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Abstract  
 

The geodesic principle represents an essential aspect of general relativity and is the physical manifesta-

tion of the space-time manifold but can also be considered as the metric field effect on the passive mass 

of a freely falling test particle.  The equation of motion is derived on the basis of the universal conser-

vation condition from the given stress-energy tensor field of an isolated body, with the help of its mo-

ments in the near limit case. Then the reduced stress-energy tensor, which is based on the energy den-

sity of the body, is being used in the context of its local energy balance to get the global solution in the 

form of the geodesic equation. The influence of an external force field on such a solution is presented. 

 

I. Introduction  
 

In A. Einstein and N. Rosen “The Particle Problem in the General Theory of Relativity” one can read: 

“One of the imperfections of the original relativistic theory of gravitation was that as a field theory it 

was not complete; it introduced the independent postulate that the law of motion of a particle is given 

by the equation of the geodesic.”[1] . This postulate says: Free massive point particles traverse timelike 

geodesics. Einstein tried to remedy that shortcoming without success. “Over the last century numerous 

ostensible proofs claiming to have derived the geodesic principle from Einstein's field equations have 

been developed. (…) Grouping these results into three major families, which I refer to as (1) limit op-

eration proofs, (2) 0th-order proofs, and (3) singularity proofs, (…) none of these strategies success-

fully demonstrates the geodesic principle, canonically interpreted as a dynamical law that massive bod-

ies must actually follow geodesic paths in Einstein's theory” [2]  “By reviewing the three major classes 

of proof, we have seen that would-be geodesic following bodies are forced either (i) to meet unrealisti-

cally restrictive special-case conditions, (ii) to have no matter-energy at all (i.e. vanish), (iii) to violate 

Einstein's field equations, or (iv) to be located on paths that don't just fail to be geodesic but fail to ex-

ist in the space-time manifold at all.” [2] “Though the geodesic principle can be recovered as theorem 

in general relativity, it is not a consequence of Einstein’s equation (or the conservation principle) alone. 

Other assumptions are needed to drive the theorems in question.” [3]. The following is a proof of geo-

desic principle and its consequences for understanding the passive mass. The proof is not canonical in 

the sense that it does not directly confirm the solution but only its sufficient convergence. This conver-

gence is linked to the diameter: Ø of a convex spatial domain that contains the body of the diameter: d . 

The prerequisite here is that the solution at least converges with O(Ø). The proof can be assigned to the 

family of limit operation proofs. It is not based on the distributions but on density moments. Compared 

to the Geroch-Jang theorem it has the advantage of not requiring the “strengthened dominant energy 

condition” [3] , but only the natural condition of the positive minimal body energy: E0  = mc2 > 0  in the 

locally inertial (LI) proper frame of reference is applied. It is also assumed that in the vicinity of the ge-

odesic without gravitational influence of the body itself, the given metric field function is sufficiently 

smooth. Furthermore, the agreement with the weak equivalence principle is required. The physically 

relevant case in which the body density is constrained: m = O(Ø³) , is analyzed here. It is demonstrated 

that even for m = O(Ø)  the gravity field originating from the body can be sufficiently separated from 

the external gravitational field and the test body problem can be limited to such an extent that because 

of the stronger convergence it has only an insignificant share in the overall solution. The question of 

whether the geodesic solution converges at all when the mass is constrained to O(Ø0), which would cor-

respond to the canonical account [2] , is left open here.      In the first part: (1,2) a suitable stationary LI 

coordinate system is constructed, in the second part: (3,4) the approximation uncertainties and errors as 
well as deviations of temporal SE-tensor derivative are estimated, and in the third part: (5) the geodesic 

principle is confirmed for the SE-tensor and the geodesic equation derived from the reduced SE-tensor.  

For the sake of simplicity in the following the natural units are used, moreover to provide better over-

view in the summation notation the corresponding indices are additionally crossed out when summing. 
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II. The physics behind the geodesic principle 
 

1) The gauged stationary locally (in the ∆τ span) inertial coordinate system:  𝑥�̂�  :  𝒫 ↦ 𝑥�̂�(𝒫)   
 

  a) A space-time coordinate system: 𝑥𝜇 its base: 𝒆𝛼 and metric: 𝑔𝛼𝛽
  .   η𝛼𝛽 

 ≡ [diag(−1,1,1,1)]𝛼𝛽   

   τ ∈ ℝ  ,   𝑥𝜇 ∶   ∀ 𝑥′ 
 𝜇
(𝒫(τ))  ∃ 𝛬 𝜇

𝜇′
(𝑥 

 𝜇 → 𝑥′ 
 𝜇
)  ,   𝑔𝛼𝛽 

 ≡ 𝒆𝛼 ∙ 𝒆𝛽  = 𝛬 𝛼
𝛼′𝛬 𝛽

𝛽′
η𝛼′𝛽′
   ;    (1.1) 

  b) For any 𝑥𝜇, the stationary locally inertial (SLI) coordinate system: 𝑥�̿� is (implicitly) pre-defined 

   𝑥 
0̿ ∶= τ          →            𝒫(𝑥 

0̿  ,  𝑥 
�̿� = 0) ∶=  𝒫(τ)     (1.2a,b) 

 𝐞�̿�  ≡ 𝐞�̿�(τ) ∶ = 𝒆�̿�(𝑥 
0̿  ,   𝑥 

�̿� → 0)        ;         Λ  �̿�
 𝜇
 ≡ Λ  �̿�

 𝜇(τ) ∶ = 𝛬 �̿�
 𝜇
(𝑥 

0̿  ,   𝑥 
�̿� → 0)   (1.3a,b) 

  g
�̿��̿�
 (τ) ∶= 𝑔

�̿��̿�
 (𝑥 

0̿,   𝑥 
�̿� → 0)  ≡   𝐞�̿� ∙ 𝐞�̿� ∶ = η�̿��̿�

        →         𝐞0̿ ∙ 𝐞0̿    = −1      (1.4a,b) 

(1.7a) 

(1.9a) 

(2.5a) 

(1.10)  

𝚫𝒫(τ) = 𝒆𝛼(𝒫(τ))Λ  0̿
 𝛼(τ)∆τ ∶= 𝐞0̿(τ)∆τ  |  ∆τ → 0    →      

d𝑥 
 𝜇(𝒫(τ))

dτ
= Λ

 0̿

 𝜇(τ)  (1.5a,b) 

𝑥 
 𝜇 =:  𝑥 

 𝜇(𝒫(τ)) + Λ  �̿�
 𝜇(τ)𝑥 

�̿� + 2−1Λ  �̿�,�̿�
 𝜇 (τ)𝑥 

�̿�𝑥 
�̿� +⋯   |   |𝑥 

�̂�| ≤ Ø0 : "small enough"   (1.6) 

  c) Conditions for the SLI base in the (infinitesimal) proximity: 𝑥�̿� → 0 ; of any point: 𝒫(τ) of the 

trajectory following the geodesic ( kind of situation like inside a freely moving non-rotating spaceship ) 

(1.4b) 

(2.5b) 
𝐞0̿(τ) ∶= 𝐞τ(τ)  :    

∂𝐞 0̿

 ∂𝑥0̿
  =  
d𝐞τ
dτ 

 
   ≡  0   →     Γ

    0̿0̿

 �̿� (τ)  ∶= 𝛤
    0̿0̿

 �̿�
(𝑥 

0̿  ,   𝑥 
�̿� → 0) = 0   (1.7a,b) 

(1.4a) 
∂Λ  �̿�

 𝜇

∂𝑥0̿
=
dΛ  �̿�

 𝜇

dτ
 :   

∂𝐞�̿�

∂𝑥0̿
   ≡

∂𝐞 0̿
  ∂𝑥�̿�

= 0    →     Γ
    �̿�0̿

 �̿� (τ)  ∶= 𝛤
    �̿�0̿

 �̿�
(𝑥 

0̿,   𝑥 
�̿� → 0) = 0   (1.8a,b) 

Λ  �̿�,m̿
 𝜇

≡ Λ  m̿,�̿�
 𝜇

∶=
∂Λ  �̿�

 𝜇

∂𝑥m̿ 
    ∶  

∂𝐞�̿�

∂𝑥m̿
  ≡  
∂𝐞m̿

∂𝑥�̿�
  = 0   →     Γ

    �̿��̿�

 �̿� (τ) ∶ = 𝛤
    �̿��̿�

 �̿�
(𝑥 

0̿  ,   𝑥 
�̿� → 0) = 0   (1.9a,b) 

  d) The local gauge transformation of the SLI coordinates and the SLI-Lorenz gauge as an example  

|𝑥 
�̂�| ≤ Ø0    ⇒     𝑥

�̂� ∶= 𝑥�̿� +  �̂�𝑥�̿�    |    �̂�𝑥   
 �̿�(τ, 0) = 0  ,    �̂�𝑥   ,�̿�

 �̿� (τ, 0) = 0  ,    �̂�𝑥   ,�̿�,�̿�
 �̿� (τ, 0) = 0 (1.10) 

(4.1)  �̂�𝑥�̿�(τ) ∶   ℎ̅       ,�̂�
 �̂��̂� = 0    (1.11) 

2) General definitions in the context of the body stress-energy (SE-)tensor field: 𝑇  
𝜇𝜈(𝑥 

 𝜇) ≡ 𝑇  
𝜈𝜇(𝑥 

 𝜇)  
     

  a) The convex spatial domain: 𝑉(τ) of the minimal diameter, containing the whole body and 𝒫(τ)         

 𝑉(τ) ∶   𝑉 ∪ ∂𝑉  = 𝑉 ∈ 𝑽    ,    𝒫(𝑥�̂�) ∈ 𝑉(τ)   ⇒   𝒫(𝑥�̂�) ≡  𝒫(τ, 𝑥�̂�)    ;          (2.1) 

 𝑉(τ) ∶   𝒫(τ, 𝑥�̂�) ∈ (∂𝑉 ∪ (~ 𝑉 ))    ⇒    𝑇  
𝛼𝛽(τ, 𝑥�̂�)  = 0   ;      (2.2) 

        Ø0
 ∶≥   Ø ∶= Ø(τ) ∶= Ø(𝑉(τ))   ∶≥  d (τ)        (Ø is the max. spatial distance in 𝑉 )       (2.3) 

  b) The notation of a spatial integral on the volume: V  that is embedded in its space-time domain: 𝑽  

   < 𝑓 > ∶ = ∫𝑓 d3|𝑉(τ)|
 

𝑉

       (2.4) 
 

  c) Synchronizing (initial) condition for 𝑥�̂�(τ = τ0)  , which codetermine the matrix: Λ  �̿�
 𝜇(τ) at 𝒫(τ0) 

(1.4,5,6)     {
  𝒫(τ0)  ∶  < 𝑥

 �̂�𝑇0̂0̂(τ0  , 𝑥
�̂�) >  =  0                                

  𝐞0̿(τ0) ∶   < 𝑇 
 �̂�0̂(τ0  , 𝑥

�̂�) > ≡ < 𝑇 
0̂ �̂�(τ0  , 𝑥

�̂�) > = 0
   

          (2.5a)          

          (2.5b)    

If  the SLI coordinate system fulfills  this condition at τ = τ0 , it can on 𝑉(τ → τ0)  be referred to as the 

(locally inertial momentarily comoving) proper frame (of reference) and then, as long as Ø ≤ Ø0
  is sat-

isfied, as the Locally Inertial comoving    frame (of reference). The parameter: τ is called the proper time. 



3-7 
 

3) The locally inertial coordinates: the vector integration and the SE-tensor spatial divergence integral  
 

  a) The flat base approximation and factoring of the local coordinates base out of the spatial integral  

The norm: |𝑥 
�̅�| is defined as the spatial distance (shortest length) from 𝒫(𝑥 

�̅�) to the 𝒫(𝑥 
0̅, 𝑥 

�̅� = 0) . 

𝑥 
𝜇  →   𝑥 

�̅�(𝒫0) ∶   𝑥 
�̅�(𝒫 = 𝒫0)  =  0   ,    Γ    �̅��̅�

 �̅�
∶ = 𝛤

    �̅��̅�

�̅� (𝑥 
�̅� → 0) = 0   ;         (3.1) 

      𝐞�̅� ∶ = 𝒆�̅�(𝑥 
�̅� → 0)    ;       

𝜕𝐞�̅�

∂𝑥�̅�
≡ Γ

    �̅��̅�

 �̅�
𝐞�̅�           (3.2a,b) 

 𝒆�̅� = 𝐞�̅� + Γ    �̅��̅�
 �̅�

𝐞 �̅�𝑥
�̅� + �̃�(|Γ    �̅��̅�,�̅�

 �̅�
| 𝐞 �̅�|𝑥

�̅�|2)         (3.3) 

(3.1) 𝒆�̅� = 𝐞 �̅� + �̃�    �̅�
 �̅� (|𝑥�̅�|2)𝐞 �̅�        (3.4) 

 (𝑥0̅ ← 0)   →    𝒆 �̅� = 𝐞 �̅� + �̃�    �̅�
 �̅� (|𝑥�̅�|2)𝐞 �̅�         (3.5) 

𝑌   
𝛼: ∈ ℝ4  →   < 𝑌   

�̅�𝒆�̅� > = < 𝑌   
�̅�𝐞 �̅� > + < 𝑌   

�̅�  �̃��̅�
  (|𝑥�̅�|2) > = < 𝑌   

�̅� > 𝐞 �̅� + ‖𝑌   
�̅�‖ �̃��̅�

  (Ø2)     (3.6) 

(1.9b) (3.1) 𝑥 
�̂� − 𝑥 

�̂�(𝒫(τ)) ⊂ 𝑥 
�̅�(𝒫(τ))                   (3.7) 

This means that (3.6) is valid for  𝑥 
�̂� too. For the rest the LI coordinates components can be separated.   

(3.6)   ∀ α̂           < 𝑌   
α̂𝒆α̂ >  =  (< 𝑌   

α̂ > + �̃�  
 α̂(‖𝑌‖Ø2)) 𝐞α̂        (3.8) 

The uncertainty: �̃�  
 �̂�(∗ Ø2) is the price for making the vector integration on curved domain reasonable. 

 

  b) The total neutrality of spatial divergence for the body SE-tensor field in the LI comoving frame. 

(2.2) 

(3.8) 
 𝑇  
�̂��̂�(𝒫 ∈ 𝑆 ∶= ∂𝑉) ≡ 0    →      < 𝑇       , n̂

�̂�n̂
(τ, 𝑥�̂�) >  = ∮𝑇�̂�n̂(τ, 𝑥�̂�) 𝑛n̂  d

2|𝑆|
 

𝑆

= �̃� 
 �̂�(mØ2)      (3.9) 

4) Temporal energy-momentum balance of the SE-tensor in the locally inertial comoving frame    
 

  a) The test body problem: the cross effect of gravity fields, its convergence upper bound estimation                                             

Based on the equation for weak gravitational field and its source given by a hypothetical scalable mas-

sive body with a density limit (no singularities), which on closer inspection can be treated as the super-

position of  infinitesimally small dispersed point masses with their dℎ�̂��̂� = 𝑂�̂��̂�(dm/𝑟) partial fields ; 

by negligible external reflections the following basic estimates for the metric deviation and its deriva-

tives, can be made in the originally (without the active body mass as field source) LI comoving frame. 

[5] 

(1.11) 
η 
�̂��̂� ℎ̅      ,  �̂�,�̂�

 �̂��̂�
≡ η 

�̂��̂�  (ℎ  
 �̂��̂� −

1

2
 η�̂��̂�ℎ    �̂�

 �̂�
)
,  �̂�,�̂�

 

= −16π 𝑇 
�̂��̂�          (4.1) 

(5.1) m  ∶=  m0Ø0
−3Ø3 = 𝑂(Ø3)     ;       𝑇  

�̂��̂�  ∶=  𝑂�̂��̂�(Ø0) ∈ ℝ4×4   (4.2a,b) 

𝑔
�̂��̂�
 ∶ = η

�̂��̂�
 + ∆𝑔

(𝑒𝑥)�̂��̂�
 + ∆𝑔

(𝑖𝑛)�̂��̂�
 ∶ = η

�̂��̂�
 + ℎ

(𝑒𝑥)�̂��̂�
 + ℎ

(𝑖𝑛)�̂��̂�
 = η

�̂��̂�
 + 𝑂�̂��̂�(Ø

2 +mØ−1)   (4.3) 

ℎ(𝑒𝑥)�̂��̂�
 =̂  𝑂(Ø2)      →  ℎ(𝑒𝑥)�̂��̂�,�̂�

 =̂ 𝑂(Ø)        →  ℎ(𝑒𝑥)�̂��̂�,�̂�,�̂�
 =̂ 𝑂(Ø0)       →   ℎ(𝑒𝑥)�̂��̂�,�̂�,�̂�,�̂�

 =̂ 𝑂(Ø0)       (4.4a..d) 

ℎ(𝑖𝑛)�̂��̂�
 =̂ 𝑂(mØ−1) →  ℎ(𝑖𝑛)�̂��̂�,�̂�

 =̂ 𝑂(mØ−2) →  ℎ(𝑖𝑛)�̂��̂�,�̂�,�̂�
 =̂ 𝑂(mØ−3) →  ℎ(𝑖𝑛)�̂��̂�,�̂�,�̂�,�̂�

 =̂ 𝑂(mØ−4)    (4.5a..d) 

This two fields: of the body (internal) and of the externally imposed curvature, are superimposed result-

ing in two partial Christoffel symbol fields and creating additionally a cross-term: 𝛥(𝑥) in which range 

the separation between the two fields is no longer definite. The degree of convergence of this term and 

its derivatives can be determined. Since (due to Newton’s first law) the internal field itself in an inertial 

system can have no effect on the overall motion, it is arbitrary omitted but the cross-term remains valid. 

                     𝛤
    �̂��̂�

�̂�
∶= 𝛤

(𝑖𝑛)  �̂��̂�

      �̂�
+ 𝛤

(𝑒𝑥)  �̂��̂�

      �̂�
+ 𝛥

(𝑥)  �̂��̂�

      �̂�
 

      (4.6) 

    (4.7)       

 𝛤
    �̂��̂�

 �̂�
≈

{η�̂��̂�−ℎ(𝑖𝑛)�̂��̂�
     −ℎ(𝑒𝑥)�̂��̂�

     }
�̂��̂�

2
(ℎ(𝑖𝑛)�̂��̂�,�̂�

 + ℎ(𝑖𝑛)�̂��̂�,�̂�
 − ℎ(𝑖𝑛)�̂��̂�,�̂�

 + ℎ(𝑒𝑥)�̂��̂�,�̂�
 + ℎ(𝑒𝑥)�̂��̂�,�̂�

 − ℎ(𝑒𝑥)�̂��̂�,�̂�
 )                     
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𝛥
(𝑥)  �̂��̂�

      �̂�
= 

{ℎ(𝑖𝑛)…
     }�̂��̂�

2
(ℎ(𝑒𝑥)�̂��̂�,�̂�

 − ℎ(𝑒𝑥)�̂��̂�,�̂�
 − ℎ(𝑒𝑥)�̂��̂�,�̂�

 ) +
{ℎ(𝑒𝑥)…
     }�̂��̂�

2
(ℎ(𝑖𝑛)�̂��̂�,�̂�

 − ℎ(𝑖𝑛)�̂��̂�,�̂�
 − ℎ(𝑖𝑛)�̂��̂�,�̂�

 )  

(4.4,5,6) (𝛤
(𝑖𝑛)  �̂��̂�

      �̂�
← 0)      →      𝛤

    �̂��̂�

�̂�
 = 𝛤

(𝑒𝑥)  �̂��̂�

      �̂�
+  𝛥

(𝑥)  �̂��̂�

      �̂�
 = 𝛤

(𝑒𝑥)  �̂��̂�

      �̂�
+𝑂

   �̂��̂�

 �̂� (mØ0)   
    (4.8)           

      (4.9a) 

→     𝛤
    �̂��̂�,�̂�

�̂�
= 𝛤

(𝑒𝑥)  �̂��̂�,�̂�

      �̂�
+ 𝑂

   �̂��̂��̂�

 �̂� (mØ−1)    →      𝛤
    �̂��̂�,�̂�,�̂�

�̂�
= 𝛤

(𝑒𝑥)  �̂��̂�,�̂�,�̂�

      �̂�
+𝑂

   �̂��̂��̂��̂�

 �̂� (mØ−2)   (4.9b,c) 

Based on (4.9) it can be shown, that in (4.19) the resulting cross-connection error would converge one 

degree faster than the approximation error there and it is also worth noting that even for m = O(Ø) the 

solutions (5.8,21) would converge with O(Ø) ; consequently the term: 𝛥
(𝑥)  �̂��̂�

      �̂�
 is neglected from here on. 

  b) Approximate factoring of the Christoffel symbol out of the local spatial integral on volume: V  

   𝛤
     �̅��̅�

 �̅�
= Γ

    �̅��̅�

 �̅�
(𝑔∗̅∗̅

 (𝒫0), 𝑔∗̅∗̅,∗̅
 (𝒫0)) + Γ    �̅��̅�,�̅�

 �̅�
𝑥�̅� + 2−1𝑂 (|Γ

    �̅��̅�,�̅�,�̅�

 �̅�
| |𝑥�̅�|2)   ∶=   𝛤

(𝑒𝑥) �̅��̅�

       �̅�
       (4.10) 

(3.8) < 𝛤
    �̂��̂�

�̂�
𝑇 
�̂��̂� >  =  Γ

    �̂��̂�

 �̂�
< 𝑇 

�̂��̂� > + Γ
    �̂��̂�,�̂�

 �̂�
< 𝑥�̂�𝑇 

�̂��̂� > + 𝑂
   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø2)      (4.11) 

T 
�̂��̂� ∶= < 𝑇 

�̂��̂� >    →    < 𝛤
    �̂��̂�

�̂�
𝑇 
�̂��̂� >  =  Γ

    �̂��̂�

 �̂�
T 
�̂��̂� + Γ

    �̂��̂�,�̂�

 �̂�
T 
�̂��̂�〈�̂�〉 + 𝑂

   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø2)    (4.12a,b) 

With (1.9b) it leads to the upper bound estimation of deviation of the temporal partial derivative (4.18) : 

(4.11) 

(1.9b) 
< 𝛤

    �̂��̂�

�̂�
𝑇 
�̂��̂� >  =  𝑂 ( |Γ

    �̂��̂�,�̂�

 �̂�
| ‖𝑇 

�̂��̂�‖Ø) + 𝑂
   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø2) =  𝑂
   �̂��̂�

 �̂�
(‖𝑇 

�̂��̂�‖Ø)        (4.13) 

(4.2) (5.1)      < 𝛤
    �̂��̂�

�̂�
𝑇 
�̂��̂� > = 𝑂 

�̂�(mØ)     ;      < 𝛤
     �̂��̂�

�̂�
𝑇   
�̂��̂� > = 𝑂 

�̂�(mØ)           (4.14a,b) 

  c) The local integral divergence of the SE-tensor in the LI comoving frame of reference: 𝑥�̂�  

Beginning with the conservation condition the T4-momentum temporal partial derivative is obtained: 

 𝑇       ;𝛽
𝜇𝛽 

 ≡ 𝑇      , 𝛽
𝜇𝛽 

+ 𝛤     𝛼𝛽
𝜇

𝑇  
𝛼𝛽 + 𝛤     𝛼𝛽

𝛽
𝑇   
𝜇𝛼 ∶= 0        (4.15) 

 𝑇       , 𝛽
𝜇𝛽 

= − 𝛤     𝛼𝛽
𝜇

𝑇  
𝛼𝛽 − 𝛤     𝛼𝛽

𝛽
𝑇   
𝜇𝛼       (4.16) 

(3.8) < 𝑇
      , �̂�

�̂��̂� 
>= − < 𝛤

     �̂��̂�

�̂�
𝑇  
�̂��̂� > − < 𝛤

     �̂��̂�

�̂�
𝑇   
�̂��̂� > + �̃� 

 �̂�(mØ2)                   (4.17) 

(3.9) < 𝑇
      , 0̂
�̂�0̂ 

> = − < 𝛤
     �̂��̂�

�̂�
𝑇  
�̂��̂� > − < 𝛤

     �̂��̂�

�̂�
𝑇   
�̂��̂� > + �̃� 

 �̂�(mØ2)       (4.18) 

(4.11,14) 

(1.9b) 
< 𝑇

      , 0̂
�̂�0̂ 

> = − Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂��̂� > − Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂� �̂� > + 𝑂 
�̂�(mØ2) = 𝑂 

�̂�(mØ)     (4.19) 

5) The geodesic 
 

Since 𝒫(τ0) can be any given point on the geodesic, in the following is assumed that the body is cur-

rently situated in the proper or at least in the LI comoving frame of reference, the behavior of the body 

in the vicinity of the spatial coordinates origin: 𝒫(τ) is analyzed, and if the result follows the geodesic 

in the limit case (for d → 0), it must also follow it inside the 2Ø0
  tube for d > 0 in a certain timespan. 

 

  a)  The body- : (rest) mass: m , four-position:  x   
�̂�, four-velocity: U 

�̂� and the minimal/rest energy E0 

 m(τ = τ0)  ∶=  < 𝑇   
0̂0̂(τ0  , 𝑥

�̂�) > + �̃�(md2)    (5.1) 

(2.5a)  x   
0̂(τ)  ∶=  τ   ,    x   

�̂�(τ)  ∶=  < 𝑇   
0̂0̂(τ  , 𝑥�̂�) >−1 < 𝑥�̂�𝑇   

0̂0̂(τ  , 𝑥�̂�) > +  �̃��̂�(Ø2d)    (5.2a,b) 

(1.4,9b)  x   
0̂(τ0)  ∶=  τ0   ,    x   

�̂�(τ0) = �̃�
�̂�(d3)    →     𝑔�̂��̂�

 (τ0  ,    x   
�̂�(τ0)) = η�̂��̂�

 + �̃��̂��̂�
 (d6)      (5.3a,b) 

(1.2a) U 
�̂�   ∶=  

d x   
�̂�

d τ
=
∂ x   

�̂�

∂ 𝑥  
0̂
     | |U�̂�| ≪ 1             ;              �̃�   , 0̂

 �̂� (Ø2d) = �̃�   
 �̂�(Ø2d)      (5.4a,b) 

(2.5b) E0 = E(τ0) ∶= min(m(τ0)/√1 − U   
�̂�(τ0)U�̂�

 (τ0))     ⇒     U 
�̂�(τ0) = �̃�

�̂�(d3) ,    (5.5a,b) 

(5.2a) U 
0̂(τ0) = 1 ,    U

�̂�(τ0) = �̃�
�̂�(d3)         →         U  ,0̂

0̂ (τ0)  = 0       (5.6a,b) 



5-7 
 

  b) The solution based on the SE-tensor. 

The point-idealization: p𝜇 of a four-momentum field can be defined as the “T4- momentum”: < 𝑇      
𝜇0 > 

or as the velocity based “U4-momentum”: m U𝜇.  Given they are equivalent, it follows for |U�̂�| ≪  1: 

(4.19) 

(5.2b) 
dp�̂�

dτ
=  p�̂�Γ

     �̂�0̂,�̂�
�̂�

x�̂�  − Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂��̂� > −   Γ
     �̂��̂�,�̂�

�̂�
< 𝑥�̂�𝑇 

�̂��̂� > + �̃� 
�̂�(mØ2)   (5.7) 

(4.12) 

(4.14)   
dp�̂�

dτ
= 𝑂 

�̂�(m|x�̂�|) − Γ
     �̂��̂�

�̂�
T 
�̂��̂� − Γ

     �̂��̂�

�̂�
T 
�̂��̂� − Γ

     �̂��̂�,�̂�

�̂�
T 
�̂��̂�〈�̂�〉 − Γ

     �̂��̂�,�̂�

�̂�
T 
�̂��̂�〈�̂�〉 = 𝑂 

�̂�(mØ)      (5.8) 

(5.1) 

(5.4) 
    m U�̂� = < 𝑇      

�̂�0̂ > +  �̃� 
 �̂�(mØ2)   ⇒    

dU�̂�

dτ
=
d(p�̂�/m)

dτ
 =  

1

m
(
dp�̂�

dτ
− U�̂�

dm

dτ
) =  𝑂 

�̂�(Ø) 
    (5.9a)     

   (5.9b)   

Since the origin of 𝑥�̂� follows the geodesic, the equation (5.9b) proves at the limit that the body follows 

the geodesic as well. The tidal forces in (5.7) vanish on a flat domain if a suitable gauge (1.10) is used.  

The critical physical problem is that (5.8) is not coordinate-invariant and the particular thing about this 

is that the body must freely levitate in the V  domain near the spatial origin and the LI comoving frame 

makes it possible because the gravity field almost vanishes there. The reason for this effect are the local 

translation symmetries (t-xyz) on V  in 𝑥�̂�  , yet those symmetries are not perfect since on V  the deriva-

tive: 𝑔�̂��̂�,�̂�
 = 𝑂(Ø) ≠ 0 and this is the limiting factor for the temporal derivative convergence in (5.8). 

  c) The mass density, the (proper) energy tensor (E-tensor) and its local integral divergence  

The state of overall motion is defined by the body velocity, thus to find the tensor equation of motion 

the SE-tensor component that incorporates only this velocity, is to be used and this for a small body is 

the E-tensor: 𝑇E   
 𝜇𝜈

 describing the convective flux of the body energy. Because 𝑇E   
 𝜇𝜈

 cannot depend on 

the specific local gauge (1.10) it can be defined only with 𝑂(m|𝑥�̂�|2) precision. Accordingly, in order 

to avoid the problem resulting from the equation (5.8) it needs to be postulated that gravitation doesn’t 

act on the whole SE-tensor but exclusively on its stress-free (but not necessarily divergence-free) com-

ponent: the E-tensor. In concrete terms this means that the LHS of (5.13) must vanish, and indeed due 

to the time symmetry of (1.8) and because the first moment of  𝑇E is nullified at τ0 thanks to (2.5a), the 

local integral conservation condition for  <  𝑇E >  reaches 𝑂(md2) convergence in  the proper frame.  

(1.10) 𝜌(𝑥 
�̂�) ∶=  𝑇   

0̂0̂(τ  , 𝑥�̂�) + 𝑂(m|𝑥�̂�|2)    ;      𝑈 
 �̂�(𝑥 

�̂�) ∶= U 
 �̂�(τ) + 𝑂   

 �̂�(|𝑥�̂�|2)  (5.10a,b) 

   𝑇E   
  �̂��̂�
  ∶=  𝜌    𝑈  

 �̂�𝑈  
�̂� = 𝑇   

0̂0̂     U  
 �̂�U  

�̂� + 𝑂 
 �̂��̂�(m|𝑥�̂�|2)       (5.11)      

(5.6a,4b) 𝑇S   
  �̂��̂�
  ∶=  𝑇  

 �̂��̂� − 𝑇E   
  �̂��̂�
     |  𝑇E   

 𝜇𝜈
𝑇S 𝜇𝜈
   = 𝑂(m2Ø2d)          (5.12) 

(3.8,9)                    < 𝑇E     ; �̂�
 �̂��̂� 

> = < 𝑇
E    , 0̂
 �̂�0̂ 

> + < 𝛤     �̂��̂�
�̂�

𝑇E  
 �̂��̂� > + < 𝛤     �̂��̂�

�̂� 𝑇E   
 �̂��̂�

> + �̃� 
 �̂�(mØ2)      (5.13); (5.14a,b) 

  𝑂
   , 0̂
 �̂� (md2) = 𝑂   

 �̂�(md2)   →    < 𝑇
E    , 0̂
 �̂�0̂ 

> + < 𝛤     �̂��̂�
�̂�

𝑇E  
 �̂��̂� > + < 𝛤     �̂��̂�

�̂� 𝑇E   
 �̂��̂�

> =  𝑂 
 �̂�(md2)   | τ → τ0   

  d) The coordinate-invariant solution based on the E-tensor.  

Consequently (5.14b) corresponds directly to (4.18) and because the body four-position on the world 

line is defined in the same way for the E-tensor as for the SE-tensor, therefore in the limit case the fol-

lowing prove of the geodesic solution for the E-tensor confirms the result (5.9b) for the SE-tensor as 

well. The below equations are studied for τ → τ0 , hence (2.5a) makes the offset:  x   
�̂� (5.2b) negligible. 

(4.11) (2.5a)    < 𝑇E   
 �̂�0̂ 

>, 0̂ = − Γ    �̂��̂�
 �̂�

< 𝑇E  
 �̂��̂� > − Γ    �̂��̂�

 �̂� < 𝑇E   
 �̂��̂�

> + 𝑂 
�̂�(md2)               (5.15) 

(5.11)      {< 𝜌 > U  
�̂�U  

0̂}, 0̂ = − < 𝜌 >   Γ   �̂��̂�
 �̂�

U  
�̂�U  

�̂�  − < 𝜌 > Γ
   �̂��̂�

 �̂�
U   
�̂�U   

�̂� + 𝑂 
�̂�(md2)       (5.16) 

(5.1,6b) 

(5.10a) 
{m U  

�̂�U  
0̂}, 0̂ =  m U  

0̂U  
�̂�
, 0̂
+ U  

�̂�U  
0̂m, 0̂ = −mΓ    �̂��̂�

�̂�
 U  
�̂�U  

�̂� −  mΓ
   �̂��̂�

 �̂�
U   
�̂�U   

�̂� +𝑂 
�̂�(md2)     (5.17)     

Even though Γ   �̂��̂�
�̂� = 0 here, it is the Γ   �̂��̂�

�̂�  that carries the key information about the origin of this zero.  

Since U 
0̂ is a constant and U 

�̂� → 0 , hence (5.17) can be decomposed into the system of two equations: 

(5.6) 
(5.20b) 

{
m U  

�̂�
, 0̂
= −mΓ

    �̂��̂�

 �̂�
 U  
�̂�U  

�̂� + 𝑂 
�̂�(md2)   | 𝑂 

0̂ = 0

  U  
�̂�m, 0̂ = − mΓ    �̂��̂�

 �̂�
U   
�̂�U   

�̂� + 𝑂 
�̂�(md2) | 𝑂�̂� = 𝑂 

�̂�(md5)
 

  (5.18a) 

 

  (5.18b) 
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 (5.3a,6a)  x   
�̂� = (τ − τ0)�̃� 

�̂�(d3) + �̃� 
�̂�(d3)              (5.19) 

 (5.18) τ → τ0    

{
 

   m
dU�̂�

dτ
= −mΓ

    �̂��̂�

 �̂�
 U  
�̂�U  

�̂�  + 𝑂 
�̂�(md2) + mU   

0̂Γ
    0̂0̂,�̂�
�̂�

�̃� 
�̂�(d3)

dm

dτ
= m, 0̂ = − mΓ    0̂�̂�

  �̂�
U   
0̂ +  𝑂 

0̂(md2) =   𝑂(md2)

      
      (5.20a)               

      
      (5.20b) 

Because τ → τ0  therefore in the limit case the partial temporal U�̂� derivative equals the total one. The 

equations turn out to be coordinate-invariant since the first one is the four-momentum form of the geo-

desic equation and the second one is a scalar equation, which is always coordinate-invariant, hence             

 

 

 

 (1.8b)   

∀τ         {
 ṗ𝜇 ≈ m

dU𝜇

dτ
= −mU  

𝛼U  
𝛽Γ    𝛼𝛽

 𝜇
+ 𝑂 

𝜇(md2)  |   U𝜇   ≡    ẋ   
𝜇(τ,  x   

𝛼)

       ṁ  ≡   
dm

dτ
  =  𝑂(md2)                                                                           

       
     (5.21a) 

    
      (5.21b) 

  e) The limit case turns out to be the rest mass conservation law and the standard geodesic equation: 

(5.21a) 

[5] 
 λ ∶= a τ + b  ,    d →   0       ⇒          

d2x   
𝜇

d λ
2
= −Γ    𝛼𝛽

 𝜇 dx   
𝛼

dλ

dx   
𝛽

dλ
             ∎          (5.22) 

III. Summary 
 

The behavior of a massive body located in the gravity field, free of other influences and with a negligi-

ble radiation, has been analyzed here. The body is defined here on the basis of a very general defini-

tion of its stress-energy tensor field and a convex spatial domain on which it exists. Therefore, based 

on the general space-time coordinates, the stationary locally inertial (SLI) coordinate system has been 

constructed in the area of validity. That coordinate system makes it possible at least for a certain time, 

to conveniently describe the movement of the body. If the spatial origin of such coordinates matches 

the comoving body at a certain τ , it is referred to as the proper frame there. This has been achieved by 

selecting the suitable initial conditions for the coordinate system itself. The proper frame is locally in-

ertial in the neighborhood of its origin. The applied local gauge aims to limit the fictitious tidal forces 

esp. on a flat domain, and can be modified if necessary to any other gauge that complies with the spa-

tial origin conditions of the SLI coordinates, without violating the convergence estimations. The spatial 

origin of the SLI coordinate system follows a geodesic and forms in the space-time a kind of geodesic 

tunnel, but it doesn’t mean that this by itself can somehow affect the tensor solution. Furthermore, the 

local integral divergence of the SE-tensor on the spatial domain is essential here. If the body is suffi-

ciently small, after flattening of the coordinate base four separate conservation equations of energy and 

momentum arise in the LI comoving frame from the SE-tensor zero-divergence due to the (t-xyz) sym-

metry that in curved space is only locally possible using approximation. Therefore, it is important here 

to be able to estimate the convergence grade of occurring uncertainties deviations and errors. For that 

upper bound estimations the big O-notation has been used. Because of the limited spatial extent of the 

body, it is possible to restrict the local integral divergence to the temporal component. This is crucial 

because it makes possible to derive the body equation of motion from the conservation condition of the 

SE-tensor. To guarantee that the test body problem is not critical here, the cross effect of gravity fields 

was proven to be negligible up to m = O(Ø). Based on the SE-tensor the body geodesic trajectory has 

been found only in the SLI coordinates. This in turn shows that the SE-tensor as a basis for the geodesic 

equation, which is a tensor equation, is only suitable to a limited extent. To solve this problem, the SE-

tensor has been reduced by setting all its components except the energy density in the proper frame 

arbitrary at zero, thus defining its component in the form of the body energy tensor that depends on the 

energy density but not on the stress density seen as internal flux (resulting mainly from the angular ve-

locity) and pressure. Together with the body- mass, position, four-velocity and the proper time, this E-

tensor is just another quantity associated with a physical object. Obviously by replacing the body SE-

tensor with its E-tensor component the dependence on its stress disappears, which is directly visible for 

the body as an internal observer in its proper frame and the external observer perceives only the final 

tensor result. Then the energy flux balance equation has been solved by splitting it into two separate 

equations: the first one relates to the body acceleration, the second one to the body mass. Moreover, 

these equations can be represented by tensor equations whereby in the limit case the first becomes the 

geodesic- and the second the mass conservation equation for a freely falling body in the space-time. 



7-7 
 

IV. Conclusions 
 

There are two testable possibilities: For a small body diameter:  d   the effective gravitational tidal forces: 

A) can influence the body trajectory at the O(d) level  B) cannot because its stress tensor field vanishes 

or on the average does not interact with gravity. It’s been shown that even though directly no invariant 

solution on the body SE-tensor basis has been found, an associated with its SE-tensor free “point” body 

traverse timelike geodesic. Basically, merely the conservation condition based on the SE-tensor is nec-

essary to determine it if the isolated from all “conventional” forces free body is also apparently isolated 

from gravity according to the local symmetries that occur in the LI comoving frame in the SLI system. 

At the same time this statement can be extended analogously to the solution with the body energy (E-) 

tensor which is the stress-free component of its SE-tensor, yet in this case the direct coordinate-invari-

ant solution is the geodesic equation, although for A there may be a trajectory error at the O(d) level. 

Thus, the E-tensor, so to say, forms the window for the influence of gravity on the body mass and this 

with an inherent proviso of the body (rest) mass being conserved. By applying the SE-tensor instead of 

the E-tensor in such an equation of motion, the weak equivalence principle could be violated, but since 

there are good reasons to conclude that the weak equivalence principle remains valid, the limit solution   

on the E-tensor base is preferable to rule out the theoretic dependence on the intrinsic stress field of the 

body matter. As a consequence, the following thesis can be proposed:  The total gravitational influence 

on a sufficiently small freely falling massive body or particle equals this influence on its energy tensor. 

Formulated in this way the above thesis in the near limit case, leads not only to the geodesic principle 

and the weak equivalence principle but also to the mass conservation law for an isolated body and to 

the explicit consequence that the rest mass and the passive mass must always have the same value; all 

this however with the advantage of not having the form of a quasi-mathematical axiom but containing 

the mechanism based on the local conservation condition for the E-tensor field in the LI proper frame.   
 

Since the geodesic principle hasn’t been derived here from the geometrical approach but from the con-

servation condition, it is natural not to limit oneself to freely falling bodies and the external influences, 

such as that of the Lorenz force, can be taken into account in order to get the equation of motion like:  

(5.9a,21) m U̇𝛼  =  −m U  
𝜇U  

𝜈Γ    𝜇𝜈
 𝛼 + qU  

𝜇F    𝜇
 𝛼   ≡  −TE   

 𝜇𝜈
Γ    𝜇𝜈
 𝛼 + qU  

𝜇F    𝜇
 𝛼                 (6.1)   

In the above equation the mass: m is not just a result of “adjusting” the geodesic equation to the Lorenz 

force, but was already there in (5.21a). It is also clear that m on the LHS expresses the inertial mass and 

m on the RHS the passive mass having the same value. Moreover, it is noteworthy that the inertial mass 

“hides” in the body-bound coordinates (U̇𝛼 = 0) and the passive mass “hides” in the free-falling coor-

dinates (Γ   𝜇𝜈
𝛼 = 0) as in the famous free-falling elevator thought experiment. This equation shows also 

that the thesis above contains the basis for the weak equivalence principle for extended bodies. This is 

because in a uniform gravitational field for a body in its proper frame the superposition of the E-tensor 

fields of all its particles results in the SE-tensor macro-field whose E-tensor expressing there the rest 

energy equivalent to the body mass, exclusively determines the influence of gravity on the world line 

of the body and all other body properties are irrelevant in this respect.  Therefore, it seems reasonable 

to generalize the thesis that has been proposed above, to the postulate:   The gravitational influence on a 

physical object results only from the gravity interaction with the energy tensor fields of all its particles. 

However, from a certain level the definition of the energy tensor for quantum objects is necessary here. 
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