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Abstract  
 

The geodesic principle represents an essential aspect of general relativity and is the physical manifesta-

tion of the space-time manifold but can also be considered as the metric field effect on the passive mass 

of a freely falling test particle. -  The equation of motion is derived from the given stress-energy tensor 

field of an isolated body with the help of its moments in the near limit case, on the basis of the universal 

conservation condition. Then the reduced stress-energy tensor that is based on the energy density of the 

body matter is being used in the context of its local energy balance to get the global solution in the form 

of the geodesic equation. Finally, the influence of an external force field on such a solution is presented. 

 

I. Introduction  
 

In A. Einstein and N. Rosen “The Particle Problem in the General Theory of Relativity” one can read: 

“One of the imperfections of the original relativistic theory of gravitation was that as a field theory it 

was not complete; it introduced the independent postulate that the law of motion of a particle is given 

by the equation of the geodesic.”[1] . This postulate says: Free massive point particles traverse timelike 

geodesics. Einstein tried to remedy that shortcoming without success. “Over the last century numerous 

ostensible proofs claiming to have derived the geodesic principle from Einstein's field equations have 

been developed. (…) Grouping these results into three major families, which I refer to as (1) limit oper-

ation proofs, (2) 0th-order proofs, and (3) singularity proofs, (…) none of these strategies successfully 

demonstrates the geodesic principle, canonically interpreted as a dynamical law that massive bodies 

must actually follow geodesic paths in Einstein's theory.” [2] “By reviewing the three major classes of 

proof, we have seen that would-be geodesic following bodies are forced either (i) to meet unrealistically 

restrictive special-case conditions, (ii) to have no matter-energy at all (i.e. vanish), (iii) to violate Ein-

stein's field equations, or (iv) to be located on paths that don't just fail to be geodesic but fail to exist in 

the space-time manifold at all.” [2] “Though the geodesic principle can be recovered as theorem in gen-

eral relativity, it is not a consequence of Einstein’s equation (or the conservation principle) alone. Other 

assumptions are needed to drive the theorems in question.” [3]. The following is a proof of the geodesic 

principle and its consequences for the understanding of passive mass. The proof is not canonical in the 

sense that it does not directly confirm the solution but only its sufficient convergence, which is linked 

to the diameter: Ø of a spatial domain that encompasses the body and the current point on the geodesic.   

The prerequisite here is that the solution at least converges with O(Ø). The proof can be assigned to the 

family of limit operation proofs. It is not based on the distributions but on density moments. Compared 

to the Geroch-Jang theorem, it has the advantage of not requiring the “strengthened dominant energy 

condition” [3]  but only the natural condition of the positive minimal body energy: E0  = mc2 > 0  in the 

locally inertial (LI) proper frame of reference is applied. It is presumed as well that in the vicinity of the 
geodesic without the gravitational influence of the body, the given function of metric field is sufficiently 

smooth. Furthermore, the compatibility with the weak equivalence principle is required. The physically 

relevant case in which the body density is constrained: m = O(Ø³)  is analyzed here. It is demonstrated 

that even for m = O(Ø) the gravity field originating from the body can be sufficiently separated from the 

foreign gravitational field so that the test body problem can be limited to such an extent that because of 

the sufficient grade of convergence it has an insignificant share in the overall solution. The question of 

whether the solution converges to a geodesic at all when the mass is constrained to O(Ø0), which would 

correspond to the canonical account [2],  is left open here. - In the first part: (1,2) a suitable stationary LI 

coordinate system is constructed, in the second part: (3,4) the approximation uncertainties and errors as 
well as deviations of temporal SE-tensor derivative are estimated, and in the third part: (5) the geodesic 

principle is confirmed for the SE-tensor and the geodesic equation derived from the reduced SE-tensor.  

For the sake of simplicity in the following the natural units are used, furthermore to provide better over-

view, in the summation notation the corresponding indices are additionally crossed out when summing. 
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II. The physics behind the geodesic principle 
 

1) The locally gauged, stationary locally (in the ∆τ span) inertial coordinate system:  𝑥�̂�   :  𝒫 ↦ 𝑥�̂�(𝒫)   
 

  a) A space-time coordinate system: 𝑥𝜇 its base: 𝒆𝛼 and metric: 𝑔𝛼𝛽
  .    η𝛼𝛽 

 ≡ [diag(−1,1,1,1)]𝛼𝛽   

   τ ∈ ℝ  ,   𝑥𝜇 ∶   ∀ 𝑥′ 
 𝜇
(𝒫(τ))  ∃ 𝛬 𝜇

𝜇′
(𝑥 

 𝜇 → 𝑥′ 
 𝜇
)  ,   𝑔𝛼𝛽 

 ≡ 𝒆𝛼 ∙ 𝒆𝛽  = 𝛬 𝛼
𝛼′𝛬 𝛽

𝛽′
η𝛼′𝛽′
    ;    (1.1) 

  b) For any 𝑥𝜇, the stationary locally inertial (SLI) coordinate system: 𝑥�̂� is (implicitly) pre-defined 

   𝑥 
0̿ ∶= τ          →            𝒫(𝑥 

0̿  ,  𝑥 
�̿� = 0) ∶=  𝒫(τ)     (1.2a,b) 

 𝐞�̿�  ≡ 𝐞�̿�(τ) ∶ = 𝒆�̿�(𝑥 
0̿  ,   𝑥 

�̿� → 0)        ;         Λ  �̿�
 𝜇
 ≡ Λ  �̿�

 𝜇(τ) ∶ = 𝛬 �̿�
 𝜇
(𝑥 

0̿  ,   𝑥 
�̿� → 0)   (1.3a,b) 

(1.8a) 

(1.9a) 

(2.5a) 

(2.5b)  

𝚫𝒫(τ) = 𝒆𝛼(𝒫(τ))Λ  0̿
 𝛼(τ)∆τ ∶= 𝐞0̿(τ)∆τ  |  ∆τ → 0    →      

ժ  𝑥 
 𝜇(𝒫(τ))

ժ  τ
= Λ

 0̿

 𝜇(τ)  (1.4a,b) 

𝑥 
 𝜇 =:  𝑥 

 𝜇(𝒫(τ)) + Λ  �̿�
 𝜇(τ)𝑥 

�̿� + 2−1Λ  �̿�,�̿�
 𝜇 (τ)𝑥 

�̿�𝑥 
�̿�   |   |𝑥 

�̂�| ≤ Ø0 : "small enough"   (1.5) 

  c) Conditions for the SLI base in the (infinitesimal) proximity: 𝑥�̿� → 0 ; of any point: 𝒫(τ) of the 

trajectory following the geodesic ( a kind of situation like inside a freely moving non-rotating spaceship ) 

    g
�̿��̿�
 (τ) ∶= 𝑔

�̿��̿�
 (𝑥 

0̿,   𝑥 
�̿� → 0)  ≡   𝐞�̿� ∙ 𝐞�̿� ∶ = η�̿��̿�

      →       𝐞0̿ ∙ 𝐞0̿    = −1     (1.6a,b) 

(1.6b) 

(2.5b) 
𝐞τ(τ) ∶= 𝐞0̿(τ) :    

ժ  𝐞τ
ժ  τ 

 
≡
∂𝐞 0̿

 ∂𝑥0̿
     =  0   →     Γ

    0̿0̿

 �̿� (τ)  ∶= 𝛤
    0̿0̿

 �̿�
(𝑥 

0̿  ,   𝑥 
�̿� → 0) = 0   (1.7a,b) 

(1.6a) 
∂Λ  �̿�

 𝜇

∂𝑥0̿
  ≡
ժ Λ  �̿�

 𝜇

ժ  τ
 :   

∂𝐞�̿�

∂𝑥0̿
   ≡

∂𝐞 0̿
  ∂𝑥�̿�

= 0    →     Γ
    �̿�0̿

 �̿� (τ)  ∶= 𝛤
    �̿�0̿

 �̿�
(𝑥 

0̿,   𝑥 
�̿� → 0) = 0   (1.8a,b) 

Λ  m̿,�̿�
 𝜇

≡ Λ  �̿�,m̿
 𝜇

∶=
∂Λ  �̿�

 𝜇

∂𝑥m̿ 
    ∶  

∂𝐞�̿�

∂𝑥m̿
  ≡  
∂𝐞m̿

∂𝑥�̿�
  = 0   →     Γ

    �̿��̿�

 �̿� (τ) ∶ = 𝛤
    �̿��̿�

 �̿�
(𝑥 

0̿  ,   𝑥 
�̿� → 0) = 0   (1.9a,b) 

  d) The SLI gauge transformation of the 𝑥�̿� SLI coordinates and the SLI Lorenz gauge as its example 

|𝑥 
�̂�| ≤ Ø0    ⇒     𝑥

�̂� ∶= 𝑥�̿� +  �̂�𝑥�̿�    |    �̂�𝑥   
 �̿�(τ, 0) = 0  ,    �̂�𝑥   ,�̿�

 �̿� (τ, 0) = 0  ,    �̂�𝑥   ,�̿�,�̿�
 �̿� (τ, 0) = 0 (1.10) 

(4.1)  �̂�𝑥�̿�(τ) ∶   ℎ̅       ,�̂�
 �̂��̂� = 0    (1.11) 

2) General definitions in the context of the body stress-energy (SE-)tensor field: 𝑇  
𝜇𝜈(𝑥 

 𝜇) ≡ 𝑇  
𝜈𝜇(𝑥 

 𝜇)  
     

  a) The convex spatial domain: 𝑉(τ) of the minimal diameter: Ø, containing the whole body and  𝒫(τ)         

 𝑉 ∶= 𝑉(τ) ∶   𝑉 ∪ ∂𝑉  = 𝑉 ∈ 𝑽    ,    𝒫(𝑥�̂�) ∈ 𝑉(τ)   ⇒   𝒫(𝑥�̂�) ≡  𝒫(τ, 𝑥�̂�)    ;          (2.1) 

 𝑉(τ) ∶   𝒫(τ, 𝑥�̂�) ∈ (∂𝑉 ∪ (~ 𝑉 ))    ⇒    𝑇  
𝛼𝛽(τ, 𝑥�̂�)  = 0   ;      (2.2) 

The body diameter:     d ∶=   d (τ) ∶≤   Ø ∶= Ø(τ) ∶= Ø(𝑉(τ))   ∶≤  Ø0
      (2.3) 

  b) The notation of a spatial integral on the volume: V  that is embedded in its space-time domain: 𝑽  

   < 𝑓 > ∶ = ∫𝑓  |ժ  𝑉|
 

𝑉

       (2.4) 
 

  c)  Synchronizing (initial) condition for  𝑥�̂�(𝑥 
0̿ = τ0) , which codetermine the matrix: Λ  �̿�

 𝜇
  at τ = τ0 

(1.4,5)     {
  𝒫(τ0)  ∶  < 𝑥

 �̂�𝑇0̂0̂(τ0  , 𝑥
�̂�) >  =  0                                

  𝐞0̿(τ0) ∶   < 𝑇 
 �̂�0̂(τ0  , 𝑥

�̂�) > ≡ < 𝑇 
0̂ �̂�(τ0  , 𝑥

�̂�) > = 0
   

          (2.5a)          

          (2.5b)    

If  the SLI coordinate system fulfills  this condition at τ = τ0 , it can on 𝑉(τ → τ0)  be referred to as the 

(locally inertial momentarily comoving) proper frame (of reference) and after that, as long as Ø ≤ Ø0
  is 

satisfied, as the locally inertial (LI) comoving    frame (of reference). The parameter: τ is the proper time. 



3-7 
 

3) The locally inertial coordinates: the vector integration and the SE-tensor divergence spatial integral  
 

  a) The flat base approximation and factoring of the local coordinates base out of the spatial integral  

The norm: |𝑥 
�̅�|  is defined as the spatial distance (shortest length) from 𝒫(𝑥 

�̅�) to the 𝒫(𝑥 
0̅,  𝑥 

�̅� = 0)  . 

𝐞𝛼 ∶ = 𝒆𝛼(𝑥 
𝛼 → 𝑥′ 

 𝛼(𝒫0))    →      
𝜕𝐞𝛼

∂𝑥𝛽
≡ Γ    𝛼𝛽

𝛾
𝐞𝛾 ≡ Γ    𝛽𝛼

𝛾
𝐞𝛾 ∶ = 𝛤    𝛼𝛽

𝛾
(𝑥 

𝛼 → 𝑥′ 
 𝛼(𝒫0)) 𝐞𝛾 (3.1a,b) 

 𝒆𝛼 = 𝐞𝛼 + Γ    𝛼𝜈
 𝜇

𝐞 𝜇𝑥
𝜈 + �̃� (2−1 |Γ    𝛼𝜅,𝛾

 𝜇
+ Γ    𝛼𝜅

 𝛽
Γ    𝛽𝛾
 𝜇

|  𝐞 𝜇|𝑥
𝜅𝑥𝛾|)        (3.2) 

𝑥 
𝜇  →   𝑥 

�̅�(𝒫0)  ∶   𝑥 
�̅�(𝒫 = 𝒫0)  =  0   ,    Γ    �̅��̅�

 �̅�
= 0   ; (3.3) 

𝒆�̅� = 𝐞 �̅� + �̃�(2
−2|(Γ    �̅��̅�,�̅�

 �̅�
+ Γ    �̅��̅�,�̅�

 �̅�
) − R   �̅��̅��̅�

 �̅�
| |𝑥𝜅||𝑥𝛾|𝐞 �̅�) =  𝐞 �̅� + �̃�    �̅�

 �̅�
(|𝑥0̅|2 + |𝑥�̅�|2)𝐞 �̅�   (3.4) 

 (𝑥0̅ ← 0)   →    𝒆 �̅� = 𝐞 �̅� + �̃�    �̅�
 �̅� (|𝑥�̅�|2)𝐞 �̅�         (3.5) 

𝑌   
𝛼: ∈ ℝ4  →   < 𝑌   

�̅�𝒆�̅� > = < 𝑌   
�̅�𝐞 �̅� > + < 𝑌   

�̅�  �̃��̅�
  (|𝑥�̅�|2) > = < 𝑌   

�̅� > 𝐞 �̅� + ‖𝑌   
�̅�‖ �̃��̅�

  (Ø2)     (3.6) 

(1.9b) (3.3) 𝑥 
�̂� − 𝑥′ 

 �̂�
(𝒫(τ))  ⊂  𝑥 

�̅�(𝒫(τ))                   (3.7) 

This means that (3.6) is valid for 𝑥 
�̂� too. For the rest the LI coordinates components can be separated:  

(3.6)   ∀ α̂           < 𝑌   
α̂𝒆α̂ >  =  (< 𝑌   

α̂ > + �̃�  
 α̂(‖𝑌‖Ø2)) 𝐞α̂        (3.8) 

The uncertainty: �̃�  
 �̂�(∗ Ø2) is the price for making the vector integration on curved domain reasonable. 

 

  b) The total neutrality of spatial divergence for the body SE-tensor field in the LI comoving frame 

(2.2) 

Gauss 
𝑇  
�̂��̂�(𝒫 ∈ 𝑆 ∶= ∂𝑉) ≡ 0     →     < 𝑇       , n̂

�̂�n̂
(τ, 𝑥�̂�) > + �̃� 

 �̂�(mØ2) = ∮𝑇�̂�n̂(τ, 𝑥�̂�) 𝑛n̂  |ժ  𝑆|
 

𝑆

≡ 0   (3.9) 
 

4) Finding the 𝑂(Ø2) approximation of the four-momentum temporal partial derivative for a small body 
 

  a) The test body problem: the cross effect of gravity fields, its convergence upper bound estimation                                             

Based on the equation for weak gravitational field and its source given by a hypothetical scalable mas-

sive body with a density limit (no singularities), which on closer inspection can be treated as the super-

position of infinitesimally small dispersed point masses with their ժ ℎ�̂��̂� = 𝑂�̂��̂�(ժ m/𝑟) partial fields ; by 

negligible external reflections, the following basic estimates for the metric deviation and its derivatives 

can be found out in the originally (without the active body mass as the field source) LI comoving frame. 

[5] 

(1.11) 
η 
�̂��̂� ℎ̅      ,  �̂�,�̂�

 �̂��̂�
≡ η 

�̂��̂�  (ℎ  
 �̂��̂� −

1

2
 η�̂��̂�ℎ    �̂�

 �̂�
)
,  �̂�,�̂�

 

= −16π 𝑇 
�̂��̂�          (4.1) 

(5.1) m  ∶=  m0Ø0
−3Ø3 = 𝑂(Ø3)      →       𝑇  

�̂��̂�  ∶=  𝑂�̂��̂�(Ø0) ∈ ℝ4×4   (4.2a,b) 

𝑔
�̂��̂�
 ∶ = η

�̂��̂�
 + ∆𝑔

(𝑒𝑥)�̂��̂�
 + ∆𝑔

(𝑖𝑛)�̂��̂�
 ∶ = η

�̂��̂�
 + ℎ

(𝑒𝑥)�̂��̂�
 + ℎ

(𝑖𝑛)�̂��̂�
 = η

�̂��̂�
 + 𝑂�̂��̂�(Ø

2 +mØ−1)   (4.3) 

ℎ(𝑒𝑥)�̂��̂�
 =̂  𝑂(Ø2)      →  ℎ(𝑒𝑥)�̂��̂�,�̂�

 =̂ 𝑂(Ø)        →  ℎ(𝑒𝑥)�̂��̂�,�̂�,�̂�
 =̂ 𝑂(Ø0)       →   ℎ(𝑒𝑥)�̂��̂�,�̂�,�̂�,�̂�

 =̂ 𝑂(Ø0)       (4.4a..d) 

ℎ(𝑖𝑛)�̂��̂�
 =̂ 𝑂(mØ−1) →  ℎ(𝑖𝑛)�̂��̂�,�̂�

 =̂ 𝑂(mØ−2) →  ℎ(𝑖𝑛)�̂��̂�,�̂�,�̂�
 =̂ 𝑂(mØ−3) →  ℎ(𝑖𝑛)�̂��̂�,�̂�,�̂�,�̂�

 =̂ 𝑂(mØ−4)    (4.5a..d) 

This two fields: of the body (internal) and of the externally imposed curvature, are superimposed result-

ing in two partial Christoffel symbol fields and creating additionally the cross-term: 𝛥(𝑥) in which range 

the separation between the two fields is no longer definite. The degree of convergence of this term and 

its derivatives can be determined. Since (due to Newton’s first law) the internal field itself in an inertial 

system can have no effect on the overall motion, it is arbitrary omitted but the cross-term remains valid. 

                     𝛤
    �̂��̂�

�̂�
∶= 𝛤

(𝑖𝑛)  �̂��̂�

      �̂�
+ 𝛤

(𝑒𝑥)  �̂��̂�

      �̂�
+ 𝛥

(𝑥)  �̂��̂�

      �̂�
 

      (4.6) 

    (4.7)       

 𝛤
    �̂��̂�

 �̂�
≈

{η�̂��̂�−ℎ(𝑖𝑛)�̂��̂�
     −ℎ(𝑒𝑥)�̂��̂�

     }
�̂��̂�

2
(ℎ(𝑖𝑛)�̂��̂�,�̂�

 + ℎ(𝑖𝑛)�̂��̂�,�̂�
 − ℎ(𝑖𝑛)�̂��̂�,�̂�

 + ℎ(𝑒𝑥)�̂��̂�,�̂�
 + ℎ(𝑒𝑥)�̂��̂�,�̂�

 − ℎ(𝑒𝑥)�̂��̂�,�̂�
 )                     
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𝛥
(𝑥)  �̂��̂�

      �̂�
≈  

{ℎ(𝑖𝑛)…
     }�̂��̂�

2
(ℎ(𝑒𝑥)�̂��̂�,�̂�

 − ℎ(𝑒𝑥)�̂��̂�,�̂�
 − ℎ(𝑒𝑥)�̂��̂�,�̂�

 ) +
{ℎ(𝑒𝑥)…
     }�̂��̂�

2
(ℎ(𝑖𝑛)�̂��̂�,�̂�

 − ℎ(𝑖𝑛)�̂��̂�,�̂�
 − ℎ(𝑖𝑛)�̂��̂�,�̂�

 )  

(4.4,5,6)  (𝛤
(𝑖𝑛)  �̂��̂�

      �̂�
← 0)      →      𝛤

    �̂��̂�

�̂�
 = 𝛤

(𝑒𝑥)  �̂��̂�

      �̂�
+  𝛥

(𝑥)  �̂��̂�

      �̂�
 = 𝛤

(𝑒𝑥)  �̂��̂�

      �̂�
+ 𝑂

   �̂��̂�

 �̂� (mØ0)   
    (4.8)           

      (4.9a) 

→     𝛤
    �̂��̂�,�̂�

�̂�
= 𝛤

(𝑒𝑥)  �̂��̂�,�̂�

      �̂�
+ 𝑂

   �̂��̂��̂�

 �̂� (mØ−1)     →      𝛤
    �̂��̂�,�̂�,�̂�

�̂�
= 𝛤

(𝑒𝑥)  �̂��̂�,�̂�,�̂�

      �̂�
+𝑂

   �̂��̂��̂��̂�

 �̂� (mØ−2)   (4.9b,c) 

Based on (4.9) it can be shown, that in (4.19) the resulting cross-connection error would converge one 

degree faster than the approximation error there and it is also worth noting that even for m = O(Ø) the 

solutions (5.8,21) would converge with O(Ø) . Consequently, the term: 𝛥
(𝑥)  �̂��̂�

      �̂�
 is neglected from here on. 

  b) The approximate factoring of the Christoffel symbol out of the spatial integral on the volume: V  

(1.6a) 𝛤
     �̂��̂�

 �̂�
(τ  , 𝑥�̂�)  =  Γ

    �̂��̂�

 �̂�
(g∗̂∗̂
  , g∗̂∗̂,∗̂

 ) + Γ
    �̂��̂�,�̂�

 �̂�
𝑥�̂� + 2−1𝑂 (|Γ

    �̂��̂�,�̂�,𝑙 ̂

 �̂�
| |𝑥�̂�𝑥𝑙|)   ∶=  𝛤

(𝑒𝑥) �̂��̂�

      �̂�
    (4.10) 

 < 𝛤
    �̂��̂�

�̂�
𝑇 
�̂��̂� >  =  Γ

    �̂��̂�

 �̂�
< 𝑇 

�̂��̂� > + Γ
    �̂��̂�,�̂�

 �̂�
< 𝑥�̂�𝑇 

�̂��̂� > + 𝑂
   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø2)      (4.11) 

T 
�̂��̂� ∶= < 𝑇 

�̂��̂� >    →    < 𝛤
    �̂��̂�

�̂�
𝑇 
�̂��̂� >  =  Γ

    �̂��̂�

 �̂�
T 
�̂��̂� + Γ

    �̂��̂�,�̂�

 �̂�
T 
�̂��̂�〈�̂�〉 + 𝑂

   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø2)    (4.12a,b) 

With (1.9b) it leads to the upper bound estimation of deviation of the temporal partial derivative (4.19). 

(4.11) 

(1.9b) 
< 𝛤

    �̂��̂�

�̂�
𝑇 
�̂��̂� >  =  𝑂 ( |Γ

    �̂��̂�,�̂�

 �̂�
| ‖𝑇 

�̂��̂�‖Ø) + 𝑂
   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø2) =  𝑂
   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø)        (4.13) 

(4.2)      < 𝛤
    �̂��̂�

�̂�
𝑇 
�̂��̂� > = 𝑂 

�̂�(mØ)     ;      < 𝛤
     �̂��̂�

�̂�
𝑇   
�̂��̂� > = 𝑂 

�̂�(mØ)           (4.14a,b) 

  c) The temporal partial derivative of the four-momentum, obtained from the conservation condition 

 𝑇       ;𝛽
𝜇𝛽 

 ≡ 𝑇      , 𝛽
𝜇𝛽 

+ 𝛤     𝛼𝛽
𝜇

𝑇  
𝛼𝛽 + 𝛤     𝛼𝛽

𝛽
𝑇   
𝜇𝛼 ∶= 0        (4.15) 

 𝑇       , 𝛽
𝜇𝛽 

= − 𝛤     𝛼𝛽
𝜇

𝑇  
𝛼𝛽 − 𝛤     𝛼𝛽

𝛽
𝑇   
𝜇𝛼       (4.16) 

(3.8) < 𝑇
      , �̂�

�̂��̂� 
>= − < 𝛤

     �̂��̂�

�̂�
𝑇  
�̂��̂� > − < 𝛤

     �̂��̂�

�̂�
𝑇   
�̂��̂� > + �̃� 

 �̂�(mØ2)                   (4.17) 

(3.9) < 𝑇
      , 0̂
�̂�0̂ 

> = − < 𝛤
     �̂��̂�

�̂�
𝑇  
�̂��̂� > − < 𝛤

     �̂��̂�

�̂�
𝑇   
�̂��̂� > + �̃� 

 �̂�(mØ2)       (4.18) 

(4.11,14) 

(1.9b) 
< 𝑇

      , 0̂
�̂�0̂ 

> = − Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂��̂� > − Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂� �̂� > + 𝑂 
�̂�(mØ2) = 𝑂 

�̂�(mØ)     (4.19) 

5) The freely falling small body and its, founded on the conservation conditions, near geodesic solutions 
 

Since 𝒫(τ0) can be any given point on the geodesic, in the following is assumed that the body is cur-

rently situated in the proper or at least in the LI comoving frame of reference, the behavior of the body 

in the vicinity of the spatial coordinates origin: 𝒫(τ) is analyzed, and if the result follows the geodesic 

in the limit case (for d → 0) , so it must also follow it inside the 2Ø0
  tube for d > 0 in a certain timespan. 

 

  a) The body- (rest) mass: m , four-position:  x   
�̂�, four-velocity: U 

�̂� and its minimal or rest energy: E0 

 m(τ = τ0)  ∶=  < 𝑇   
0̂0̂(τ0  , 𝑥

�̂�) > + �̃�(md2)    (5.1) 

  x   
0̂(τ)  ∶=  τ    ;      x   

�̂�(τ)  ∶=  < 𝑇   
0̂0̂(τ  , 𝑥�̂�) >−1 < 𝑥�̂�𝑇   

0̂0̂(τ  , 𝑥�̂�) > +  �̃��̂�(Ø2d)    (5.2a,b) 

(2.5a)   Ø(τ0) ≡  d (τ0)          →           x   
0̂(τ0) =  τ0   ,     x   

�̂�(τ0) = �̃�
�̂�(d3)  (5.3a,b) 

(1.2a) U 
�̂�   ∶=

ժ  x   
�̂�

ժ  τ
≡
∂ x   

�̂�

∂ 𝑥  
0̂
     | |U�̂�| ≪ 1         ←           �̃�   , 0̂

 �̂� (Ø2d) = �̃�   
 �̂�(Ø2d)      (5.4a,b) 

(2.5b) 

(5.3a)  
E0 = E(τ0) ∶= min(m(τ0)/√1 − U   

�̂�(τ0)U�̂�
 (τ0))     ⇒     U 

�̂�(τ0) = �̃�
�̂�(d3)     (5.5a,b) 

 U 
0̂(τ0) = 1 ,    U

�̂�(τ0) = �̃�
�̂�(d3)         →         U  ,0̂

0̂ (τ0)  = 0       (5.6a,b) 
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  b) The solution based on the stress-energy tensor, in the locally inertial comoving frame of reference  

The point-idealization: p�̅� of a four-momentum field can be defined as the “T4- momentum”: < 𝑇      
�̅�0 > 

or as the four-velocity based “U4-momentum”:  m U�̅�. Given their equivalence, it follows for |U�̂�| ≪  1: 

(5.2b) 

(4.19)    
ժ p�̂�

ժ τ
= − Γ

     �̂��̂�,�̂�

�̂�
p�̂�U�̂�x�̂�  − Γ

     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂��̂� > −   Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂��̂� > + �̃� 
�̂�(mØ2)   (5.7) 

(4.12) 

(4.14)  
ժ p�̂�

ժ τ
= 𝑂 

�̂�(m|x�̂�|) − Γ
     �̂��̂�

�̂�
T 
�̂��̂� − Γ

     �̂��̂�

�̂�
T 
�̂��̂� − Γ

     �̂��̂�,�̂�

�̂�
T 
�̂��̂�〈�̂�〉 − Γ

     �̂��̂�,�̂�

�̂�
T 
�̂��̂�〈�̂�〉 = 𝑂 

�̂�(mØ)   (5.8) 

(5.1) 

(5.4) 
  m U�̂� = < 𝑇      

�̂�0̂ > +  �̃� 
 �̂�(mØ2)   ⇒    

ժ U�̂�

ժ τ
≈
ժ (p�̂�/m)

ժ τ
 =  

1

m
(
ժ p�̂�

ժ τ
− 
 p�̂�

m

ժ m

ժ τ
) =  𝑂 

�̂�(Ø) 
    (5.9a)     

   (5.9b)   

Since the origin of 𝑥�̂� follows the geodesic, the equation (5.9b) proves at the limit that the body follows 

the geodesic too. The tidal forces in (5.7) die out on the flat domain if a suitable gauge (1.10) is applied.  

The critical physical problem is that (5.8) is not coordinate-invariant and the particular thing about this 

is that the body must freely levitate in the V  domain proximal to the spatial origin and the LI comoving 

frame makes it possible since the gravity almost disappears there. The reason for this effect are the local 

translation symmetries: (t-xyz) on V   in  𝑥�̂�  , yet these symmetries are not perfect since on V the deriva-

tive: 𝑔�̂��̂�,�̂�
 = 𝑂�̂��̂��̂�

 (Ø) ≠ 0 and that is in this case the limiting factor for the convergence of the solution. 

  c) The body mass density, the (proper) energy (E-)tensor of the body, and its local integral divergence  

The state of overall motion is defined by the body velocity, thus to find the tensor equation of motion 

the SE-tensor component that incorporates only this velocity ought to be used and this for a small body 

is its E-tensor: 𝑇E   
 𝜇𝜈

 reflecting the convective flux of the body energy. Because “the proper SLI gauge” 

hasn’t been found, the E-tensor is here inevitably undetermined in the 𝑂(m|𝑥�̂�|2) range. Accordingly, 

in order to avoid the problem resulting from the equation (5.8) it needs to be postulated that gravitation 

does not act on the whole SE-tensor but exclusively on its stress (but not necessarily divergence) -free 

component: the E-tensor. In concrete terms, this means that the LHS of (5.13) has to vanish, and indeed 

due to the time symmetry of (1.8b) and because the first moment of  𝑇E is nullified at τ0 thanks to (2.5a), 

the local integral conservation condition for <  𝑇E  
  �̂��̂�

> reaches 𝑂(md2) convergence in the proper frame.  

(1.2a,10) 𝜌(𝑥 
�̂�) ∶=  𝑇   

0̂0̂(τ  , 𝑥�̂�) + 𝑂(m|𝑥�̂�|2)    ;      𝑈 
 �̂�(𝑥 

�̂�) ∶= U 
 �̂�(τ) + 𝑂 

 �̂�(m|𝑥�̂�|2)   (5.10a,b) 

      𝑇E   
  �̂��̂�
  ∶=  𝜌    𝑈  

 �̂�𝑈  
�̂�  =  𝑇   

0̂0̂     U  
 �̂�U  

�̂� + 𝑂 
 �̂��̂�(m|𝑥�̂�|2)          (5.11)      

t’⊥ x’y’z’ ; t’= τ ; (5.6a) 𝑇S   
  �̂��̂�
  ∶=  𝑇  

 �̂��̂� − 𝑇E   
  �̂��̂�
    |   𝑇E   

 𝜇𝜈
𝑇S 𝜇𝜈
   = �̃�(m2Ø2d)   (5.12) 

(3.8,9)                    < 𝑇E     ; �̂�
 �̂��̂� 

> = < 𝑇
E    , 0̂
 �̂�0̂ 

> + < 𝛤     �̂��̂�
�̂�

𝑇E  
 �̂��̂� > + < 𝛤     �̂��̂�

�̂� 𝑇E   
 �̂��̂�

> + �̃� 
 �̂�(mØ2)     (5.13);  (5.14a,b) 

  𝑂
   , 0̂
 �̂� (md2) = 𝑂   

 �̂�(md2)   →    < 𝑇
E    , 0̂
 �̂�0̂ 

> + < 𝛤     �̂��̂�
�̂�

𝑇E  
 �̂��̂� > + < 𝛤     �̂��̂�

�̂� 𝑇E   
 �̂��̂�

> =  𝑂   
 �̂�(md2)   | τ → τ0   

  d) The coordinate-invariant solution based on the energy tensor, in the (LI) proper frame of reference 

Consequently, (5.14b) corresponds directly to (4.18) and because the body four-position on the world 

line is defined in the same way for the E-tensor as for the SE-tensor, that’s why in the limit case the 

following prove of the geodesic solution for the E-tensor confirms the result (5.9b) for the SE-tensor as 

well. The below equations are studied for τ → τ0 , therefore (2.5a) makes the offset:  x   
�̂� (5.2b) negligible. 

(4.11) (2.5a)    < 𝑇E   
 �̂�0̂ 

>, 0̂ = − Γ    �̂��̂�
 �̂�

< 𝑇E  
 �̂��̂� > − Γ    �̂��̂�

 �̂� < 𝑇E   
 �̂��̂�

> + 𝑂 
�̂�(md2)               (5.15) 

(5.11)      (< 𝜌 > U  
�̂�U  

0̂)
, 0̂
= − < 𝜌 >   Γ

   �̂��̂�

 �̂�
U  
�̂�U  

�̂� − < 𝜌 > Γ
   �̂��̂�

 �̂�
U   
�̂�U   

�̂� +𝑂 
�̂�(md2)       (5.16) 

(5.1,6b) 

(5.10a) 
(mU  

�̂�U  
0̂)
, 0̂
=  m U  

0̂U  
�̂�
, 0̂
+ U  

�̂�U  
0̂m, 0̂ =  − mΓ    �̂��̂�

�̂�
 U  
�̂�U  

�̂� −mΓ
   �̂��̂�

 �̂�
U   
�̂�U   

�̂� + 𝑂 
�̂�(md2)     (5.17)     

Even though here Γ   �̂��̂�
�̂� = 0, it is the Γ   �̂��̂�

�̂�  that carries the key information about the origin of this zero. 

Since U 
0̂ is a constant and U 

�̂� → 0 , hence (5.17) can be decomposed into the system of two equations: 

(5.6) 

(5.1) 
{

m U  
�̂�
, 0̂
= − mΓ

    �̂��̂�

 �̂�
 U  
�̂�U  

�̂� + 𝑂 
�̂�(md2)   | 𝑂 

0̂ = 0

  U  
�̂�m, 0̂ = − mΓ    �̂��̂�

 �̂�
U   
�̂�U   

�̂� + 𝑂 
�̂�(md2) | 𝑂�̂� = 𝑂 

�̂�(md5)
 

  (5.18a) 

 

  (5.18b) 
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(5.1,11) m   
�̂��̂� ∶=  − mU  

�̂�U  
�̂�  =  − TE   

 �̂��̂� 
= − < 𝑇E   

 �̂��̂� 
>       →       m = η�̂��̂� 

 m   
�̂��̂� = m   𝜇 

𝜇
  (5.19a,b) 

 (5.3b) τ → τ0    

{
 

  m
ժ  U�̂�

ժ  τ
= − mU  

�̂�U  
�̂�Γ
    �̂��̂�

 �̂�
  + 𝑂 

�̂�(md2) − mΓ
    �̂��̂�,�̂�

�̂�
U   
�̂�U   

�̂��̃� 
�̂�(d3)

   
ժ  m

ժ  τ
= − mΓ

    0̂�̂�

  �̂�
U   
0̂ +  𝑂 

0̂(md2) =  𝑂(md2)

 

 (5.20a) 

               

  (5.20b)  

The −E-tensor integral: m   
�̂��̂�, which invariant trace equals the body mass, can be called the mass tensor.                     

The equations turn out to be coordinate-invariant since the first one is the four-momentum form of the 

geodesic equation and the second one is a scalar equation, which is always coordinate-invariant, hence 

 

 

(1.8b) 
∀τ   {

     ṗ𝜇 ≈ mU̇𝜇 ∶=  m
ժ  U𝜇

ժ  τ
 = − mU  

𝛼U  
𝛽Γ    𝛼𝛽

 𝜇
+ 𝑂 

𝜇(md2)

    ṁ  ∶=  
ժ  m

ժ  τ
= 𝑂(md2)                                   

  →    
D U𝜇

ժ  τ
= 𝑂 

𝜇(d2) 

  (5.21a) 

  (5.21b) 

 
  (5.21c) 

  e) The limit case turns out to be the (rest) mass conservation law and the standard geodesic equation 

(5.4a)  λ ∶= a τ + b  ,    d →   0       ⇒          
ժ 2x   

𝜇

ժ  λ2
= − Γ    𝛼𝛽

 𝜇 ժ  x   
𝛼

ժ  λ

ժ  x   
𝛽

ժ  λ
             ∎          (5.22) 

III. Summary 
 

The behavior of a massive body located in the gravity field, free of other influences and with a negligible 

radiation, has been analyzed here. The body is defined on the basis of its stress-energy (SE-)tensor field, 

which together with the geodesic determine the spatial domain on which it exists. Therefore, based on 

the general space-time coordinates, the stationary locally inertial (SLI) coordinate system has been con-

structed in the area of validity. The SLI coordinates make it possible at least for a certain amount time, 

to conveniently describe the movement of the body. If their spatial origin matches the comoving body 

at a certain τ , they are referred to there as the proper frame. This situation has been achieved by selecting 

the suitable initial conditions for the SLI coordinate system itself. The proper frame is locally inertial 

(LI) in the neighborhood of its origin. The requested SLI gauge aims to limit the fictitious tidal forces 

especially on the flat domain but can be modified if necessary to any other gauge that complies with the 

spatial origin conditions of the SLI coordinates without violating the convergence estimations. The spa-

tial origin of the SLI coordinate system follows a geodesic and forms in the space-time a kind of geodesic 

tunnel, but it doesn’t mean that this by itself can somehow affect the tensor solution. Furthermore, the 

local integral divergence of the SE-tensor on the spatial domain is essential here. If the body is suffi-

ciently small, after flattening of the coordinate base four separate conservation equations of energy and 

momentum arise in the LI comoving frame from the SE-tensor zero-divergence due to the (t-xyz) sym-

metry that in curved space is only locally possible using approximation. Therefore, it is important here 

to be able to estimate the convergence grade of occurring uncertainties deviations and errors. For that 

upper bound estimations, the big O-notation has been used. Because of the limited spatial extent of the 

SE-tensor, it is possible to reduce its local integral divergence to the temporal derivative. This is crucial 

because it makes possible to derive the body equation of motion from the conservation condition of the 

SE-tensor. To guarantee that the test body problem is not critical here, the cross effect of gravity fields 

was proven to be negligible up to m = O(Ø). Based on the SE-tensor the body geodesic trajectory has 

been found only in the SLI coordinates. This in turn shows that the SE-tensor as a basis for the geodesic 

equation, which is a tensor equation, is suitable only to a limited extent. To solve this problem, the SE-

tensor has been reduced by setting all its subcomponents except the energy density in the proper frame 

arbitrary at zero, thus defining its component in the form of the energy (E-)tensor, which point-idealiza-

tion is the mass tensor: m   
𝜇𝜈; that depends on the energy density but not on the stress seen here as an 

internal four-momentum flux, shear stress and pressure, that form the stress tensor: 𝑇S   . The mass tensor 

is together with mass and four-momentum, just another quantity associated with the body. Clearly, by 

replacing the body SE-tensor with its E-tensor the dependence on the stress disappears, which is directly 

visible for the body as an internal observer in its proper frame and the external observer perceives only 

the final tensor result. Then the energy flux balance equation is solved by splitting it into two separate 

equations: the first one relates to the body acceleration, the second one to its mass change. Ultimately, 

these equations can be represented by tensor equations where in the limit case the first one becomes the 

geodesic- and the second one the mass conservation equation for a freely falling body in the space-time. 
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IV.  Conclusions 
 

There are two testable possibilities: For a small body diameter:  d   the effective gravitational tidal forces 

A : can influence the body trajectory at the O(d) level  B : cannot because its stress tensor field vanishes 

or on the average does not interact with gravity.  -  It has been shown that even if no coordinate-invariant 

solution on the body SE-tensor basis has been found, an associated with its SE-tensor free “point” body 

traverse timelike geodesic. Basically, merely the conservation condition based on the SE-tensor is nec-

essary to determine it if the isolated from all “conventional” forces free body is also apparently isolated 

from gravity according to the local symmetries that emerge in the LI comoving frame in the SLI system.  

-  Simultaneously this statement can be extended analogously to the solution with the body energy (E-) 

tensor that is the stress-free component of its SE-tensor, but in this case the direct coordinate-invariant 

solution is the geodesic equation; yet should “A” be true, a trajectory error at the O(d) level might occur.     

Consequently, this E-tensor provides the pathway allowing the gravitation to influence the massive body, 

and that with the inherent condition of the body mass being conserved. By applying the SE-tensor instead 

of the E-tensor in a tensor equation of motion the weak equivalence principle could be disregarded, but 

since there are good reasons to conclude that the weak equivalence principle remains valid, the solution 

on the E-tensor base is preferable to rule out the theoretic dependence on the intrinsic stress field of the 

body matter. Therefore, the following thesis should be proposed: The total gravitational influence upon 

a sufficiently small freely falling massive body or particle is equal to this influence on its E-tensor field.     

Formulated in such a way, the above thesis in the near limit case leads not only to the geodesic principle 

and the weak equivalence principle but also to the mass conservation law for an isolated body and to the 

explicit consequence that the rest mass and the passive mass must always have the same value; all this 

with the additional advantage of not having the form of a quasi-mathematical axiom but containing the 

mechanism based on the local integral conservation condition for the E-tensor field in the proper frame.    
 

Since the geodesic principle hasn’t been derived here from the geometrical approach but from the con-

servation condition, it is natural not to limit oneself to freely falling bodies and the external influences, 

such as that of the Lorenz force, can be taken into account in order to get the equation of motion like this  

(5.9a,21a,19)  m U̇𝛼  =  − m U  
𝜇U  

𝜈Γ    𝜇𝜈
 𝛼 + qU  

𝜇F    𝜇
 𝛼   ≡  m   

𝜇𝜈Γ    𝜇𝜈
 𝛼 + qU  

𝜇F    𝜇
 𝛼          (6.1)   

In the above equation the mass: m is not just a result of “adjusting” the geodesic equation to the Lorenz 

force, but was already there in (5.21a). It is also clear that m on the LHS expresses the inertial mass and 

m on the RHS the passive mass having the same value. Moreover, it is noteworthy that the inertial mass 

“hides” in the body-bound coordinates (U̇𝛼 = 0) and the passive mass “hides” in the free-falling coor-

dinates (Γ   𝜇𝜈
𝛼 = 0) , as in the famous free-falling elevator thought experiment. This equation shows also 

that the thesis above contains the basis for the weak equivalence principle for extended bodies. This is 

because in a uniform gravitational field for a body in its proper frame the superposition of the E-tensor 

fields of all its particles results in the SE-tensor macro-field whose mass tensor: m   
𝜇𝜈 carrying there the 

rest energy equivalent to the body mass, entirely determines the influence of gravity on the world line of 

the body and all other body properties are irrelevant in this respect. - That is why it seems reasonable to 

generalize the thesis, which has been proposed above, in the postulate: The gravitational influence upon 

a massive object results only from the gravity interaction with the energy tensor fields of all its particles.   

However, from a certain level a definition of the E-tensor for quantum objects would be necessary here. 
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