l) + lg122(l))

a2g
dω(l)

S1133 =
1

16π(1− σ)

∫ 4π

0

(λ1g133(l) + λ1g133(l))

g
dω(l) =

∫ 4π

0

(lg133(l) + lg133(l))

a2g
dω(l)

S1212 =
1

16π(1− σ)

∫ 4π

0

(λ2g112(l) + λ1g212(l))

g
dω(l) =

∫ 4π

0

(mb2 g112(l) +
l
a2 g212(l))

g
dω(l)

S1112 =
1

16π(1− σ)

∫ 4π

0

(λ1g112(l) + λ1g112(l))

g
dω(l) =

1

16π(1− σ)

∫ 4π

0

(lg112(l) + lg112(l))

a2g
dω(l)

S1223 =
1

16π(1− σ)

∫ 4π

0

(λ2g123(l) + λ1g223(l))

g
dω(l) =

1

16π(1− σ)

∫ 4π

0

(mb2 g123(l) +
l
a2 g223(l))

g
dω(l)

S1232 =
1

16π(1− σ)

∫ 4π

0

(λ2g132(l) + λ1g232(l))

g
dω(l) =

1

16π(1− σ)

∫ 4π

0

(mb2 g132(l) +
l
a2 g232(l))

g
dω(l)

Now note that we have
gijk = (1− 2σ)(δij lk + δiklj − δjkli) + 3lilj lk

Therefore the components of the 3rd order tensor g111, g112, g122, g123, g132, g223, g232, g133, g212 shall be

g111 = (1− 2σ)(δ11l1 + δ11l1 − δ11l1) + 3l1l1l1 = (1− 2σ)l1 + 3l31

⇒ g111 = (1− 2σ)l + 3l3

g112 = (1− 2σ)(δ11l2 + δ12l1 − δ12l1) + 3l21l2 = (1− 2σ)l2 + 3l21l2

⇒ g112 = (1− 2σ)m+ 3l2m

g122 = (1− 2σ)(δ12l2 + δ12l2 − δ22l1) + 3l1l2l2 = −(1− 2σ)l1 + 3l1l
2
2

⇒ g122 = −(1− 2σ)l + 3lm2

g123 = (1− 2σ)(δ12l3 + δ13l2 − δ23l1) + 3l1l2l3 = 3l1l2l3

⇒ g123 = 3lmn

g132 = (1− 2σ)(δ13l2 + δ12l3 − δ32l1) + 3l1l3l2 = 3l1l2l3

⇒ g132 = 3lmn

g223 = (1− 2σ)(δ22l3 + δ23l2 − δ23l2) + 3l2l2l3 = (1− 2σ)l3 + 3l2l2l3

⇒ g223 = (1− 2σ)n+ 3m2n

34



g232 = (1− 2σ)(δ23l2 + δ22l3 − δ32l2) + 3l2l3l2 = (1− 2σ)l3 + 3l2l3l2

⇒ g232 = (1− 2σ)n+ 3m2n

g133 = (1− 2σ)(δ13l3 + δ13l3 − δ33l1) + 3l1l3l3 = −(1− 2σ)l1 + 3l1l
2
3

⇒ g133 = −(1− 2σ)l + 3ln2

g212 = (1− 2σ)(δ21l2 + δ22l1 − δ12l2) + 3l2l1l2 = (1− 2σ)l1 + 3l1l
2
2

⇒ g212 = (1− 2σ)l + 3lm2

Before we compute the components of the Eshelby Tensor we would like to state that all integrals of the form
∫ 4π

0
limjnk dω

g shall
vanish if any one of the i, j, k are odd, i.e we have∫ 4π

0

limjnk
dω

g
= 0 if any of the i, j, k is odd

Therefore the S1111 components of the Eshelby Tensor shall be

S1111 =
1

16π(1− σ)

∫ 4π

0

(lg111(l) + lg111(l))

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

lg111(l)

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

l((1− 2σ)l + 3l3)

a2g
dω(l)

⇒ S1111 =
1

8π(1− σ)

∫ 4π

0

(1− 2σ)l2

a2g
dω(l) +

1

8π(1− σ)

∫ 4π

0

3l4

a2g
dω(l)

⇒ S1111 =
(1− 2σ)

8π(1− σ)

∫ 4π

0

l2

a2
dω(l)

g
+

3a2

8π(1− σ)

∫ 4π

0

l4

a4
dω(l)

g

Therefore the S1122 components of the Eshelby Tensor shall be

S1122 =
1

16π(1− σ)

∫ 4π

0

(lg122(l) + lg122(l))

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

lg122(l)

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

l(−(1− 2σ)l + 3lm2)

a2g
dω(l)

⇒ S1122 = − 1

8π(1− σ)

∫ 4π

0

(1− 2σ)l2

a2g
dω(l) +

1

8π(1− σ)

∫ 4π

0

3l2m2

a2g
dω(l)

⇒ S1122 = − (1− 2σ)

8π(1− σ)

∫ 4π

0

l2

a2
dω(l)

g
+

3b2

8π(1− σ)

∫ 4π

0

l2

a2
m2

b2
dω(l)

g

Therefore the S1133 components of the Eshelby Tensor shall be

S1133 =
1

16π(1− σ)

∫ 4π

0

(lg133(l) + lg133(l))

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

lg133(l)

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

l(−(1− 2σ)l + 3ln2)

a2g
dω(l)

⇒ S1133 = − 1

8π(1− σ)

∫ 4π

0

(1− 2σ)l2

a2g
dω(l) +

1

8π(1− σ)

∫ 4π

0

3l2n2

a2g
dω(l)

⇒ S1133 = − (1− 2σ)

8π(1− σ)

∫ 4π

0

l2

a2
dω(l)

g
+

3c2

8π(1− σ)

∫ 4π

0

l2

a2
n2

c2
dω(l)

g

Therefore the S1212 component of the Eshelby Tensor shall be

S1212 =
1

16π(1− σ)

∫ 4π

0

mg112(l)

b2g
dω(l) +

1

16π(1− σ)

∫ 4π

0

lg212(l)

a2g
dω(l)

⇒ S1212 =
1

16π(1− σ)

∫ 4π

0

m((1− 2σ)m+ 3l2m)

b2g
dω(l) +

1

16π(1− σ)

∫ 4π

0

l((1− 2σ)l + 3lm2)

a2g
dω(l)

⇒ S1212 =
(1− 2σ)

16π(1− σ)

∫ 4π

0

m2

b2
dω(l)

g
+

3a2

16π(1− σ)

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
+

(1− 2σ)

16π(1− σ)

∫ 4π

0

l2

a2
dω(l)

g
+

3b2

16π(1− σ)

∫ 4π

0

l2

a2
m2

b2
dω(l)

g

⇒ S1212 =
(1− 2σ)

16π(1− σ)

∫ 4π

0

m2

b2
dω(l)

g
+

3(a2 + b2)

16π(1− σ)

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
+

(1− 2σ)

16π(1− σ)

∫ 4π

0

l2

a2
dω(l)

g

Therefore the S1112 component of the Eshelby Tensor shall be

S1112 =
1

16π(1− σ)

∫ 4π

0

(lg112(l) + lg112(l))

a2g
dω(l) =

1

8π(1− σ)

∫ 4π

0

lg112(l)

a2g
dω(l)

⇒ S1112 =
1

8π(1− σ)

∫ 4π

0

l((1− 2σ)m+ 3l2m)

a2g
dω(l) =

(1− 2σ)

8π(1− σ)

∫ 4π

0

lm

a2g
dω(l) +

3

8π(1− σ)

∫ 4π

0

l3m

a2g
dω(l)

Now note that both the integrals on the RHS of the previous equation have l,m raised to odd powers. As we previously stated, all

integrals of the form
∫ 4π

0
limjnk dω

g shall vanish if any one of the i, j, k are odd. Therefore we can write

∫ 4π

0

lm

a2g
dω(l) = 0,

∫ 4π

0

l3m

a2g
dω(l) = 0

Therefore the S1112 component of the Eshelby Tensor shall be

⇒ S1112 =
(1− 2σ)

8π(1− σ)

∫ 4π

0

lm

a2g
dω(l) +

3

8π(1− σ)

∫ 4π

0

l3m

a2g
dω(l) = 0

⇒ S1112 = 0
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Therefore the S1223 component of the Eshelby Tensor shall be

S1223 =
1

16π(1− σ)

∫ 4π

0

(λ2g123(l) + λ1g223(l))

g
dω(l) =

1

16π(1− σ)

∫ 4π

0

(mb2 g123(l) +
l
a2 g223(l))

g
dω(l)

⇒ S1223 =
1

16π(1− σ)

∫ 4π

0

mg123(l)

b2g
dω(l) +

1

16π(1− σ)

∫ 4π

0

lg223(l))

a2g
dω(l)

⇒ S1223 =
3

16π(1− σ)

∫ 4π

0

lm2n

b2g
dω(l) +

1

16π(1− σ)

∫ 4π

0

l((1− 2σ)n+ 3m2n))

a2g
dω(l)

⇒ S1223 =
3

16π(1− σ)

∫ 4π

0

lm2n

b2g
dω(l) +

(1− 2σ)

16π(1− σ)

∫ 4π

0

ln

a2g
dω(l) +

3

16π(1− σ)

∫ 4π

0

m2nl

a2g
dω(l)

Now note that all the 3 integrals on the RHS of the previous equation have l,m raised to odd powers. As we previously stated, all

integrals of the form
∫ 4π

0
limjnk dω

g shall vanish if any one of the i, j, k are odd. Therefore we can write

∫ 4π

0

lm2n

b2g
dω(l) = 0,

∫ 4π

0

ln

a2g
dω(l) = 0,

∫ 4π

0

m2nl

a2g
dω(l) = 0

Therefore the S1223 component of the Eshelby Tensor shall be

⇒ S1223 =
3

16π(1− σ)

∫ 4π

0

lm2n

b2g
dω(l) +

(1− 2σ)

16π(1− σ)

∫ 4π

0

ln

a2g
dω(l) +

3

16π(1− σ)

∫ 4π

0

m2nl

a2g
dω(l) = 0

⇒ S1223 = 0

Therefore the S1232 component of the Eshelby Tensor shall be

S1232 =
1

16π(1− σ)

∫ 4π

0

(λ2g132(l) + λ1g232(l))

g
dω(l) =

1

16π(1− σ)

∫ 4π

0

(mb2 g132(l) +
l
a2 g232(l))

g
dω(l)

⇒ S1232 =
1

16π(1− σ)

∫ 4π

0

mg132(l)

b2g
dω(l) +

1

16π(1− σ)

∫ 4π

0

lg232(l)

a2g
dω(l)

⇒ S1232 =
3

16π(1− σ)

∫ 4π

0

lm2n

b2g
dω(l) +

1

16π(1− σ)

∫ 4π

0

l((1− 2σ)n+ 3m2n)

a2g
dω(l)

⇒ S1232 =
3

16π(1− σ)

∫ 4π

0

lm2n

b2g
dω(l) +

(1− 2σ)

16π(1− σ)

∫ 4π

0

ln

a2g
dω(l) +

3

16π(1− σ)

∫ 4π

0

m2nl

a2g
dω(l)

Now note that all the 3 integrals on the RHS of the previous equation have l,m raised to odd powers. As we previously stated, all

integrals of the form
∫ 4π

0
limjnk dω

g shall vanish if any one of the i, j, k are odd. Therefore we can write∫ 4π

0

lm2n

b2g
dω(l) = 0,

∫ 4π

0

ln

a2g
dω(l) = 0,

∫ 4π

0

m2nl

a2g
dω(l) = 0

Therefore we can write

⇒ S1232 =
3

16π(1− σ)

∫ 4π

0

lm2n

b2g
dω(l) +

(1− 2σ)

16π(1− σ)

∫ 4π

0

ln

a2g
dω(l) +

3

16π(1− σ)

∫ 4π

0

m2nl

a2g
dω(l) = 0

⇒ S1232 = 0

Let us define the terms

Q =
(1− 2σ)

8π(1− σ)
, R =

3

8π(1− σ)

Ia =

∫ 4π

0

l2

a2
dω(l)

g
, Iaa =

∫ 4π

0

l4

a4
dω(l)

g
, Iab =

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
, Iac =

∫ 4π

0

l2

a2
n2

c2
dω(l)

g

Therefore the S1111, S1122, S1133, S1212 components of the Eshelby Tensor can be written as

S1111 = RIa +Qa2Iaa

S1122 = −RIa +Qb2Iab

S1133 = −RIa +Qc2Iac

S1212 =
R

2
(Ia + Ib) +

Q

2
(a2 + b2)Iab

S1112 = 0

S1223 = 0

S1232 = 0

The rest of the nonzero terms can be found by cyclic permutation of the above formulas. Notice that we should also let a → b → c
together with 1 → 2 → 3. Using the Routh Integrals, The Ia, Ib, Ic terms can be written in terms of standard elliptic integrals,

Ia =

∫ 4π

0

l2

a2
dω(l)

g
= 2πabc

∫ ∞

0

du

(a2 + u)∆
=

4πabc

(a2 − b2)(a2 − c2)1/2 [F (θ, k)− E(θ, k)]
, where θ = arcsin

(√
a2 − c2

a2

)
, k =

√
a2 − b2

a2 − c2
.

Ib =

∫ 4π

0

m2

b2
dω(l)

g
= 2πabc

∫ ∞

0

du

(b2 + u)∆
=

4πabc

(a2 − b2)(b2 − c2)1/2
[F (θ, k)− E(θ, k)] , where θ = arcsin

(√
a2 − c2

b2

)
, k =

√
a2 − b2

b2 − c2
.
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Ic =

∫ 4π

0

n2

c2
dω(l)

g
= 2πabc

∫ ∞

0

du

(c2 + u)∆
=

4πabc

(a2 − c2)(b2 − c2)1/2
[F (θ, k)− E(θ, k)] , where θ = arcsin

(√
a2 − b2

c2

)
, k =

√
a2 − c2

b2 − c2
.

Using the Routh Integrals, The Iaa, Ibb, Icc terms can be written as

Iaa =

∫ 4π

0

l4

a4
dω(l)

g
= 2πabc

∫ ∞

0

du

(a2 + u)2∆
, Ibb =

∫ 4π

0

m4

b4
dω(l)

g
= 2πabc

∫ ∞

0

du

(b2 + u)2∆

Icc =

∫ 4π

0

n4

c4
dω(l)

g
= 2πabc

∫ ∞

0

du

(c2 + u)2∆

Using the Routh Integrals, The Iab, Iac, Ibc terms can be written as

Iab =

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
=

2

3
πabc

∫ ∞

0

du

(a2 + u)(b2 + u)∆
, Iac =

∫ 4π

0

l2

a2
n2

c2
dω(l)

g
=

2

3
πabc

∫ ∞

0

du

(a2 + u)(c2 + u)∆

Ibc =

∫ 4π

0

m2

b2
n2

c2
dω(l)

g
=

2

3
πabc

∫ ∞

0

du

(b2 + u)(c2 + u)∆

The I terms also satisfy the following properties:

Ia + Ib + Ic =

∫ 4π

0

l2

a2
dω(l)

g
+

∫ 4π

0

m2

b2
dω(l)

g
+

∫ 4π

0

n2

c2
dω(l)

g
=

∫ 4π

0

(
l2

a2
+
m2

b2
+
l2

a2
)
dω(l)

g
=

∫ 4π

0

g
dω(l)

g
=

∫ 4π

0

ω(l) = 4π

⇒ Ia + Ib + Ic = 4π

a2Iaa+b
2Iab+c

2Iac = a2
∫ 4π

0

l4

a4
dω(l)

g
+b2

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
+c2

∫ 4π

0

l2

a2
n2

c2
dω(l)

g
=

∫ 4π

0

l2

a2
l2
dω(l)

g
+

∫ 4π

0

l2

a2
m2 dω(l)

g
+

∫ 4π

0

l2

a2
n2
dω(l)

g

⇒ a2Iaa + b2Iab + c2Iac =

∫ 4π

0

l2

a2
(l2 +m2 + n2)

dω(l)

g
=

∫ 4π

0

l2

a2
dω(l)

g
= Ia

⇒ a2Iaa + b2Iab + c2Iac = Ia

Iaa + Iab + Iac =

∫ 4π

0

l4

a4
dω(l)

g
+

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
+

∫ 4π

0

l2

a2
n2

c2
dω(l)

g
=

∫ 4π

0

l2

a2
(
l2

a2
+
m2

b2
+
n2

c2
)
dω(l)

g
=

∫ 4π

0

l2

a2
(g)

dω(l)

g

⇒ Iaa + Iab + Iac =

∫ 4π

0

l2

a2
dω(l) =

4π

3a2

Proof of

∫ 4π

0

l2

a2
dω(l) =

4π

3a2
:

For direction cosines, the integral over the solid angle can be expressed in spherical coordinates where l = cos θ, with θ being
the polar angle. The differential solid angle element dω in spherical coordinates is given by: dω = sin θ dθ dϕ where θ varies from 0 to
π and ϕ varies from 0 to 2π. Thus, the integral can be rewritten as:∫ 4π

0

l2

a2
dω =

1

a2

∫ 2π

0

∫ π

0

cos2 θ sin θ dθ dϕ

Let’s evaluate the integral step by step. First, integrate with respect to θ:∫ π

0

cos2 θ sin θ dθ

Let u = cos θ, so du = − sin θ dθ. The limits of integration change from θ = 0 to θ = π to u = 1 to u = −1. The integral

becomes:−
∫ −1

1
u2 du =

∫ 1

−1
u2 du. This integral evaluates to:

[
u3

3

]1
−1

= 1
3 −

(
− 1

3

)
= 2

3 . Now, integrate with respect to ϕ:
∫ 2π

0
dϕ = 2π

Multiply the results of the two integrals:
∫ 4π

0
l2

a2 dω = 1
a2 × 2

3 × 2π = 4π
3a2 . So, the result of the integral is:

∫ 4π

0

l2

a2
dω =

4π

3a2

Therefore we have

⇒ I11 + I12 + I13 =

∫ 4π

0

l2

a2
dω(l) =

4π

3a2

2πabc

∫ ∞

0

du

(a2 + u)2∆
+

2

3
πabc

∫ ∞

0

du

(a2 + u)(b2 + u)∆

+
2

3
πabc

∫ ∞

0

du

(a2 + u)(c2 + u)∆
= πabc

∫ ∞

0

(6(b2 + u)(c2 + u) + 2(a2 + u)(c2 + u) + 2(a2 + u)(b2 + u))

3(a2 + u)2∆

3a2I11 + b2I12 + c2I13 = 3I1

I12 =
I2 − I1
a2 − b2

and the standard elliptic integrals are defined as

F (θ, k) =

∫ θ

0

dw

(1− k2 sin2 w)1/2

E(θ, k) =

∫ θ

0

(1− k2 sin2 w)1/2dw
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9.3 Elliptic Cylinder Inclusion

For an elliptic cylinder inclusion (c→ ∞). The components of Eshelby tensor are

S1111 =
1

2(1− ν)

[
b2 + 2ab

(a+ b)2
+ (1− 2ν)

b

a+ b

]

S2222 =
1

2(1− ν)

[
a2 + 2ab

(a+ b)2
+ (1− 2ν)

a

a+ b

]
S3333 = 0

S1122 =
1

2(1− ν)

[
b2

(a+ b)2
− (1− 2ν)

b

a+ b

]
S2233 =

1

2(1− ν)

2νa

a+ b

S2211 =
1

2(1− ν)

[
a2

(a+ b)2
− (1− 2ν)

a

a+ b

]
S3311 = S3322 = 0

S1212 =
1

2(1− ν)

[
a2 + b2

2(a+ b)2
+

(1− 2ν)

2

]

S1133 =
1

2(1− ν)

2νb

a+ b

S2323 =
a

2(a+ b)

S3131 =
b

2(a+ b)

9.4 Flat Ellipsoid Inclusion

For a flat ellipsoid (a > b≫ c). The I integrals in this limiting case reduce to

I1 =
4π(F (k)− E(k))bc

a2 − b2

I2 = 4π

[
E(k)

c
− (F (k)− E(k))bc

a2 − b2

]
I3 = 4π

[
1− E(k)

c

]
I12 =

4π

a2 − b2

[
E(k)

c
− 2

(F (k)− E(k))bc

a2 − b2

]
I23 =

4π

b2

[
1− 2

E(k)

c
+

(F (k)− E(k))bc

a2 − b2

]
I31 =

4π

a2

[
1− E(k)

c
− (F (k)− E(k))bc

a2 − b2

]
I33 =

4π

3c2

where E(k) and F (k) are complete elliptic integrals defined as

F (k) =

∫ π
2

0

dw√
1− k2 sin2 w

E(k) =

∫ π
2

0

√
1− k2 sin2 w dw

9.5 Penny Shaped Inclusion

We have a penny shaped inclusion when a = b. We can compute the S1111, S1122, S1133, S1212, S1112, S1223, S1232 components of the
Eshelby Tensor by computing the values of Ia, Ib, Iaa, Iab, Iac which were defined in the previous subsection.

Using Routh Integrals we can reduce the solid angle integral
∫ 4π

0
l2im2jn2k dω

g to simple integrals.

Ia =

∫ 4π

0

l2

a2
dω(l)

g
= 2πabc

∫ ∞

0

du

(a2 + u)∆
, Iaa =

∫ 4π

0

l4

a4
dω(l)

g
= 2πabc

∫ ∞

0

du

(a2 + u)2∆

Iab =

∫ 4π

0

l2

a2
m2

b2
dω(l)

g
=

2

3
πabc

∫ ∞

0

du

(a2 + u)(b2 + u)∆
, Iac =

∫ 4π

0

l2

a2
n2

c2
dω(l)

g
=

2

3
πabc

∫ ∞

0

du

(a2 + u)(c2 + u)∆

where ∆ is given by the expression

∆ = (a2 + u)
1
2 (b2 + u)

1
2 (c2 + u)

1
2 = (a2 + u)(c2 + u)

1
2

⇒ ∆ = (a2 + u)(c2 + u)
1
2
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The S1111, S1122, S1133, S1212, S1112, S1223, S1232 components of the Eshelby Tensor for Penny Shaped Inclusion are

S1111 = S2222 =
π(13− 8ν)

32(1− ν)

c

a

S3333 = 1− π(1− 2ν)

4(1− ν)

c

a

S1122 = S2211 =
π(8ν − 1)

32(1− ν)

c

a

S1133 = S2233 =
π(2ν − 1)

8(1− ν)

c

a

S3311 = S3322 =
v

1− v

[
1− π(4ν + 1)

8ν

c

a

]
S1212 =

π(7− 8ν)

32(1− ν)

c

a

S3131 = S2323 =
1

2

[
1 +

π(ν − 2)

4(1− ν)

c

a

]

10 Eshelby’s Tensor for 2-Dimensional Inclusions

This derivation focuses on Eshelby’s tensor in the context of 2-dimensional (2D) elliptical inclusions in an isotropic elastic medium
under plane strain conditions. Consider a 2D elliptical inclusion in an infinite, homogeneous, isotropic elastic medium. The
inclusion is characterized by an eigenstrain e∗, which is the strain the inclusion would undergo if isolated from the surrounding
matrix. The 2D elliptical inclusion is defined by:

x21
a2

+
x22
b2

≤ 1

where a and b are the semi-axes of the ellipse along the x1 and x2 directions, respectively.

For an isotropic elastic medium, the stress-strain relation (Hooke’s law) in 2D under plane strain conditions is:

σij = Cijklekl

where σij is the stress tensor, ekl is the strain tensor, and Cijkl is the elastic constant tensor given by:

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

Here, λ and µ are the Lamé constants. The inclusion undergoes an eigenstrain e∗ij , leading to the following stress and strain fields
inside the inclusion:

σij = Cijkl(ekl − e∗kl)

The goal is to determine the Eshelby tensor Sijkl, which relates the elastic strain eij inside the inclusion to the eigenstrain e∗kl:

eij = Sijkle
∗
kl

The Green’s function Gij(x) represents the displacement at point x due to a unit force applied at x′. For an isotropic, infinite elastic
medium in 2D, the Green’s function in Fourier space is:

gij(k) =
(zz)−1

ij

k2

where z = k
|k| . The Green’s function in real space is then:

Gij(x) =
1

4π2

∫
exp(−ik · x)

k2
(zz)−1

ij dk

The auxiliary tensor Dijkl relates the gradient of the Green’s function to the eigenstress inside the inclusion:

Dijkl(x) =

∫
V0

Gij,kl(x− x′) dV (x′)

Using the Fourier representation of the Green’s function:

Dijkl(x) = − 1

(2π)2

∫
exp(−ik · x)

(zz)−1
ij zkzl

k2
Q(k) dk

where the integral Q(k) is defined as:

Q(k) =

∫
V0

exp(ik · x′) dV (x′)

where V0 is the volume (in this case, area since we are in 2D) of the inclusion. For an elliptical inclusion, the domain V0 is given by:

x21
a2

+
x22
b2

≤ 1

Here, x1 and x2 are the coordinates within the inclusion, and a, b are the semi-major and semi-minor axes of the ellipse, respectively.
We perform a change of variables to transform the elliptical domain into a circular domain, making the integral easier to handle.
Define new variables:

X ′ =
x1
a
, Y ′ =

x2
b

In these new variables, the elliptical domain becomes:

X ′2 + Y ′2 ≤ 1
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which represents a unit circle in the X ′Y ′-plane. The differential volume element transforms as:

dV (x′) = a · b dX ′ dY ′

Thus, the integral Q(k) can be rewritten in terms of X ′ and Y ′:

Q(k) = ab

∫
X′2+Y ′2≤1

exp (ik1 · (aX ′) + ik2 · (bY ′)) dX ′ dY ′

Here, k1 and k2 are the components of the wavevector k in the x1 and x2 directions, respectively. Expressing k ·x′ in polar coordinates:

k · x′ = k1x1 + k2x2 = ak1X
′ + bk2Y

′

Let us define
λx = ak1, λy = bk2

Then we have
k · x′ = λxX

′ + λyY
′

We now express X ′ and Y ′ in polar coordinates (R, θ):

X ′ = R cos θ, Y ′ = R sin θ

Therefore we can write
k · x′ = R(λx cos θ + λy sin θ) = Rλ cosϕ

where ϕ is the angle between λ = (λx, λy) and (X ′, Y ′). Integrating Over the Elliptical Domain. The integral Q(k) now becomes:

Q(k) = ab

∫ 1

0

∫ 2π

0

exp(iRλ cosϕ)Rdθ dR

The integral over θ can be recognized as a standard Bessel function of the first kind J0:∫ 2π

0

exp(iRλ cosϕ) dθ = 2πJ0(Rλ)

Thus, Q(k) simplifies to:

Q(k) = 2πab

∫ 1

0

RJ0(Rλ) dR

The integral over R can be evaluated using the known result for the integral involving the Bessel function:∫ 1

0

RJ0(Rλ) dR =
1

λ2
(sinλ− λ cosλ)

Substituting back, we get:

Q(k) = 2πab · 1

λ2
(sinλ− λ cosλ)

Finally, the expression for Q(k) is:

Q(k) =
2πab

λ3
(sinλ− λ cosλ)

Here, λ =
√
(ak1)2 + (bk2)2.

Let’s now do the Eshelby Tensor Derivation. Substituting Q(k) back into the expression for Dijkl and using polar coordinates
to evaluate the integrals:

Dijkl(x) = − abc

2π2

∫ 2π

0

(zz)−1
ij zkzl

λ3
(sinλ− λ cosλ) dθ

For a circular inclusion (where a = b):

Dijkl = − 1

2π

∫ 2π

0

(zz)−1
ij zkzl

µ
dθ

The Eshelby tensor Sijkl for Circular Inclusion is obtained using:

Sijmn = −1

2
Cklmn (Diklj +Djkli)

Substituting the expression for Dijkl:

Sijmn =
ν

2(1− ν)
δijδmn +

1

16(1− ν)
[(6− 8ν)(δinδjm + δjnδim)− 2δijδmn]

For a circular inclusion, this simplifies to:

Sijmn =
4ν − 1

8(1− ν)
δijδmn +

3− 4ν

8(1− ν)
(δinδjm + δjnδim)

The Eshelby tensor Sijmn for a 2D inclusion (circular or elliptical) in an isotropic elastic medium has been derived rigorously. This
tensor allows us to determine the strain field inside the inclusion given the eigenstrain e∗kl. The derivation used the Green’s function
approach, combined with Fourier transforms, change of variables, and integration techniques to arrive at the final expressions.
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11 Derivation of the Green’s Function for Anisotropic Medium

To begin, we derive the Green’s function Gij(x − x′) for an infinite, homogeneous, and anisotropic elastic medium. This Green’s
function represents the displacement in the i-th direction at point x due to a unit point force applied in the j-th direction at point
x′. We start with the Equilibrium Equation for an Infinite Body. The Green’s function satisfies the following equilibrium equation:

Cijkl
∂2Gkm(x)

∂xj∂xl
+ δimδ(x) = 0

where Cijkl is the fourth-order stiffness (elasticity) tensor, and δ(x) is the Dirac delta function representing the point force at the

origin. To solve this equation, we take the Fourier transform. The Fourier transform f̂(k) of a function f(x) is defined as:

f̂(k) =

∫
R3

f(x)e−ik·x dx,

with the inverse Fourier transform given by:

f(x) =
1

(2π)3

∫
R3

f̂(k)eik·x dk.

Applying the Fourier transform to the equilibrium equation, we have:

Cijklkjklgkm(k) = δim

where gij(k) is the Fourier transform of Gij(x). The equation simplifies to:

(zz)ikgkm(k) = δim

where (zz)ik = Cijklkjkl. Taking the inverse of (zz)ik, we find:

gij(k) = (zz)−1
ij .

Thus, the Green’s function in Fourier space is:

gij(k) =
(zz)−1

ij

k2
.

The real-space Green’s function Gij(x) is obtained by taking the inverse Fourier transform:

Gij(x) =
1

(2π)3

∫
R3

gij(k)e
ik·x dk.

Substituting the expression for gij(k):

Gij(x) =
1

(2π)3

∫
R3

(zz)−1
ij

k2
eik·x dk

To evaluate this integral, we switch to spherical coordinates in Fourier space:

kx = k sin θ cosϕ, ky = k sin θ sinϕ, kz = k cos θ,

with the volume element given by k2 sin θ dk dθ dϕ. The integral becomes:

Gij(x) =
1

(2π)2

∫ ∞

0

sin(kR)

kR
(zz)−1

ij dk

where R = |x| is the distance from the source point. After evaluating the integral, the Green’s function in real space is:

Gij(x) =
1

8πR
(zz)−1

ij

For isotropic materials, this can be further simplified using the Lame constants λ and µ:

Gij(x) =
1

8πµR

[(
λ+ 3µ

λ+ 2µ

)
δij +

(
λ+ µ

λ+ 2µ

)
xixj
R2

]
This Green’s function represents the displacement field in an infinite, homogeneous, and isotropic elastic medium due to a point force.

12 Derivation of the Auxiliary Tensor Dijkl

Using the derived Green’s function, we now derive the auxiliary tensor Dijkl that relates the constrained displacement gradients to
the eigenstress inside an inclusion. The auxiliary tensor Dijkl is defined by:

uci,l(x) = −σ∗
kjDijkl(x)

where uci,l(x) is the constrained displacement gradient, and σ∗
kj is the eigenstress. The tensor Dijkl is related to Eshelby’s tensor Sijkl:

Sijmne
∗
mn = ecij ,

where the constrained strain ecij is given by:

ecij =
1

2

(
uci,j + ucj,i

)
.

The constrained displacement gradient can also be expressed using the Green’s function as:

uci,j(x) =

∫
S0

σ∗
lknkGil,j(x− x′) dS(x′)
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By comparing this with the earlier definition, we identify:

Dilkj(x) = −
∫
S0

nkGil,j(x− x′) dS(x′),

or equivalently:

Dijkl(x) = −
∫
S0

Gij,l(x− x′)nk dS(x
′)

Using Gauss’s theorem, this surface integral is converted into a volume integral:

Dijkl(x) =

∫
V0

∂

∂x′k
Gij,l(x− x′) dV (x′).

This simplifies to:

Dijkl(x) =

∫
V0

Gij,kl(x− x′) dV (x′)

where Gij,kl(x− x′) is the second derivative of the Green’s function. Substituting the Fourier-transformed Green’s function into the
expression for Dijkl(x), we get:

Dijkl(x) =

∫
V0

∂2

∂xk∂xl

[
1

(2π)3

∫
exp [−ik · (x− x′)]

(zz)−1
ij

k2
dk

]
dV (x′).

Taking the second derivatives with respect to xk and xl, we obtain:

Dijkl(x) =
1

(2π)3

∫
V0

∫
(−ikk) (−ikl) exp [−ik · (x− x′)]

(zz)−1
ij

k2
dk dV (x′).

Simplifying, this becomes:

Dijkl(x) = − 1

(2π)3

∫
V0

∫
exp [−ik · (x− x′)]

(zz)−1
ij kkkl

k2
dk dV (x′)

Recognizing that kkkl = |k|2zkzl, where zk and zl are the components of the unit vector in the direction of k, we rewrite the equation
as:

Dijkl(x) = − 1

(2π)3

∫
V0

∫
exp [−ik · (x− x′)]

(zz)−1
ij zkzl

k2
dk dV (x′)

The function Q(k) is defined as the Fourier transform of the characteristic function of the inclusion V0:

Q(k) =

∫
V0

exp [−ik · x′] dV (x′)

For an ellipsoidal inclusion, the region V0 is defined by:

x′2

a2
+
y′2

b2
+
z′2

c2
≤ 1,

where a, b, and c are the semi-axes of the ellipsoid. The Fourier transform Q(k) can be computed as follows. Let:

x′ = aX, y′ = bY, z′ = cZ,

where X, Y , and Z are dimensionless variables that satisfy X2 + Y 2 + Z2 ≤ 1. Thus, the region V0 can be expressed as:

V0 =
{
(X,Y, Z) ∈ R3 : X2 + Y 2 + Z2 ≤ 1

}
The volume element transforms as:

dV (x′) = abc dX dY dZ.

The Fourier transform Q(k) is then given by:

Q(k) = abc

∫
V0

exp [−i (akxX + bkyY + ckzZ)] dX dY dZ

This integral can be separated into three independent integrals over X, Y , and Z:

Q(k) = abc

(∫ 1

−1

exp(−iakxX)dX

)(∫ 1

−1

exp(−ibkyY )dY

)(∫ 1

−1

exp(−ickzZ)dZ
)
.

Each integral is of the form: ∫ 1

−1

exp(−iλξ)dξ = 2 sin(λ)

λ
,

where λ = akx, bky, or ckz. Thus:

Q(k) = abc

(
2 sin(akx)

akx

)(
2 sin(bky)

bky

)(
2 sin(ckz)

ckz

)
.

Alternatively, the Fourier transform can be expressed in spherical coordinates:

Q(k) =
abc

λ3

(
4π

(
sinλ

λ
− cosλ

))

where λ =
√
a2k2x + b2k2y + c2k2z . Substituting the expression for Q(k) into the formula for Dijkl(x), we get:

Dijkl(x) = − abc

2π2

∫
(zz)−1

ij zkzl

λ3
(sinλ− λ cosλ) exp [−ik · x] dk.
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To simplify the integral, we switch to spherical coordinates in Fourier space:

kx = k sinΦ cosΘ, ky = k sinΦ sinΘ, kz = k cosΦ,

where λ becomes:

λ = k
√
a2 cos2 Θ+ b2 sin2 ΘsinΦ + c2 cos2 Φ

The integral expression for Dijkl(x) then becomes:

Dijkl(x) = − abc

2π2

∫ π

0

∫ 2π

0

(zz)−1
ij zkzl

β3/2
(sinλ− λ cosλ) e−ik·xk2 sinΦ dk dΘ dΦ

where β =
√
a2 cos2 Θ+ b2 sin2 Θsin2 Φ + c2 cos2 Φ. To further simplify the expression for Dijkl, we integrate over the angular

coordinates Θ and Φ. This yields:

Dijkl(x) = − abc

(2π)2

∫ ∞

0

(∫ π

0

∫ 2π

0

(zz)−1
ij zkzl sinΦ

β3/2
dΘdΦ

)
k2
(
sin(kλ)

kλ
− cos(kλ)

)
e−ik·xdk.

This integral simplifies further when evaluated within the ellipsoid due to its symmetry, leading to:

Dijkl = −abc
4π

∫ π

0

∫ 2π

0

(zz)−1
ij zkzl

β3/2
sinΦ dΘ dΦ

After evaluating the integral, Dijkl inside the ellipsoid becomes a constant tensor, and the final expression is given by:

Dijkl =
1

(2π)3

∫
exp [−ik · x] (zz)−1

ij zkzlQ(k)dk,

Thus, the auxiliary tensor Dijkl for an ellipsoidal inclusion is a constant value inside the inclusion, given by:

Dijkl = −abc
4π

∫ π

0

∫ 2π

0

(zz)−1
ij zkzl

β3/2
sinΦ dΘ dΦ

This derivation shows that the auxiliary tensor becomes a constant within an ellipsoidal inclusion, providing insights into the behavior
of materials with embedded inclusions and forming the basis for understanding internal stress and strain fields within such materials.

13 Derivation of Inclusion Energy in an Infinite Solid

We start by defining the elastic fields inside the inclusion (denoted by superscript I) and outside the inclusion in the matrix (denoted
by superscript M). These fields include stress (σij), strain (eij), and displacement (ui). For a homogeneous infinite solid, these fields
are given by:

For Matrix: eMij = ecij , σM
ij = σc

ij , uMi = uci

For Inclusion: eIij = ecij − e∗ij , σI
ij = σc

ij − σ∗
ij , uIi = uci − e∗ijxj

The total elastic energy E stored in the solid due to the inclusion is given by the sum of the energies inside and outside the inclusion:

E =
1

2

∫
V0

σI
ije

I
ij dV +

1

2

∫
V∞−V0

σM
ij e

M
ij dV

Rewriting E in terms of displacements:

E =
1

4

∫
V0

σI
ij(u

I
i,j + uIj,i) dV +

1

4

∫
V∞−V0

σM
ij (u

M
i,j + uMj,i) dV

Due to the symmetry of the stress tensor:

E =
1

2

∫
V0

σI
iju

I
j,i dV +

1

2

∫
V∞−V0

σM
ij u

M
j,i dV

Using the identity:
σijui,j = (σijuj),i − σij,iuj

And assuming there are no body forces (so σij,i = 0):

E =
1

2

∫
V0

(σI
iju

I
j ),i dV +

1

2

∫
V∞−V0

(σM
ij u

M
j ),i dV

Using Gauss’s theorem, these volume integrals are converted to surface integrals:

E =
1

2

∫
S0

σI
iju

I
jn

out
i dS − 1

2

∫
S0

σM
ij u

M
j n

out
i dS +

1

2

∫
S∞

σM
ij u

M
j n

∞
i dS

As S∞ tends to infinity, the surface integral over S∞ vanishes:

E =
1

2

∫
S0

(
σI
iju

I
j − σM

ij u
M
j

)
nouti dS

Since the traction across the interface S0 must be continuous (σI
ijn

out
i = σM

ij n
out
i ):

E =
1

2

∫
S0

σI
ij(u

I
j − uMj )nouti dS

Given that uIj − uMj = −e∗jkxk:

E = −1

2

∫
S0

σI
ijn

out
i e∗jkxk dS
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Transforming the surface integral back into a volume integral:

E = −1

2

∫
V0

e∗jkσ
I
ij dV = −1

2
e∗ij

∫
V0

σI
ij dV

For an ellipsoidal inclusion, where the stress inside is uniform:

E∞ = −1

2
σI
ije

∗
ijV0

Thus, the total inclusion energy in an infinite solid is:

E∞ = −1

2
σI
ije

∗
ijV0

We know that the stress σI
ij in the inclusion shall be

σI
ij = σC

ij − σT
ij = λ(eC − eT )δij + 2µ(eCij − eTij)

As we derived earlier, the strain eCij in the material is given by

eCij = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ij)− (

eTik
4π
ϕ,kj +

eTjk
4π

ϕ,ki −
eTlk

8π(1− σ)
ψ,ijkl))

As we derived earlier, the trace of the strain tensor eCij shall be

eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− (

eTik
4π
ϕ,ki +

eTik
4π
ϕ,ki −

eTlk
8π(1− σ)

ψ,iikl))

⇒ eCii = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ii)− (

eTik
2π
ϕ,ki −

eTlk
8π(1− σ)

ψ,iikl))

We have earlier derived that ϕ,ii = −4π inside the inclusion. We also derived that ψ,iikl = 2ϕ,kl. Therefore the above boxed equation
can be written as

eCii = (
λ(1− 2σ)eT

2µ(1− σ)
)− (

eTik
2π
ϕ,ki −

eTlk
4π(1− σ)

ϕ,kl))

Repeated indices k, l in the third term of the previous equation can be written as k, i.

eCii = (
λ(1− 2σ)eT

2µ(1− σ)
)− (

eTik
2π
ϕ,ki −

eTik
4π(1− σ)

ϕ,ki))

⇒ eCii = (
λ(1− 2σ)

2µ(1− σ)
)eT − eTikϕ,ki(

1

2π
− 1

4π(1− σ)
)

⇒ eCii = (
λ(1− 2σ)

2µ(1− σ)
)eT − eTikϕ,ki(

(2(1− σ)− 1)

4π(1− σ)
)

⇒ eCii = (
λ(1− 2σ)

2µ(1− σ)
)eT − eTikϕ,ki(

1− 2σ

4π(1− σ)
)

Note that we have
λ(1− 2σ) = 2µσ

⇒ λ(1− 2σ)

2µ(1− σ)
=

σ

(1− σ)

Therefore the trace of the strain tensor eCij shall be

eC = eCii =
σ

(1− σ)
eT − eTlkϕ,kl(

1− 2σ

4π(1− σ)
)

Therefore we have

eC − eT = (
σ

(1− σ)
− 1)eT − eTlkϕ,kl(

1− 2σ

4π(1− σ)
)

⇒ eC − eT =
(2σ − 1)

(1− σ)
eT − eTlkϕ,kl(

1− 2σ

4π(1− σ)
)

⇒ (eC − eT )δij =
(2σ − 1)

(1− σ)
eT δij − eTlkϕ,klδij(

1− 2σ

4π(1− σ)
)

For uniform expansion, we have eTlk = 1
3e

T δlk. Therefore we can write the above boxed equation as

(eC − eT )δij =
(2σ − 1)

(1− σ)
eT δij −

1

3
eT δlkϕ,klδij(

1− 2σ

4π(1− σ)
)

⇒ (eC − eT )δij =
(2σ − 1)

(1− σ)
eT δij −

1

3
eTϕ,kkδij(

1− 2σ

4π(1− σ)
)

Inside the inclusion, we have ϕ,kk = −4π. Therefore we can write the above equation as

⇒ (eC − eT )δij =
(2σ − 1)

(1− σ)
eT δij + eT δij(

1− 2σ

3(1− σ)
)

⇒ (eC − eT )δij = (
(2σ − 1)

(1− σ)
+

(1− 2σ)

3(1− σ)
)eT δij
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⇒ (eC − eT )δij = (
(6σ − 3) + (1− 2σ)

3(1− σ)
)eT δij =

(4σ − 2)

3(1− σ)
eT δij =

2(2σ − 1)

3(1− σ)
eT δij

⇒ (eC − eT )δij =
2(2σ − 1)

3(1− σ)
eT δij

Similarly, we also have

eCij − eTij = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ij)− (

eTik
4π
ϕ,kj +

eTjk
4π

ϕ,ki −
eTlk

8π(1− σ)
ψ,ijkl)− eTij

For uniform expansion, we have eTlk = 1
3e

T δlk. Therefore we can write the above equation as

eCij − eTij = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ij)− (

1

12π
δikϕ,kje

T +
1

12π
δjkϕ,kie

T − 1

24π(1− σ)
ψ,ijklδlke

T )− 1

3
eT δij

eCij − eTij = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ij)− (

1

12π
ϕ,ije

T +
1

12π
ϕ,jie

T − 1

24π(1− σ)
ψ,ijkke

T )− 1

3
eT δij

Now note that we have ϕ,ij = ϕ,ji and ψ,ijkk = 2ϕij , therefore we can write the above equation as

eCij − eTij = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ij)− (

1

6π
ϕ,ije

T − 1

12π(1− σ)
ϕ,ije

T )− 1

3
eT δij

⇒ eCij − eTij = (
λ(2σ − 1)eT

8πµ(1− σ)
ϕ,ij)− (

1

6π
− 1

12π(1− σ)
)ϕ,ije

T − 1

3
eT δij

⇒ eCij − eTij = (
λ(2σ − 1)

8πµ(1− σ)
eTϕ,ij)− (

(2(1− σ)− 1)

12π(1− σ)
)ϕ,ije

T − 1

3
eT δij

⇒ eCij − eTij = (
λ(2σ − 1)

8πµ(1− σ)
eTϕ,ij)− (

1− 2σ

12π(1− σ)
)ϕ,ije

T − 1

3
eT δij

Note that we have
λ(2σ − 1) = −2µσ

⇒ λ(2σ − 1)

8πµ(1− σ)
= − σ

4π(1− σ)

Therefore the above boxed equation can be written as

eCij − eTij = −(
σ

4π(1− σ)
)eTϕ,ij − (

1− 2σ

12π(1− σ)
)eTϕ,ij −

1

3
eT δij

⇒ eCij − eTij = −(
3σ + 1− 2σ

12π(1− σ)
)eTϕ,ij −

1

3
eT δij = −(

1 + σ

12π(1− σ)
)eTϕ,ij −

1

3
eT δij

⇒ eCij − eTij = −(
1 + σ

12π(1− σ)
)eTϕ,ij −

1

3
eT δij

Therefore the stress at the inclusion σI
ij shall be

σI
ij = σC

ij − σT
ij = λ(eC − eT )δij + 2µ(eCij − eTij)

⇒ σI
ij = λ(

2(2σ − 1)

3(1− σ)
eT δij)δij + 2µ(−(

1 + σ

12π(1− σ)
)eTϕ,ij −

1

3
eT δij)

⇒ σI
ij =

2λ(2σ − 1)

3(1− σ)
eT δij −

µ(1 + σ)

6π(1− σ)
eTϕ,ij −

2µ

3
eT δij

Note that we have
λ(2σ − 1) = −2µσ

⇒ 2λ(2σ − 1)

3(1− σ)
= − 4µσ

3(1− σ)

Therefore we can write the stress at the inclusion σI
ij as

σI
ij = − 4µσ

3(1− σ)
eT δij −

µ(1 + σ)

6π(1− σ)
eTϕ,ij −

2µ

3
eT δij

⇒ σI
ij = −(

4σ

3(1− σ)
+

2

3
)µeT δij −

µ(1 + σ)

6π(1− σ)
eTϕ,ij

⇒ σI
ij = −(

4σ + 2(1− σ)

3(1− σ)
)µeT δij −

µ(1 + σ)

6π(1− σ)
eTϕ,ij

⇒ σI
ij = −2(1 + σ)

3(1− σ)
µeT δij −

µ(1 + σ)

6π(1− σ)
eTϕ,ij

We derived earlier that the total inclusion energy in an infinite solid is:

E∞ = −1

2
σI
ije

T
ijV0

For uniform expansion, we have eTij =
1
3e

T δij . Therefore the total inclusion energy in an infinite solid shall be

E∞ = −1

2
σI
ij(

1

3
eT δij)V0 = −1

6
σI
ijδije

TV0 = −1

6
σI
iie

TV0
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Now note that

σI
ii = −2(1 + σ)

3(1− σ)
µeT δii −

µ(1 + σ)

6π(1− σ)
eTϕ,ii

Now we know that δii = 3 and ϕii = −4π. Therefore σI
ii shall be

σI
ii = −2(1 + σ)

(1− σ)
µeT +

2(1 + σ)

3(1− σ)
µeT

⇒ σI
ii = −(

2(1 + σ)

(1− σ)
− 2(1 + σ)

3(1− σ)
)µeT

⇒ σI
ii = −(

6(1 + σ)− 2(1 + σ)

3(1− σ)
)µeT

⇒ σI
ii = −4(1 + σ)

3(1− σ)
µeT

Therefore the total inclusion energy in an infinite solid shall be

E∞ = −1

6
σI
iie

TV0 =
1

6
(
4(1 + σ)

3(1− σ)
µeT )eTV0 =

2(1 + σ)

9(1− σ)
µ(eT )2V0

⇒ E∞ =
2(1 + σ)

9(1− σ)
µ(eT )2V0

14 Derivation of Inclusion Energy in a Finite Solid

We begin by considering an inclusion in a finite solid. The stress-strain fields in this case can be solved by superposition. Suppose the
finite solid assumes the stress-strain fields of an infinite solid containing an inclusion. Then, to maintain equilibrium, a set of traction
forces T̃j must be applied to the outer surface Sext of the solid.

To obtain the solution for a finite solid with zero traction on its outer surface, we need to remove T̃j on Sext. This is equiva-

lent to applying a canceling traction force F̃j = −T̃j on Sext. The resulting elastic fields due to this canceling traction force are called

image fields, denoted by the strain eimij , stress σim
ij , and displacement uimi fields. Thus, the elastic fields inside the matrix and the

inclusion are given by:
eMij = ecij + eimij , eIij = ecij − e∗ij + eimij ,

σM
ij = σc

ij + σim
ij , σI

ij = σc
ij − σ∗

ij + σim
ij ,

uMi = uci + uimi , uIi = uci − e∗ijxj + uimi .

The image fields satisfy the following conditions:

eimij (x) =
1

2

(
uimi,j (x) + uimj,i (x)

)
σim
ij (x) = Cijkle

im
kl (x)

where Cijkl is the stiffness tensor of the material. Similar to the infinite solid case, the total elastic energy E in the solid can be
expressed in terms of surface integrals:

E =
1

2

∫
S0

(
σI
iju

I
j − σM

ij u
M
j

)
nouti dS +

∫
Sext

σM
ij u

M
j n

ext
i dS.

Using the free traction boundary condition on the outer surface Sext, σ
M
ij n

ext
i = 0, the second integral vanishes, leaving:

E =
1

2

∫
S0

σI
ij

(
uIj − uMj

)
nouti dS

Substituting uIj − uMj = −e∗jkxk, we obtain:

E = −1

2

∫
S0

σI
ije

∗
jkxkn

out
i dS.

This is the same as the energy expression for an infinite solid except that the stress field inside the inclusion now contains the image
component. Let σI,∞

ij denote the stress field inside the inclusion in an infinite medium. Then the stress inside the inclusion in the
finite solid is:

σI
ij(x) = σI,∞

ij + σim
ij (x)

The inclusion energy in an infinite solid is given by:

E∞ = −1

2
σI,∞
ij e∗ijV0

where V0 is the volume of the inclusion. In the case of a finite solid, the inclusion energy E becomes:

E = E∞ − 1

2

∫
V0

σim
ij e

∗
ij dV.

Converting the surface integral into a volume integral and averaging the image stress inside the inclusion:

E = E∞ − 1

2
σim
ij e

∗
ijV0 = E∞ + Eim

where Eim is the image contribution to the total inclusion energy, defined as:

Eim = −1

2
σim
ij e

∗
ijV0
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and σim
ij is the averaged image stress inside the inclusion:

σim
ij =

1

V0

∫
V0

σim
ij (x) dV (x).

The total inclusion energy in a finite solid can thus be expressed as:

E = −1

2
σI
ije

∗
ijV0

where σI
ij = σI,∞

ij + σim
ij .

15 Derivation of Inclusion Energy of Finite solid with applied tractions

Before deriving the Inclusion Energy of Finite solid with applied tractions, we first need to prove the Colonetti’s Theorem. Let us
consider a solid with volume V and outer surface S. We define two stress states:

• State 1: Purely internal, generated by an eigenstrain (or some inhomogeneity) inside the solid.

• State 2: Purely applied, generated by external tractions on the surface of the solid without any internal eigenstrain.

The total elastic energy in each of these states can be expressed as:

E(1) =
1

2

∫
V

σ
(1)
ij ϵ

(1)
ij dV

E(2) =
1

2

∫
V

σ
(2)
ij ϵ

(2)
ij dV

where σij and ϵij denote the stress and strain tensors, respectively. When both states are present, the combined stress and strain
fields can be written as:

σ
(1+2)
ij = σ

(1)
ij + σ

(2)
ij

ϵ
(1+2)
ij = ϵ

(1)
ij + ϵ

(2)
ij

Thus, the total elastic energy in the combined state is:

E(1+2) =
1

2

∫
V

(
σ
(1+2)
ij ϵ

(1+2)
ij

)
dV

Expanding the integrand:

E(1+2) =
1

2

∫
V

[
σ
(1)
ij ϵ

(1)
ij + σ

(1)
ij ϵ

(2)
ij + σ

(2)
ij ϵ

(1)
ij + σ

(2)
ij ϵ

(2)
ij

]
dV

This can be separated into the sum of energies for individual states and an interaction term:

E(1+2) = E(1) + E(2) + E(1−2)

where the interaction term is:

E(1−2) =
1

2

∫
V

(
σ
(1)
ij ϵ

(2)
ij + σ

(2)
ij ϵ

(1)
ij

)
dV

Colonetti’s theorem:

Colonetti’s theorem asserts that this interaction energy E(1−2) is zero. To prove this, we proceed as follows. We first express
Stress in Terms of Strain

σij = Cijklϵkl

where Cijkl is the stiffness tensor of the material. This allows us to write:

σ
(2)
ij ϵ

(1)
ij = Cijklϵ

(2)
kl ϵ

(1)
ij

and similarly:

σ
(1)
ij ϵ

(2)
ij = Cijklϵ

(1)
kl ϵ

(2)
ij

Since Cijkl is symmetric in (ij) and (kl), it follows that:

σ
(1)
ij ϵ

(2)
ij = σ

(2)
ij ϵ

(1)
ij

We shall now Simplify Interaction Energy. Using the above equality, the interaction energy becomes:

E(1−2) =

∫
V

σ
(1)
ij ϵ

(2)
ij dV

Given that σ
(1)
ij is purely internal (i.e., it satisfies σ

(1)
ij,i = 0), we can use Gauss’s theorem to convert the volume integral into a surface

integral:

E(1−2) =

∫
V

(σ
(1)
ij u

(2)
j ),i dV =

∫
S

niσ
(1)
ij u

(2)
j dS

Here, ni is the outward normal to the surface S. Since σ
(1)
ij is internal, the traction tj = σ

(1)
ij ni on the external surface is zero:

σ
(1)
ij ni = 0 on S

Thus:

E(1−2) = 0
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This concludes the proof of Colonetti’s theorem, showing that the interaction term between internal and applied stress fields vanishes,
meaning there is no cross-term in the total elastic energy between these fields.

The total elastic energy E in a finite solid due to an inclusion under applied tractions can be expressed as the sum of the elas-
tic energies due to the applied tractions EA and the elastic energy due to the eigenstrain in the finite solid EF :

E = EA + EF

The elastic energy due to the applied tractions is given by:

EA =
1

2

∫
V

σA
ije

A
ij dV

Here:

1. σA
ij is the stress field due to the applied tractions.

2. eAij is the strain field corresponding to σA
ij .

This expression comes from the standard formula for elastic energy density 1
2σijeij , integrated over the volume of the solid. The

elastic energy due to the eigenstrain in the finite solid is given by:

EF = −1

2

(
σI,∞
ij + σim

ij

)
e∗ijV0

Where:

1. σI,∞
ij is the stress field due to the inclusion in an infinite medium.

2. σim
ij is the averaged image stress field due to the boundary effects of the finite solid.

3. e∗ij is the eigenstrain in the inclusion.

4. V0 is the volume of the inclusion.

This expression represents the interaction energy between the eigenstrain and the stress fields in both the infinite medium and the
finite boundary. The enthalpy H is defined as the difference between the total elastic energy E and the work done by the loading
mechanism ∆WLM :

H = E −∆WLM

The work done by the loading mechanism can be split into two parts: the work done due to the applied tractions alone ∆WA
LM and

the interaction term ∆WA−F
LM :

∆WLM = ∆WA
LM +∆WA−F

LM

The work done by the loading mechanism due to the applied tractions is:

∆WA
LM =

∫
Sext

σA
iju

A
j n

ext
i dS

By applying the divergence theorem, this surface integral can be converted into a volume integral:

∆WA
LM =

∫
V

σA
ije

A
ij dV

Recognizing that this is twice the elastic energy EA stored in the system due to the applied tractions, we have:

∆WA
LM = 2EA

The interaction term between the applied tractions and the eigenstrain-induced fields is given by:

∆WA−F
LM =

∫
Sext

σA
iju

F
j n

ext
i dS

This represents the work done by the applied tractions on the displacements generated by the eigenstrain uFj . This interaction term
can also be expressed as an integral over the inclusion volume V0:

∆WA−F
LM =

∫
V0

σA
ije

∗
ij dV

Since the stress field σA
ij is assumed to be uniform over the inclusion, this integral simplifies to:

∆WA−F
LM = σA

ije
∗
ijV0

To further explore the interaction energy, consider the integral over the matrix volume VM = V − V0

∆WA−F
LM =

∫
VM

σA
ije

∗
ij dV

Using Gauss’s theorem, the volume integral over VM can be converted into a surface integral over the inclusion boundary S0:

∆WA−F
LM =

∫
S0

(
σA
iju

F,M
j − σF,M

ij uAj

)
nouti dS

Here, uF,M
j and σF,M

ij are the displacement and stress fields in the matrix due to the inclusion. The integral in the previous equation
can be transformed back into a volume integral over V0:

∆WA−F
LM = −

∫
V0

σA
ije

∗
ij dV

Recognizing that this is negative of Equation 3.64, we conclude:

∆WA−F
LM = −e∗ijσA

ijV0
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16 Ellipsoidal Inhomogenity

16.1 Application of Eshelby’s Inclusion Solution to Inhomogeneities

:
Eshelby’s solution, originally developed for inclusions, is applicable to various problems such as inhomogeneities, cracks, and

dislocations. This is achieved using the Equivalent Inclusion Method, where an eigenstrain is selected to model the specific problem.
This method is particularly effective for ellipsoidal inhomogeneities, where the stress and strain inside these inclusions remain constant.

Example Problem: Liquid-Filled Void in an Infinite Solid

Consider a situation where a volume V0 is excised from an infinite solid and replaced with a liquid under pressure p0. The task
is to determine the stress, strain, and displacement fields within the surrounding matrix.

In principle, the problem could be addressed using Green’s functions, as shown in the equation:

ui(x) =

∫
p0δkjnkG̃ij(x, x

′) dx′

where G̃ij(x, x
′) is the Green’s function for an infinite body with a cavity. However, since the exact expression for G̃ij(x, x

′) is
unknown, this direct method is impractical.

Eshelby’s Equivalent Inclusion Method

A more feasible approach involves replacing the liquid with an inclusion whose eigenstrain e∗ij is chosen so that the internal stress

within the inclusion matches that within the liquid (i.e., σI
ij = −p0δij). Given the constant stress and strain in both the inclusion

and the liquid, the required eigenstrain can be determined using Eshelby’s tensor Sijkl. The stress inside the equivalent inclusion can
be expressed as:

σI
ij = σc

ij − σ∗
ij = Cijkl(e

c
kl − e∗kl) = Cijkl(Sklmne

∗
mn − e∗kl)

This leads to the equation:

Cijkl(Sklmn − δkmδln)e
∗
mn = −p0δij

From this set of six equations, the six unknown components of the equivalent eigenstrain e∗ij can be solved.

Elastic Energy Considerations

Once the eigenstrain is known, the displacement on the void surface S0 can be computed:

ui = uci = Sijkle
∗
klxj

The elastic energy inside the matrix, which must be identical to that in the case where the equivalent inclusion replaces the liquid, is
given by:

E = EI + EM = −1

2
σI
ije

∗
ijV0

where EI is the energy in the inclusion and EM is the energy in the matrix. Specifically:

EI =
1

2
σI
ije

I
ijV0 =

1

2
σI
ij(e

c
ij − e∗ij)V0

And the matrix energy is:

EM = E − EI = −1

2
σI
ije

c
ijV0 =

1

2
p0Sijkle

∗
klV0

This section thus lays the groundwork for extending Eshelby’s methods to more complex scenarios involving inhomogeneities, using
the equivalent inclusion approach to simplify the analysis of elastic fields.

16.2 Transformed Inhomogeneity

We consider an inhomogeneity within an elastic matrix, where the inhomogeneity has different material properties (represented by a
stiffness tensor C ′

ijkl) compared to the matrix (with stiffness tensor Cijkl). The inhomogeneity undergoes a permanent transformation

described by an eigenstrain e
′∗
ij . The goal is to determine the stress, strain distribution, and total elastic energy in the solid. The

stress inside the inhomogeneity is given by:

σ′
ij = σ

′c
ij − σ′∗

ij = C ′
ijkl(e

′c
kl − e

′∗
kl)

where e′ckl is the total strain inside the inhomogeneity, and e′∗kl is the eigenstrain specific to the inhomogeneity. To simplify the problem,
we introduce an equivalent homogeneous inclusion, which is assumed to be ellipsoidal, having the same material properties as the
matrix Cijkl, but subjected to an effective eigenstrain eeffij that ensures the stress and strain inside the equivalent inclusion are
identical to those in the inhomogeneity. The stress inside the equivalent inclusion is given by:

σij = σc
ij − σ∗

ij = Cijkl(e
c
kl − e∗kl)

where e∗kl is the eigenstrain for the equivalent inclusion. For the equivalent inclusion to correctly represent the inhomogeneity, both
the stress and total strain must match between the two systems:

σ′
ij = σij and e′cij = ecij

Thus, substituting the stress and strain equations into these conditions yields:

C ′
ijkl(e

′c
kl − e′∗kl) = Cijkl(e

c
kl − e∗kl)

Since e′cij = ecij , we substitute eckl = Sklmne
∗
mn into the equation to get:

C ′
ijkl(Sklmne

∗
mn − e′∗kl) = Cijkl(Sklmne

∗
mn − e∗kl)
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Rearranging the equation, we obtain the relation between the actual eigenstrain e′∗kl and the effective eigenstrain e∗kl:

(C ′
ijkl − Cijkl)Sklmn + Cijkl)e

∗
mn = C ′

ijkle
′∗
kl

This equation allows us to solve for the equivalent eigenstrain e∗mn in terms of the eigenstrain e′∗kl of the transformed inhomogeneity.
The stress and strain fields in the matrix and inclusion can now be computed once the effective eigenstrain e∗mn is known. The total
strain inside the inhomogeneity and the equivalent inclusion are identical:

e′cij = ecij = Sijkle
∗
kl

The stress inside the inhomogeneity and the equivalent inclusion are also identical:

σ′
ij = σij = Cijkl(Sklmne

∗
mn − e∗kl)

The elastic energy inside the matrix must be identical in both the transformed inhomogeneity problem and the equivalent inclusion
problem:

EM = −1

2
σije

c
ijV0

The elastic energy inside the inhomogeneity E′
I and the equivalent inclusion EI are given by:

E′
I =

1

2
σ′
ije

′I
ijV0 =

1

2
σ′
ij(e

′c
ij − e′∗ij)V0

EI =
1

2
σije

I
ijV0 =

1

2
σij(e

c
ij − e∗ij)V0

Thus, the total energy for the solid with a transformed inhomogeneity is:

E = E′
I + EM = −1

2
σije

′∗
ijV0

This derivation rigorously connects the stress, strain, and energy fields for a transformed inhomogeneity with those of an equivalent
inclusion, providing a comprehensive framework for analyzing such problems in elasticity.

16.3 Inhomogeneity under Uniform Applied Loads

Consider a solid containing an inhomogeneity with no eigenstrain. The solid is subjected to external loads, and if it were homogeneous
(without the inhomogeneity), the stress and strain fields would be uniform throughout the solid. The primary question is how the
presence of the inhomogeneity affects the stress and strain fields. To solve this problem, we construct the stress and strain fields by
superimposing two sets of fields:

1. First Set: Suppose the solid with the inhomogeneity is subjected to a uniform strain eAij . The stress fields inside the matrix
and inhomogeneity are given by:

σA
ij = Cijkle

A
kl and σA′

ij = C ′
ijkle

A
kl

However, this stress field does not satisfy equilibrium conditions unless a body force Tj = (σA′

ij −σA
ij)ni is applied on the surface

S0 of the inhomogeneity.

2. Second Set: To restore equilibrium, apply a body force Fj = −Tj on S0. The corresponding stress and strain fields due to this

body force are σc′

ij and ec
′

ij .

The elastic stress field inside the inhomogeneity, resulting from the superposition of these two sets of fields, is:

σI′

ij = σA′

ij + σc′

ij = C ′
ijkl(e

A
kl + ec

′

kl)

The total strain field inside the inhomogeneity is:

eI
′

ij = eAij + ec
′

ij

At the same time, consider an equivalent inclusion with eigenstrain e∗ij in a solid under the same uniform applied load. The elastic
stress field inside this inclusion is:

σI
ij = σA

ij + σc
ij − σ∗

ij = Cijkl(e
A
kl + eckl − e∗kl)

The total strain field inside the inclusion is:
eIij = eAij + ecij

To ensure that the elastic stress and total strain match between the inhomogeneity and the inclusion problems, the following conditions
must hold:

C ′
ijkl(e

A
kl + ec

′

kl) = Cijkl(e
A
kl + eckl − e∗kl)

eAij + ec
′

ij = eAij + ecij

From the second equation, ec
′

ij = ecij , which when substituted into the first equation gives:

C ′
ijkl(e

A
kl + eckl) = Cijkl(e

A
kl + eckl − e∗kl)

This can be rearranged to solve for the effective eigenstrain e∗kl:

(C ′
ijkl − Cijkl)Sklmn + Cijkl)e

∗
mn = (Cijkl − C ′

ijkl)e
A
kl

This equation expresses the equivalent eigenstrain e∗mn in terms of the applied strain eAkl and the difference in stiffness tensors Cijkl

and C ′
ijkl.

Application of the Feynman-Hellmann Theorem:
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The Feynman-Hellmann theorem is applied in the context of deriving the total elastic energy E and enthalpy H of the inhomo-
geneous solid. This theorem relates the variation in the total energy of the system to the variation in the applied field.

Specifically, the Feynman-Hellmann theorem leads to the following result for the change in enthalpy ∆H due to the presence of
the inhomogeneity:

∆H =
1

2
(C ′

ijkl − Cijkl)e
A
ije

I
klV0

where V0 is the volume of the inhomogeneity, and eIkl is the strain field within the inhomogeneity, which includes contributions from
both the applied strain eAkl and the correction due to the presence of the inhomogeneity itself. The Feynman-Hellmann theorem in
this context is derived by considering the total energy E of the system as a function of the stiffness tensors and the applied strain.
The theorem states:

∂E

∂Cijkl
=

∂E

∂eAkl
=

1

2
σije

A
kl

This expression allows us to compute the change in energy due to a small perturbation in the applied strain or stiffness tensor. In
this case, the enthalpy H is related to the total energy by:

∆H =
∂E

∂Cijkl
∆Cijkl

Substituting the stress-strain relation into this expression gives the final form of the change in enthalpy as:

∆H =
1

2
δCijkle

A
ije

A
klV0

where δCijkl = C ′
ijkl−Cijkl is the difference in the stiffness tensors of the inhomogeneity and the matrix. To compute the total elastic

energy of the system, consider a reversible path where the inhomogeneity is subjected to a uniform strain eAij . The elastic energy for
this state is given by:

E1 =
1

2
σA
ije

A
ijVM +

1

2
σA′

ij e
A
ijV0 =

1

2
σA
ije

A
ijV +

1

2
(σA′

ij − σA
ij)e

A
ijV0

Where VM is the volume of the matrix, V0 is the volume of the inhomogeneity, and V is the total volume of the solid. Gradually
removing the body force results in a final energy E2, which is the desired solution. The total elastic energy E of the inhomogeneous
solid is given by:

E = E2 = E1 +∆W12

where ∆W12 represents the work done during the transformation. This accounts for both internal and external work contributions.

Using the relation between the equivalent eigenstrain and the applied strain, the total elastic energy and enthalpy of the system
can be derived, yielding the following final expressions:

E =
1

2
σA
ije

A
ijV − 1

2
(σA′

ij − σA
ij)e

I′

ijV0

The enthalpy H is obtained by subtracting the work done by the external loading mechanism from the internal energy:

H = E −∆WLM

This rigorous derivation, combined with the application of the Feynman-Hellmann theorem, provides a comprehensive framework for
understanding the stress, strain, and energy fields in an inhomogeneous material subjected to uniform loads.

17 Cracks

17.1 Ellipsoidal Void

17.1.1 Stress and Strain Relations for an Ellipsoidal Void

Given that the stiffness tensor C ′
ijkl of the inhomogeneity approaches zero, the inhomogeneity becomes a void. The stress field inside

the void must be zero, so the stress-strain relation becomes:

0 = C ′
ijkl(e

A
kl + ec

′

kl) = Cijkl(e
A
kl + eckl − e∗kl)

This equation reduces to:

eAkl + eckl = e∗kl

The applied strain eAkl plus the strain inside the void eckl must balance with the eigenstrain e∗kl of the equivalent inclusion.

17.1.2 Eigenstrain in the Void

The equivalent eigenstrain, which generates no stress inside the void, is related to the applied stress:

e∗ij = − 1

Cijkl
σA
kl

The total strain in the void, given by the eigenstrain of the equivalent inclusion, is:

eI
′

ij = eAij + ecij = e∗ij

This ensures zero stress within the void since the total strain equals the eigenstrain.

17.1.3 Enthalpy Calculation

The change in enthalpy ∆H of the system due to the presence of the void is given by:

∆H =
1

2
(C ′

ijkl − Cijkl)e
A
ije

I′

klV0 = −1

2
σA
ije

∗
ijV0

The eigenstrain e∗ij can be explicitly solved using the applied stress σA
ij , reinforcing that the stress inside the void cancels the applied

stress.
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17.2 Penny-Shaped Crack

A penny-shaped crack is modeled as an ellipsoidal void where the axis c approaches zero while the other two axes, a and b, are equal,
i.e., a = b and c→ 0. This configuration leads to a circular disk-like crack in an infinite elastic medium.

17.2.1 Eshelby’s Tensor for Penny-Shaped Crack

Derivation of Eshelby’s Tensor Components:

Eshelby’s tensor Sijkl relates the eigenstrain e∗kl within the inclusion to the resulting strain ecij in the material:

ecij = Sijkle
∗
kl

For an ellipsoidal inclusion, Eshelby’s tensor is generally a function of the aspect ratios of the inclusion. In our case, for a penny-shaped
crack where c→ 0 and a = b, the non-zero components of the Eshelby tensor are determined as follows:

1. Component S1111: Consider the geometry where the crack lies in the x1-x2 plane. The component S1111 is given by:

S1111 =
π(13− 8ν)

32(1− ν)

c

a

This expression is derived by evaluating the Eshelby tensor in the limit as c → 0, which simplifies the general expressions for the
tensor components.

2. Component S1133: Similarly, for the component S1133, which relates the eigenstrain in the x3 direction to the resulting strain
in the x1 direction, we have:

S1133 =
π(7− 8ν)

16(1− ν)

c

a

The derivation follows by considering the effect of the eigenstrain in the x3 direction on the strain in the x1 direction for the
penny-shaped crack.

3. Component S1212: The component S1212, which is related to shear deformation, is given by:

S1212 =
π(3− 4ν)

8(1− ν)

c

a

This component is derived by analyzing the shear response of the material due to the eigenstrain in the x1-x2 plane.

17.2.2 Eigenstrain and Stress in Penny-Shaped Crack

Derivation of Eigenstrain e∗ij:

For a penny-shaped crack under an applied tensile stress σA
33, the eigenstrain components are related to the applied stress and

Eshelby’s tensor:

−σA
11 =

(
− 2µ

1− ν
+

13µπc

16(1− ν)a

)
e∗11 + · · ·

To derive this, we start by considering the stress-strain relationship in the material:

σij = Cijklekl

where Cijkl is the stiffness tensor for the isotropic material. The total strain eij in the material is the sum of the applied strain eAij
and the eigenstrain e∗ij . Therefore, the stress is:

σij = Cijkl(e
A
kl + e∗kl)

Given that the stress inside the crack is zero, the applied stress must be balanced by the eigenstrain-induced stress:

σA
ij = −Cijkle

∗
kl

Now, for the penny-shaped crack, the eigenstrain component e∗11 is derived considering the symmetry and the specific components of
Eshelby’s tensor:

−σA
11 =

(
− 2µ

1− ν
+

13µπc

16(1− ν)a

)
e∗11 + (other terms)

where µ is the shear modulus, and the terms involving Eshelby’s tensor components are included to account for the interaction between
the applied stress and the eigenstrain.

17.2.3 Limiting Behavior of Eigenstrain e∗33

As c→ 0, the eigenstrain e∗33 in the direction normal to the crack tends to infinity, but the product e∗33c remains finite. This leads to:

e∗33 =
2(1− ν)a

µπ
σA
33

This expression is derived by considering the balance of forces and the boundary conditions on the crack surface, ensuring that the
stress inside the crack is zero.

17.3 Energy Considerations and Griffith Criterion

Derivation of Enthalpy Change ∆H:

The change in enthalpy ∆H due to the presence of the crack is calculated using the energy associated with the eigenstrain:

∆H =
1

2

∫
V

σijeij dV

Substituting the expression for σij and integrating over the volume of the crack, we get:

∆H = −4(1− ν)

3µ
(σA

33)
2a3
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This result quantifies the energy difference between the cracked and uncracked states.

Derivation of Griffith Criterion:

The Griffith criterion for crack growth is derived from the Gibbs free energy ∆G, which includes the enthalpy change ∆H and
the surface energy γ associated with the crack surfaces:

∆G = ∆H + 2πγa2

To find the condition for crack growth, we set the derivative of ∆G with respect to a to zero:

d∆G

da
=
d∆H

da
+
d(2πγa2)

da
= 0

d∆H

da
+ 4πγa = 0

Substituting the expression for ∆H, we obtain:

−8(1− ν)

3µ
(σA

33)
2a2 + 4πγa = 0

Simplifying, we get the critical stress σA
33 required for crack propagation:

σA
33 =

√
πµγ

(1− ν)a

This is the Griffith criterion, which determines the stress at which the crack will grow, leading to material failure.

17.4 Slit-like Crack

17.4.1 Derivation of Eshelby’s Tensor in the Slit-like Crack Limit

Given the geometry of the slit-like crack, the limits c → ∞ and b → 0 are applied to Eshelby’s tensor for an ellipsoidal inclusion in
an isotropic medium. The Eshelby tensor components are given as follows:

S1111 =
1

2(1− ν)

[
b2 + 2ab

(a+ b)2
+ (1− 2ν)

b

a+ b

]

S2222 =
1

2(1− ν)

[
a2 + 2ab

(a+ b)2
+ (1− 2ν)

a

a+ b

]
S1122 =

1

2(1− ν)

[
b2

(a+ b)2
− (1− 2ν)

b

a+ b

]
S2211 =

1

2(1− ν)

[
a2

(a+ b)2
− (1− 2ν)

a

a+ b

]
As b→ 0, these simplify to:

S1111 → 1

2(1− ν)

S2222 → a2

2(1− ν)(a+ b)2

S1122 → − 1− 2ν

2(1− ν)

S2211 → − 1− 2ν

2(1− ν)

17.4.2 Equivalent Eigenstrain

For the slit-like crack, we assume that the eigenstrain tensor components are given by e∗11 and e∗22, with all other components being
zero due to the geometry and loading conditions. The equivalent eigenstrain in the limit b→ 0 and c→ ∞ is obtained by solving the
following system of equations:

−σA
11 = − 2a2 + ab

(1− ν)(a+ b)2
µe∗11 −

ab

(1− ν)(a+ b)2
µe∗22

−σA
22 = − ab

(1− ν)(a+ b)2
µe∗11 −

ab+ 2b2

(1− ν)(a+ b)2
µe∗22

Taking the limit b→ 0 and assuming σA
11 = 0, we have:

0 = − 2µ

1− ν
e∗11 −

bµ

(1− ν)a
e∗22

−σA
22 = − bµ

(1− ν)a
e∗11 −

bµ

(1− ν)a
e∗22

Defining e∗ = limb→0 e
∗
22b and allowing e∗11 to remain finite, we solve these equations to obtain:

e∗ =
(1− ν)a

µ
σA
22

e∗11 = − (1− ν)σA
22

2µ
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17.4.3 Griffith Criterion for Slit-like Crack Growth

Using the derived eigenstrain, the total enthalpy per unit length of the crack can be computed as:

∆H/c = − (1− ν)π(σA
22)

2a2

2µ

The driving force per unit length for crack growth is then:

fatot = −∂∆G/c
∂a

=
(1− ν)π(σA

22)
2a

µ
− 4γ

Setting the critical condition fatot = 0 gives the Griffith criterion:

σA
22 =

√
4µγ

(1− ν)πa

17.4.4 Stress Intensity Factors and Crack Tip Fields

To evaluate the stress intensity factors, we consider the stress field near the crack tip, denoted by r (distance from the crack tip) and
θ (polar angle). The stress field is singular as r → 0 and follows:

σrr =
KI√
2πr

(
5

4
cos

θ

2
− 1

4
cos

3θ

2

)
σθθ =

KI√
2πr

(
3

4
cos

θ

2
+

1

4
cos

3θ

2

)
σrθ =

KI√
2πr

(
1

4
sin

θ

2
+

1

4
sin

3θ

2

)
The stress intensity factor KI is then defined as:

KI = σrr
√
2πr as r → 0

For the slit-like crack under uniform tension, the stress intensity factor simplifies to:

KI =
√
πaσA

22

17.5 Flat Ellipsoidal Crack

A flat ellipsoidal crack represents a case between the two extremes of penny-shaped and slit-shaped cracks. This type of crack has an
ellipsoidal shape where a > b and c→ 0. The goal is to understand whether the crack will tend to become more elongated (slit-like)
or less elongated (penny-shaped).

17.5.1 Eigenstrain Calculation

Let us consider a simple tensile stress applied in the σA
33 direction, with all other components of the applied stress being zero. The

key idea is to keep the product e∗33c constant as c→ 0. The solution for the eigenstrain e∗ is given by:

e∗ =
(1− ν)b

µE(k)
σA
33

where E(k) is the elliptic integral of the second kind, defined as:

E(k) =

∫ π/2

0

√
1− k2 sin2 w dw

and k is given by:

k =

√
1− b2

a2

The eigenstrain e∗ is a function of the applied stress σA
33, Poisson’s ratio ν, the semi-minor axis b, and the elliptic integral E(k).

17.5.2 Enthalpy Change Calculation

The extra enthalpy due to the presence of the crack is calculated as:

∆H = −1

2
σA
33e

∗
33 ·

4π

3
abc = −2π

3
σA
33e

∗ab

Substituting the expression for e∗:

∆H = −2π(1− ν)

3µ

ab2

E(k)
(σA

33)
2

This expression captures the change in enthalpy due to the crack and shows its dependence on the crack dimensions a and b, the
applied stress σA

33, and the material properties.
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17.5.3 Gibbs Free Energy and Griffith Criterion

The Gibbs free energy, which includes the surface energy of the crack, is given by:

∆G = −2π(1− ν)

3µ

ab2

E(k)
(σA

33)
2 + 2πγab

To find the conditions for crack growth, we differentiate the Gibbs free energy with respect to a and b:

∂∆G

∂a
= 0

∂∆G

∂b
= 0

These conditions provide the critical stresses required for crack growth in the a and b directions:

σA,a
33 =

√
3µγk2E2(k)

b(1− ν) [(−1 + 2k2)E(k) + (1− k2)F (k)]

σA,b
33 =

√
3µγk2E2(k)

b(1− ν) [(1 + k2)E(k)− (1− k2)F (k)]

Here, F (k) is the elliptic integral of the first kind:

F (k) =

∫ π/2

0

dw√
1− k2 sin2 w

These expressions indicate whether the crack will grow in the a or b direction, depending on which stress component reaches its critical
value first. If σA,b

33 < σA,a
33 , the crack will tend to become more penny-shaped. Otherwise, it will become more slit-like.

17.6 Crack Opening Displacement: Rigorous Derivation

We consider the elastic fields (displacement, strain, and stress) of a slit-like crack under tensile loading stress σA
22. The goal is to

determine the crack opening displacement d(x) as a function of position x.

Let d(x) be the distance between the crack faces as a function of x. In a purely elastic model, d(±a) = 0, i.e., the crack tip
opening displacement is zero. To determine the displacements along the crack face, we consider an equivalent inclusion problem. The
displacement field uj(x) for an inclusion is given by:

uj(x) = e∗ijxj

where e∗ij is the eigenstrain of the inclusion. Since we are dealing with a slit-like crack, the displacement in the x-direction (u1) is
zero, and the displacement in the y-direction (u2) on the crack face is given by:

u2 = e∗22y

Here, e∗22 is the eigenstrain component associated with the opening of the crack. The equivalent inclusion is an ellipse with semi-axes
a and b (with b→ 0 in the slit-like crack case). The relationship between x and y on the crack surface is:

x2

a2
+
y2

b2
= 1

The displacement field on the upper surface of the crack at x ∈ [−a, a] is:

u2(x) = e∗22b ·
y

b
= e∗22

√
1− x2

a2

The eigenstrain e∗22 is related to the applied stress σA
22 by:

e∗22 =
σA
22a(1− ν)

µ

where µ is the shear modulus and ν is Poisson’s ratio. Substituting the eigenstrain into the displacement expression:

u2(x) =
σA
22a(1− ν)

µ

√
1− x2

a2
=
σA
22(1− ν)

µ

√
a2 − x2

⇒ u2(x) =
σA
22(1− ν)

µ

√
a2 − x2

The crack opening displacement d(x) is twice the displacement u2(x):

d(x) = 2
σA
22(1− ν)

µ

√
a2 − x2

This is the crack opening displacement in plane strain. In plane stress conditions, the displacement is modified as:

d(x) = 2
σA
22

µ(1 + ν)

√
a2 − x2

Using the expression for d(x), we calculate the enthalpy of the crack by measuring the work done while opening up the crack. In
plane stress, the enthalpy change is given by:

∆Hc = −1

2

∫ a

−a

d(x)σA
22 dx
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Substituting the expression for d(x) and evaluating the integral:

∆Hc = −1

2
σA
22 · 2

σA
22(1− ν)

µ

∫ a

−a

√
a2 − x2 dx

The integral evaluates to: ∫ a

−a

√
a2 − x2 dx =

πa2

2

Thus, the enthalpy is:

∆Hc =
1− ν

2µ
(σA

22)
2πa2

This matches the previously calculated enthalpy, confirming the correctness of the derived crack opening displacement.

17.7 Stress Intensity Factors

Let r be the distance to the crack tip. The stress field in the vicinity of the crack tip exhibits a singularity of the form:

σ(r) ∝ 1√
r
.

The stress intensity factor KI is defined as:

KI = lim
r→0

σ(r)
√
2πr

The three modes of crack opening are:

• Mode I: Tensile mode, KI ,

• Mode II: In-plane shear mode, KII ,

• Mode III: Out-of-plane shear mode, KIII .

Using Eshelby’s tensor, the stress intensity factors can be related to the eigenstrain inside an inclusion. The auxiliary tensor D∞
ijkl is:

D∞
ijkl = − ab

2π

∫ 2π

0

(zz)−1
ij zkzlκ(γ)

β2
dθ

with κ(γ), β, and γ defined as functions of the geometry. For x > a, the stress field on the crack plane is derived using the Eshelby
tensor and auxiliary tensor components. The stress intensity factor for Mode I is:

KI =
√
πaσA

22,

where σA
22 is the applied stress normal to the crack plane, and a is the half-length of the crack.

17.8 Another Derivation of Crack Extension Force

Let’s Define the Problem and Initial Conditions. Consider a two-dimensional crack under uniform tension σ22 = σA. The crack
half-size is a, and we analyze the situation where the crack extends by a small amount δa, making the new crack half-size a+ δa.

Initially, additional traction forces T±
j are applied on the surfaces of the crack in the region [a, a + δa] and [−a − δa,−a] to keep

the crack shape unchanged. The traction forces are then removed gradually, allowing the crack to extend freely. The work done by
these forces corresponds to the change in system enthalpy δH. Let’s now Compute the Work Done by Traction Forces. The applied
traction forces on the surfaces of the crack are given by:

T+
j (x) = σj2(x), T−

j (x) = −σj2(x)

The crack opening displacement is defined as:
d(x) = u−2 − u+2

The change in enthalpy δH is computed by the work done by the traction forces over the region [a, a+ δa]:

δH =

∫ a+δa

a

(T+
j u

+
j + T−

j u
−
j ) dx

Since T−
j = −T+

j , the equation simplifies to:

δH = 2

∫ a+δa

a

T+
j u

+
j dx

Substituting T+
j = σ22(x) and using the expression for d(x):

δH = 2

∫ a+δa

a

σ22(x)d(x) dx

We shall now Evaluate the Crack Opening Displacement d(x). The crack opening displacement for a two-dimensional crack under
uniform tension is:

d(x) = 2
σA(1− ν)

µ

√
a2 − x2

For small δa, d(x) near x = a can be approximated as:

d(x) ≈ 2
σA(1− ν)

µ

√
2aδa

Using the above approximation in the expression for δH:

δH = 2

∫ a+δa

a

σA
2σA(1− ν)

µ

√
2aδa dx
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Simplifying the integral and keeping only terms linear in δa:

δH =
4σ2

A(1− ν)

µ
δa

∫ a+δa

a

x√
x2 − a2

dx

The integral can be evaluated, and in the limit δa≪ a:

δH =
4σ2

A(1− ν)

µ
· πδa(2a+ δa)

4
=
πσ2

A(1− ν)

µ
δa

Let’s Derive the Crack Extension Force. The crack extension force is defined as:

f = −δH
δa

=
πσ2

A(1− ν)

µ

This result matches the crack extension force obtained by previous methods, confirming the correctness of this alternative derivation.
Thus, the very rigorous derivation leads to the final expression for the crack extension force:

f =
(1− ν)σ2

Aπa

µ

This matches the previously derived expressions, demonstrating consistency across different approaches.

17.9 J-integral as Driving Force

The J-integral, denoted as Ji, in a three-dimensional elastic medium represents the force on an elastic singularity in the i-th direction:

Ji =

∫
S

(wni − Tjuj,i) dS

where w is the strain energy density, ni is the unit normal vector to the surface S, Tj is the traction vector, and uj,i is the displacement
gradient. In two dimensions, for a crack along the x-axis, the J-integral simplifies to:

J =

∫
Γ

(
w dy − T

∂u

∂x

)
ds

where Γ is a contour encircling the crack tip. The strain energy density w is:

w =

∫ eij

0

σijde
′
ij

The total enthalpy H of the system is:

H = E −
∫
ST

T ext
j uj dS

where E is the total strain energy:

E =

∫
V

w dV

The driving force fi on the singularity at ξi is:

fi = −δH
δξi

To compute fi, we determine the variation of total enthalpy δH as the crack tip moves by δξi:

δH =

∫
V

δw dV −
∫
ST

T ext
j δuj dS

Consider a sub-volume V0 with surface S0, and VE = V − V0:∫
VE

δw dV =

∫
VE

σijδeij dV

∫
VE

δw dV =

∫
VE

σijδuj,i dV =

∫
VE

(σijδuj),i dV

Using Gauss’s Theorem: ∫
VE

δw dV =

∫
ST

T ext
j δuj dS −

∫
S0

Tjδuj dS

Substituting into δH:

δH =

∫
V

δw dV −
∫
ST

T ext
j δuj dS = −

∫
V0

∂w

∂ξi
δξi dV +

∫
S0

Tj
∂uj
∂ξi

δξi dS

Therefore, the driving force fi is:

fi = −δH
δξi

=

∫
S0

(wni − Tjuj,i) dS = Ji

17.10 Invariance of J-Integral

The J-integral is a fundamental quantity in fracture mechanics, representing the driving force on a crack. The invariance of the
J-integral with respect to the surface or contour on which it is evaluated is a critical property that makes it a powerful tool in the
analysis of crack problems. The J-integral in its general three-dimensional form is defined as:

Jk =

∫
V0

∂w

∂xk
dV −

∫
S0

Tj
∂uj
∂xk

dS

where:
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• w is the strain energy density,

• Tj is the traction vector,

• uj is the displacement field,

• xk is the spatial coordinate, and

• S0 is a surface surrounding the crack tip.

To prove the invariance of the J-integral, we start by considering the derivative of the strain energy density with respect to the spatial
coordinate xk:

∂w

∂xk
=

∂w

∂eij

∂eij
∂xk

= σij
∂eij
∂xk

Using the relationship between strain and displacement gradients:

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
we can express the derivative of the strain with respect to xk as:

∂eij
∂xk

=
1

2

(
∂2ui
∂xj∂xk

+
∂2uj
∂xi∂xk

)

Substituting this into the expression for ∂w
∂xk

, we obtain:

∂w

∂xk
= σij

∂2uj
∂xk∂xi

=
∂

∂xi

(
σij

∂uj
∂xk

)
The equilibrium condition σij,i = 0 has been used in the last step. We now consider the J-integral over a closed surface S0 containing
no defects. Using the expression for ∂w

∂xk
, the J-integral becomes:

Jk =

∫
V0

∂

∂xi

(
σij

∂uj
∂xk

)
dV −

∫
S0

Tj
∂uj
∂xk

dS

Applying the divergence theorem to the volume integral:

Jk =

∫
S0

(
niσij

∂uj
∂xk

− Tj
∂uj
∂xk

)
dS

where ni is the outward normal to the surface S0. To prove that the J-integral is invariant with respect to the contour or surface
used in its evaluation, consider two contour lines Γ1 and Γ2 around the crack tip in a 2-dimensional problem. If we take a complete
contour Γ = Γ1 +B+ − Γ2 +B− that encloses no singularities, the J-integral over this contour must be zero:

J(Γ) = J(Γ1)− J(Γ2) + J(B+) + J(B−)

Since J(B+) = J(B−) (because dy = 0 and T = 0 on the crack faces), we conclude that:

J(Γ1) = J(Γ2)

This demonstrates the invariance of the J-integral.

17.11 Applications of J-Integral

Consider a very long solid slab with a crack in the middle. The top and bottom surfaces are subjected to constant displacement
boundary conditions, and the left and right ends are subjected to zero surface traction boundary conditions. The J-integral in two
dimensions is expressed as:

J =

∫
Γ

(
w dy − T

∂u

∂x

)
ds

where Γ is the contour surrounding the crack tip, w is the strain energy density, and T is the traction vector.

1. On S2 and S4, dy = 0 and ∂u
∂x = 0, hence the contributions to J are zero.

2. On S1 and S5, w = 0 and ∂u
∂x = 0, leading to zero contributions as well.

3. On S3, w = w∞ and ∂u
∂x = 0.

Therefore, the total J-integral becomes:
J = w∞h

where h is the height of the slab.

Consider a two-dimensional crack with a blunt tip. The J-integral for this configuration simplifies to:

J =

∫
Γ

w dy

This integral represents the average strain energy density around the crack tip.

Consider a mode-I crack with stress intensity factor KI . The J-integral is evaluated over a circular contour Γ with radius r in
the limit r → 0. The stress fields around the crack are given by the leading singular terms in polar coordinates (r, θ):

σrr =
KI√
2πr

(
5

4
cos

θ

2
− 1

4
cos

3θ

2

)
+ . . .
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σθθ =
KI√
2πr

(
3

4
cos

θ

2
+

1

4
cos

3θ

2

)
+ . . .

σrθ =
KI√
2πr

(
1

4
sin

θ

2
+

1

4
sin

3θ

2

)
+ . . .

The strain energy density w is:

w =
1

2
(σθθeθθ + σrrerr + 2σrθerθ)

Substituting the stress fields into the expression for w, the J-integral can be evaluated as:

J = lim
r→0

∫
Γ

w dy

The final result is:

J =
K2

I

E′

where E′ is the effective modulus.

18 Dislocations

18.1 Introduction to Dislocations

The concept of dislocations was introduced by Volterra in 1907 as a mathematical construct to model discontinuities in a solid mate-
rial. Dislocations are line defects within a crystal structure, where atoms are misaligned. These defects are crucial for understanding
the mechanical behavior of materials, particularly their plasticity.

Dislocations remained a purely theoretical construct until the 1930s, when Taylor, Orowan, and Polanyi independently proposed
that dislocations are responsible for crystal plasticity. They suggested that the motion of dislocations under stress could explain the
actual yield stress observed in metals, which was much lower than previous theoretical predictions.

The theoretical strength of a perfect crystal, τth, is the stress required to cause plastic shear deformation across an entire slip
plane. This theoretical stress is much higher than the experimentally observed yield stress, which is due to the presence of dislocations.

Let’s explore a Mathematical Representation of Dislocations. Consider a perfect crystal subject to shear stress τ along a plane
A, as illustrated in Figure 7.1. The shear stress τ(x) required to displace the upper half of the crystal by a distance x relative to the
lower half is a periodic function due to the crystal’s atomic structure:

τ(x) =
µb

2πa
sin

(
2πx

b

)
where:

• µ is the shear modulus,

• b is the magnitude of the Burgers vector (which represents the magnitude of lattice distortion),

• a is a constant related to the atomic spacing.

The maximum shear stress, known as the theoretical critical shear stress τth, occurs when x = b/2:

τth =
µb

2πa

This theoretical critical shear stress τth is significantly higher than the experimentally observed yield stress in metals. The discrepancy
arises because real crystals contain dislocations, which lower the stress required to move atomic planes relative to each other. The
experimentally measured yield stress is much lower than the theoretical prediction because dislocations provide a mechanism for
plastic deformation at much lower stress levels. The movement of dislocations through the crystal lattice under applied stress enables
plastic deformation to occur more easily, thus reducing the yield stress.

This understanding revolutionized the field of materials science, providing insights into why materials deform plastically under much
lower stresses than would be expected from a perfect crystal model.

18.2 Dislocation’s Effects on Mechanical Properties

Dislocations play a critical role in the mechanical behavior of materials, especially in plastic deformation. When a material is subjected
to stress, dislocations move, enabling the material to deform plastically. This section rigorously examines how dislocations affect the
mechanical properties of crystals, particularly metals and semiconductors.

The stress-strain curve of a crystal is linear up to the yield stress, beyond which dislocations begin to move, and plastic defor-
mation occurs. As plastic deformation progresses, the length of dislocations within the crystal increases, necessitating higher stresses
for continued deformation. This phenomenon is known as work hardening.

18.2.1 Orowan’s Law

One of the key relationships describing the plastic deformation due to dislocations is Orowan’s law, which relates the plastic strain
rate ϵ̇pl to the dislocation density ρ, the Burgers vector b, and the average dislocation velocity v:

ϵ̇pl = ρbv

where:

• ρ is the mobile dislocation density (in units of m−2),

• b is the Burgers vector,

59



• v is the average dislocation velocity.

Derivation of Orowan’s Law:

Orowan’s law can be derived using Betti’s theorem. The plastic strain rate ϵ̇pl is proportional to the rate at which dislocations
traverse a given area. Consider a volume element of area A through which dislocations move. If n dislocations pass through A per
unit time, the plastic strain rate is given by:

ϵ̇pl =
b× n

A

Since n = ρvA, where ρ is the dislocation density and v is the velocity, we have:

ϵ̇pl = ρbv

This is Orowan’s law. Let’s analyze the Stress-Strain Curve Behavior in BCC Metals. For body-centered cubic (BCC) metals such
as molybdenum, the stress-strain curve under uniaxial tension at a constant strain rate typically shows three stages of deformation:

1. Stage I: Immediately after yielding, plastic deformation occurs with little increase in applied stress. Dislocations primarily
glide on parallel planes with minimal interaction.

2. Stage II: At higher deformation, the slope of the stress-strain curve increases, indicating work hardening. Dislocations on
several non-parallel slip planes interact, blocking each other’s motion and forming dense, entangled structures. The dislocation
density increases significantly.

3. Stage III: The hardening rate decreases as recovery mechanisms begin to annihilate dislocations, leading to a saturation in
dislocation density.

Dislocations also influence fracture behavior. In ductile materials, a crack tip can nucleate many dislocations, which shield and
blunt the crack tip, leading to a higher critical strain energy release rate Jc for crack propagation and higher fracture toughness.
Additionally, dislocations can initiate fracture, particularly during fatigue processes. Under cyclic loading, dislocations multiply and
can form pile-ups with high local stresses, leading to crack nucleation even in ductile materials.

18.3 Elastic Fields of a Dislocation Loop

A dislocation loop is a closed dislocation line in a crystal lattice that generates elastic fields within the material. The elastic fields
associated with the dislocation loop include stress, strain, and displacement fields. These fields can be derived using continuum
mechanics and elasticity theory.

Consider a dislocation loop L in an elastic medium, characterized by a Burgers vector b. The displacement field u(x) at a point x
due to the dislocation loop can be derived using the Green’s function approach:

ui(x) =

∮
L

bjGij(x− x′) dL(x′)

where Gij(x − x′) is the Green’s function, representing the displacement at point x due to a unit force applied at point x′. The
Green’s function for an infinite isotropic medium is expressed as:

Gij(x− x′) =
1

8π(1− ν)µ

[
δij

1

r
+

(xi − x′i)(xj − x′j)

r3

]
where r = |x−x′| is the distance between the points x and x′. The strain field eij(x) associated with the dislocation loop is obtained
by differentiating the displacement field:

eij(x) =
1

2

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)
Substituting the displacement field expression, the strain field becomes:

eij(x) =
1

2

∮
L

bk

(
∂Gik(x− x′)

∂xj
+
∂Gjk(x− x′)

∂xi

)
dL(x′)

Let’s analyze the Stress Field Due to a Dislocation Loop. The stress field σij(x) is related to the strain field through Hooke’s law:

σij(x) = Cijklekl(x)

where Cijkl is the fourth-order elasticity tensor for an isotropic material:

Cijkl = λδijδkl + µ(δikδjl + δilδjk)

Substituting the expression for the strain field into Hooke’s law, we get:

σij(x) =
1

2

∮
L

Cijklbk

(
∂Gkl(x− x′)

∂xl
+
∂Gjl(x− x′)

∂xk

)
dL(x′)

Due to the symmetry of the problem and the properties of the Green’s function, the expressions for the strain and stress fields can
be further simplified.

For complex dislocation loop geometries, the integrals in the expressions for the displacement, strain, and stress fields are often
evaluated numerically. The loop is discretized into segments, and the fields are computed as the sum of contributions from each
segment:

σij(x) ≈
N∑

n=1

σseg
ij (x,x′

n)
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18.4 Self Energy of a Dislocation Loop

The self-energy of a dislocation loop refers to the energy stored in the elastic fields due to the dislocation itself. It is an important
quantity as it influences the mechanical behavior and stability of dislocations within the material. This derivation rigorously follows
the principles of elasticity theory to compute the self-energy of a dislocation loop.

The self-energy of a dislocation loop E can be evaluated by integrating the strain energy density w over the volume V of the
material:

E =

∫
V

w dV

For a linear elastic material, the strain energy density is given by:

w =
1

2
σijeij

where σij and eij are the stress and strain tensors, respectively.

An alternative and more elegant method to calculate the self-energy is by considering the reversible work done to create the dis-
location loop. Imagine creating the dislocation loop by applying traction forces F+

j and F−
j on the surfaces S+ and S− of the loop,

respectively. These surfaces are displaced by b, the Burgers vector, relative to each other. The work done W to create the dislocation
loop is given by:

W =
1

2

∫
S+

F+
j u

+
j dS +

1

2

∫
S−

F−
j u

−
j dS

Using the relation u+j − u−j = bj , the above expression simplifies to:

W =
1

2

∫
S

σkjn
+
k bj dS

The energy of a dislocation loop obtained from linear elasticity theory is actually singular (infinite) without a proper truncation scheme.
This is because, at the core of the dislocation, the strain fields become very large, leading to a divergent integral for the self-energy. To
address this, a core cutoff radius is introduced, truncating the fields at a small distance from the dislocation line to avoid the singularity.

For practical computations, especially in numerical simulations, dislocation loops are often represented by a set of connected straight
dislocation segments. The stress field from each segment only has physical meaning when summed over the entire loop. The total
stress field of the dislocation loop is obtained by summing over the stress fields of individual segments:

σLoop
ij =

N∑
n=1

σseg
ij (x(n), x(n+1),b)

The stress and displacement fields of a dislocation loop in isotropic elasticity can be reduced to line integrals over the dislocation line.
For example, the displacement gradients can be expressed as:

uelastici,j (x) =

∮
L

ϵjnhCklmnbmvhGik,l(x− x′) dS(x′)

This approach, known as Mura’s formula, is valid for evaluating fields around a complete loop and represents the continuous distribution
of the dislocation’s influence.

18.5 Force on a Dislocation

The force acting on a dislocation line is a fundamental concept in dislocation theory, as it determines how dislocations move within a
crystal lattice under applied stresses. This section rigorously derives the force on a dislocation using the principles of energy variation
and the Peach-Koehler force formulation.

Let’s now analyze the Energy Variation and Virtual Displacement. Consider a dislocation loop L with line direction ξ. Let the
loop undergo a small virtual displacement δr(x), where δr(x) ·ξ(x) = 0 because a line moving along itself has no physical consequence.
The energy change δE due to this displacement can be expressed as:

δE = −
∮
L

f(x) · δr(x) dL(x)

where f(x) is the line force (per unit length) on the dislocation loop L. The force f(x) can be found by differentiating the total energy
E of the system with respect to the virtual displacement δr(x).

The total energy E of a system of N dislocation loops can be written as the sum of the loop self-energies Ei and the interaction
energies Wij between the loops:

E =

N∑
i=1

Ei +

N∑
i=1

N∑
j=i+1

Wij

To calculate the force on a particular loop L1, we need to compute the variation of the total energy with respect to the virtual
displacement δr1(x) of loop L1:

f1 = − δE

δr1(x)
= − δE1

δr1(x)
−

N∑
j=2

δW1j

δr1(x)

The first term δE1

δr1(x)
corresponds to the self-force, while the second term

∑N
j=2

δW1j

δr1(x)
corresponds to the interaction force.

Let’s analyze the Interaction Energy and Peach-Koehler Force. For simplicity, consider a system with only two dislocations, so
that we only have one interaction term W12:

W12 =

∫
S1

σ
(2)
ij (x)n

(1)
i b

(1)
j dS(x)
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where σ
(2)
ij (x) is the stress field due to the second dislocation loop, n

(1)
i is the normal to the surface of the first loop, and b

(1)
j is the

Burgers vector of the first loop.

The variation of W12 due to the virtual displacement δr(x) of the first loop is given by:

δW12 =

∫
δS1

σ
(2)
ij (x)n

(1)
i b

(1)
j dS(x)

Using the relation nδS = δr× v dL, we can express the variation as:

δW12 =

∮
L

σ
(2)
ij (x)b

(1)
j ϵimnδrm(x)v(1)n (x) dL(x)

This leads to the expression for the force per unit length on the dislocation loop:

fm(x) = ϵinmσ
(2)
ij (x)b

(1)
j v(1)n (x)

In vector notation, this is written as:

f = (σ · b)× ξ

This expression is known as the Peach-Koehler force. It describes the force on a dislocation due to an applied stress field, which
can originate from other dislocations, external stresses, or any other source. The self-force contribution δE1

δr1(x)
is generally divergent

because the self-energy E1 of the dislocation loop is singular. This divergence is typically handled by introducing a truncation scheme
or a non-singular dislocation model, which is discussed in the subsequent sections of the document.

18.6 Non-Singular Dislocation Model

In classical dislocation theory, the stress field and self-energy associated with a dislocation are singular at the dislocation core. This
presents difficulties in calculating the self-force on a dislocation. The non-singular dislocation model aims to remove these singularities
while maintaining the analytical structure of the original theory. This derivation will rigorously follow the non-singular dislocation
model’s development, which involves distributing the dislocation core over a finite region.

The stress field for a dislocation loop in the non-singular model is obtained by convolving the classical (singular) stress field with a
spreading function w(x). Consider the classical stress field given by Mura’s formula:

σαβ(x) =

∮
L

CαβklϵlnhCpqmnbmvn(x
′)Gkp,q(x− x′)dL(x′)

In the non-singular theory, the stress field is obtained by convolving this expression with a spreading function w(x), which spreads
the dislocation core over a finite region:

σns
αβ(x) = σαβ(x) ∗ w(x)

A commonly used spreading function is:

w(x) =
15a4

8π(|x|2 + a2)7/2

where a is a small parameter characterizing the spread of the dislocation core. The convolution of Gkp,q(x− x′) with w(x) modifies
the singularity at the core:

Gns
kp,q(x− x′) =

∫
Gkp,q(x− x′)w(x′′ − x′)dx′′

This convolution results in a non-singular Green’s function:

R ∗ w(x) = Ra ≡
√
R2 + a2

Thus, the non-singular stress field becomes:

σns
αβ(x) =

µ

8π

∮
L

∂i∂p∂pRa

[
bmϵimαdx

′
β + bmϵimβdx

′
α

]
+

µ

4(1− ν)

∮
L

bmϵimk (∂i∂α∂βRa − δαβ∂i∂p∂pRa) dx
′
k

The self-energy of the dislocation loop in the non-singular model is derived similarly to the classical model but using the non-singular
Green’s function Ra:

E =

∮
L

∮
L

µ

16π
bibjRa,ppdxidx

′
j +

µ

8π(1− ν)
ϵiklϵjmnbkbmRa,ijdxldx

′
n

The interaction energy between two dislocations in the non-singular model is given by:

W12 = − µ

4π

∮
L1

∮
L2

(b1 × b2) · (dL1 × dL2)∇2Ra +
µ

8π

∮
L1

∮
L2

(b1 · dL1)(b2 · dL2)∇2Ra +
µ

4π

∮
L1

∮
L2

(b1 × dL1) · ∇∇Ra · (b2 × dL2)

With the non-singular stress field, the Peach-Koehler force can now be safely applied without ambiguity:

f = (σns · b)× ξ
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