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Abstract

Presents multilinear Lie bracket optimized by Lie bracket recursion formula.

Let σ ∈ Sn such that ε(σ) = ε(τ1 · · · τi · · · τk) = (−1)k, where τi ∈ Sn

are transpositions with ε : Sn → {−1, 1} being the sign of a permutation.

Definition 0.1. Let [·, . . . , ·] : gn → g define the n-linear Lie bracket with

[X1, . . . , Xi, . . . , Xn] =
∑
σ∈Sn

ε(σ)Xσ(1)(. . . (Xσ(i)(. . . (Xσ(n)) . . . )) . . . ).

Theorem 0.2 (Anti-symmetric). Multilinear Lie bracket is anti-symmetric,

[Xρ(1), . . . , Xρ(i), . . . , Xρ(n)] = ε(ρ)[X1, . . . , Xi, . . . , Xn].

Proof. [Xρ(1), . . . , Xρ(i), . . . , Xρ(n)] =

=
∑
σ∈Sn

ε(σ)Xσρ(1)(. . . (Xσρ(i)(. . . (Xσρ(n)) . . . )) . . . )

= ε(ρ)
∑
σ∈Sn

ε(σρ)Xσρ(1)(. . . (Xσρ(i)(. . . (Xσρ(n)) . . . )) . . . ),

since for σ ∈ Sn or σρ ∈ Sn the sum is equivalent, the theorem is implied. □

Theorem 0.3 (Lie bracket recursion). n-bracket is sum of (n−1)-brackets:

[X1, . . . , Xn] =
n∑

i=1

(−1)i−1Xi([X1, . . . , Xi−1, Xi+1, . . . , Xn])

Proof. Define ρi(σ) ∈ Sn for i ∈ {1, . . . , n} and permuation σ ∈ Sn−1 with

ρi(σ) =
(

i 1 ··· i−1 i+1 ··· n
σ(1) ··· σ(i−1) i σ(i+1) ··· σ(n)

)
,

n∑
i=1

(−1)i−1Xi

 ∑
σ∈Sn−1

ε(σ)Xσ(1)(...(Xσ(i−1)(Xσ(i+1)(...(Xσ(n))... )))... )

 =

n∑
i=1

∑
σ∈Sn−1

(−1)i−1ε(σ)Xi(Xσ(1)(. . . (Xσ(i−1)(Xσ(i+1)(. . . (Xσ(n)) . . . ))) . . . ))

=

n∑
i=1

∑
σ∈Sn−1

ε(ρi(σ))Xρi(σ)(1)(...(Xρi(σ)(i−1)(Xρi(σ)(i)(Xρi(σ)(i+1)(...(Xρi(σ)(n))... ))))... )

=
∑

ρi(σ)∈Sn

ε(ρi(σ))Xρi(σ)(1)(...(Xρi(σ)(i−1)(Xρi(σ)(i)(Xρi(σ)(i+1)(...(Xρi(σ)(n))... ))))... ),

substitute RHS to apply anti-symmetry permutation, implying theorem. □
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Example 0.4 (1-linear). [X] = X is trivial, computed with 0 evaluations.

Proof. Let λ, µ ∈ C and X1, X2 ∈ g, then [λX1+µX2] = λ[X1]+µ[X2]. □

Example 0.5 (2-linear). [X,Y ] = X([Y ])− Y ([X]) = X(Y )− Y (X).

Proof. Let λ, µ ∈ C and X1, X2, Y ∈ g or X,Y1, Y2 ∈ g, then

[λX1 + µX2, Y ] = (λX1 + µX2)(Y )− Y (λX1 + λX2)

= λ(X1(Y )− Y (X1)) + µ(X2(Y )− Y (X2))

= λ[X1, Y ] + µ[X2, Y ],

[X,λY1 + µY2] = X(λY1 + λY2)− (λY1 + µY2)(X)

= λ(X(Y1)− Y1(X)) + µ(X(Y2)− Y2(X))

= λ[X,Y1] + µ[X,Y2].

Hence [·, ·] : g×g → g is a bilinear Lie bracket with 2! = 2 ·1 evaluations. □

Example 0.6 (3-linear). Ternary Lie 3-bracket is defined by 12 evaluations:

[X,Y, Z]= X(Y (Z))−X(Z(Y ))+Y (Z(X))−Y (X(Z))+Z(X(Y ))−Z(Y (X))

Application of Lie bracket recursion results in 6 = 3! = 3 · 2 · 1 evaluations:

[X,Y, Z] = X([Y,Z])− Y ([X,Z]) + Z([X,Y ]).

Proof. λ, µ ∈ C and X1, X2, Y, Z ∈ g or X,Y1, Y2, Z ∈ g or X,Y, Z1, Z2 ∈ g,

[λX1 + µX2, Y, Z] = λ[X1, Y, Z] + µ[X2, Y, Z]

= (λX1 + µX2)([Y, Z]))− Y ([λX1 + µX2, Z]) + Z([λX1 + µX2, Y ])

= λX1([Y,Z])+µX2([Y,Z]))−Y (λ[X1,Z]+µ[X2,Z])+Z(λ[X1,Y ]+µ[X2,Y ])

= λ(X1([Y,Z])−Y ([X1,Z])+Z([X1,Y ]))+µ(X2([Y,Z])−Y ([X2,Z])+Z([X2,Y ])),

[X,λY1 + µY2, Z] = λ[X,Y1, Z] + µ[X,Y2, Z]

= X([λY1 + µY2, Z])− (λY1 + µY2)([X,Z]) + Z([X,λY1 + µY2])

= X(λ[Y1,Z]+µ[Y2,Z])−λY1([X,Z])−µY2([X,Z])+Z(λ[X,Y1]+µ[X,Y2])

= λ(X([Y1,Z])−Y1([X,Z])+Z([X,Y1]))+µ(X([Y2,Z])−Y2([X,Z])+Z([X,Y2])),

[X,Y, λZ1 + µZ2] = λ[X,Y, Z1] + µ[X,Y, Z2]

= X([Y, λZ1 + µZ2])− Y ([X,λZ1 + µZ2]) + (λZ1 + µZ2)([X,Y ])

= X(λ[Y,Z1]+µ[Y,Z2])−Y (λ[X,Z1]+µ[X,Z2])+λZ1([X,Y ])+µZ2([X,Y ])

= λ(X([Y,Z1])−Y ([X,Z1])+Z1([X,Y ]))+µ(X([Y,Z2])−Y ([X,Z2])+Z2([X,Y ])).

Hence [·, ·, ·] : g× g× g → g is a trilinear Lie 3-bracket. □
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Example 0.7 (4-linear). Lie 4-bracket is defined by 72 evaluations, while
application of Lie bracket recursion results in 24 = 4! = 4 ·3 ·2 ·1 evaluations:

[W,X, Y, Z] = W ([X,Y, Z])−X([W,Y,Z]) + Y ([W,X,Z])− Z([W,X, Y ]).

Proof of the 4-linearity follows similar principles as previous examples and
is left as an exercise for the reader.

Proof. Let W,X, Y, Z ∈ g, then apply the multilinear Lie bracket recursion,

[W,X, Y, Z] = W (X(Y (Z))) +W (Y (Z(X))) +W (Z(X(Y )))

+X(W (Z(Y ))) +X(Y (W (Z))) +X(Z(Y (W )))

+ Y (W (X(Z))) + Y (X(Z(W ))) + Y (Z(W (X)))

+ Z(W (Y (X))) + Z(X(W (Y ))) + Z(Y (X(W )))

−W (X(Z(Y )))−W (Y (X(Z)))−W (Z(Y (X)))

−X(W (Y (Z)))−X(Y (Z(W )))−X(Z(W (Y )))

− Y (W (Z(X)))− Y (X(W (Z)))− Y (Z(X(W )))

− Z(W (X(Y )))− Z(X(Y (W )))− Z(Y (W (X))),

[W,X, Y, Z] = W (X([Y,Z]))−W (Y ([X,Z])) +W (Z([X,Y ]))

−X(W ([Y,Z])) +X(Y ([W,Z]))−X(Z([W,Y ]))

+ Y (W ([X,Z]))− Y (X([W,Z])) + Y (Z([W,X]))

− Z(W ([X,Y ])) + Z(X([W,Y ]))− Z(Y ([W,X])),

[W,X, Y, Z] = W ([X,Y, Z])−X([W,Y,Z]) + Y ([W,X,Z])− Z([W,X, Y ]).

Hence the recursion formula reduces the evaluation count by 1
3 . □

Example 0.8 (5-linear). Lie 5-bracket is defined by 480 evaluations, while
application of Lie bracket recursion has 120 = 5! = 5 · 4 · 3 · 2 · 1 evaluations:

[V,W,X,Y,Z] =V ([W,X,Y,Z])−W ([V,X,Y,Z])+X([V,W,Y,Z])−Y ([V,W,X,Z])+Z([V,W,X,Y ]).

Proof of the 5-linearity follows similar principles as previous examples and
is left as an exercise for the reader.

Proof. Let V,W,X, Y, Z ∈ g, then apply multilinear Lie bracket recursion,

[V,W,X, Y, Z] = V (W ([X,Y,Z]))−V (X([W,Y,Z]))+V (Y ([W,X,Z]))−V (Z([W,X,Y ]))

−W (V ([X,Y,Z]))+W (X([V,Y,Z]))−W (Y ([V,X,Z]))+W (Z([V,X,Y ]))

+X(V ([W,Y,Z]))−X(W ([V,Y,Z]))+X(Y ([V,W,Z]))−X(Z([V,W,Y ]))

− Y (V ([W,X,Z]))+Y (W ([V,X,Z]))−Y (X([V,W,Z]))+Y (Z([V,W,X]))

+ Z(V ([W,X,Y ]))−Z(W ([V,X,Y ]))+Z(X([V,W,Y ]))−Z(Y ([V,W,X])),
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[V,W,X, Y, Z] = V (W (X([Y, Z])))− V (W (Y ([X,Z]))) + V (W (Z([X,Y ])))

− V (X(W ([Y, Z]))) + V (X(Y ([W,Z])))− V (X(Z([W,Y ])))

+ V (Y (W ([X,Z])))− V (Y (X([W,Z]))) + V (Y (Z([W,X])))

− V (Z(W ([X,Y ]))) + V (Z(X([W,Y ])))− V (Z(Y ([W,X])))

−W (V (X([Y, Z]))) +W (V (Y ([X,Z])))−W (V (Z([X,Y ])))

+W (X(V ([Y, Z])))−W (X(Y ([V,Z]))) +W (X(Z([V, Y ])))

−W (Y (V ([X,Z]))) +W (Y (X([V,Z])))−W (Y (Z([V,X])))

+W (Z(V ([X,Y ])))−W (Z(X([V, Y ]))) +W (Z(Y ([V,X])))

+X(V (W ([Y, Z])))−X(V (Y ([W,Z]))) +X(V (Z([W,Y ])))

−X(W (V ([Y, Z]))) +X(W (Y ([V,Z])))−X(W (Z([V, Y ])))

+X(Y (V ([W,Z])))−X(Y (W ([V,Z]))) +X(Y (Z([V,W ])))

−X(Z(V ([W,Y ]))) +X(Z(W ([V, Y ])))−X(Z(Y ([V,W ])))

− Y (V (W ([X,Z]))) + Y (V (X([W,Z])))− Y (V (Z([W,X])))

+ Y (W (V ([X,Z])))− Y (W (X([V,Z]))) + Y (W (Z([V,X])))

− Y (X(V ([W,Z]))) + Y (X(W ([V,Z])))− Y (X(Z([V,W ])))

+ Y (Z(V ([W,X])))− Y (Z(W ([V,X]))) + Y (Z(X([V,W ])))

+ Z(V (W ([X,Y ])))− Z(V (X([W,Y ]))) + Z(V (Y ([W,X])))

− Z(W (V ([X,Y ]))) + Z(W (X([V, Y ])))− Z(W (Y ([V,X])))

+ Z(X(V ([W,Y ])))− Z(X(W ([V, Y ]))) + Z(X(Y ([V,W ])))

− Z(Y (V ([W,X]))) + Z(Y (W ([V,X])))− Z(Y (X([V,W ]))),

final step of the multilinear Lie bracket recursion is left as an exercise for the
reader. Hence the recursion formula reduces the evaluation count by 1

4 . □

Corollary 0.9. Multilinear Lie bracket definition has n!(n−1) evaluations.

Corollary 0.10. Multilinear Lie bracket recursion has n! evaluations.

Corollary 0.11. Multilinear Lie bracket recursion is more efficient by 1
n−1 .

In conclusion, the presented multilinear Lie bracket definition properly
generalizes the bilinear Lie bracket to the n-linear case, while the proof of
the multilinear Lie bracket recursion enables optimizing evaluations by 1

n−1 .
The multilinear Lie bracket recursion is analogous to the Koszul complex
of the Grassmann algebra; although it is fundamentally different due to the
multilinear Lie bracket being non-associative, unlike the analogous exterior
product. The order of n-linearity is not restricted by the dimension of the
underlying vector space. Instead, the multilinear Lie bracket is limited by
the order of differentiation or unlimited by smoothness of the coefficients.
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