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Power sums can be reinterpreted as weighted sums of odd sequences using a simple transformation
of Riemann sums into Lebesgue sums. This reformulation introduces a self-referential framework
in which power sums are expressed as linear combinations of power sums in descending order.
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I. INTRODUCTION

Consider a sequence of n rectangles on a plane, each
with a base of 1 and heights that increase according
to the powers of the integers: 1% 2% 3% ... nF, where
k =0,1,2.... The cumulative area of these rectangles
serves as a visual interpretation of a power sum of powers,
denoted as follows:

n

Sh=>"i* k=01.2,.... (1)

i=1

In particular, when k& = 0, we encounter the simple case:
n

o= 1=n, (2)
i=1

which is the total area of n square units. The sum S*
can be interpreted as the Riemann sum (and integral) of
a step function f(x) = |x|* defined in the interval [1,n],
where | x| represents the floor function. Our primary goal
was to derive a closed-form expression for an unknown
power sum S¥ using a recursive framework. We show
that this problem can be solved by representing S¥ as a
linear combination of the previously known power sums
St , for i < k. This approach leads to the following final
representation:

k—1
=0

where a; are either rational numbers or polynomials in
n with rational coefficients. Note that we have included
i = 0 in the sum, as SO = n is a known quantity that
may appear in the linear combination.

A. The general case

Our method begins by manipulating the formal struc-
ture of a generic sum, decomposing it into an equivalent
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expression. Specifically, we express any power sum S¥ in
what we call its (k, h)-form:

n n
SE=Y "= """ h=0,1,2..., h<k (4)
i=1 i=1
This move favors the possibility of a fractional represen-
tation of the power sum if we look for a polynomial pp,(j)
such that:

me') =" (5)

By the inverse relation between summations and finite
differences, the degree of the polynomial must be (h—1),
so that its summation yields the i" term. By substituting
this into Eq. (4), we obtain the double sum:

Sk=2_ P " (6)

i=1 j=1
To simplify this double sum, we have to change the order.
Considering that 1 < j < ¢ < n, we allow j to range
from 1 to n, and for each j, variable ¢ ranges from j
to n. Finally, because pp(j) depends only on j, we can
factor it out of the inner sum, yielding a more manageable
expression:

Sn=2_p(i) D" (7)

The inner sum, -7 ¢*~"

, can evidently be expressed as
the difference between the power sums Si~" and S¥~}'

(assumed known), and we denote this difference as /L?:
n
Sk o gk ghoh = gk (3)
i=j
So the power sum S* can now be expressed as:
n
Sh=> pn(i)uk. (9)
j=1

By developing the product in the sum, we get a polyno-
mial py(j) of order k containing all the decreasing powers
of j. Executing the summation and shifting the j* sum-
mation to the left, we obtain the desired result.



B. The form (k,h) = (1,1)

Here, with p1(j) = j° = 1, Eq. (4) becomes:

n 1

55:22’:221-@'. (10)

i=1 j=1

Reversing the order of summation, we get:

n n n

Sp=>>1=> (n—j+1)==8) +n’+mn, (11)

j=li=j =1
from which:
n+1)n n+1

1 ( _ 0
Sp =t = 5.

(12)

C. The form (k,h) = (k,2)

Consider the sequence of the first i odd numbers
{1,3,5,...,2i — 1}. The sum of its elements is:

%

Z(?j—l):Qij—ilzinri—z‘:za. (13)
1 j=1 j=1

Jj=

It follows that we can manage the (k, 2)-form of the sum
with pa(j) = 2j — 1 and get:

n n

SE=3"(2j-1)) i (14)
=1 i=j
where
DA T (15)
i=j

So the power sum ,u? can now be expressed as:

n

pk =" (25— Dy (16)

Jj=1

This formulation decomposes the sum of powers of order
k into sums over the sums of lower-order powers S¥—2

and Sf:f, providing a recursive structure for expressing
higher-order sums in terms of lower-order ones.

1. The form (k,h) = (2,2)

The case (2,2) has a significant interpretation. We
have:

,u?zSg—S?,l:n—j—kL (17)
which satisfies the “boundary conditions”:

pi=mn, p,=1 (18)

Thus, the double sum can be formally reduced to a sim-
pler form, interpretable as a Lebesgue sum of the step
function 25 — 1 over a discrete measure space. The mea-

sure /1,? “counts” the contributions of each odd number,

weighted by itself [1]:

n n

S2=> "2 —Dui=> (2i—1n—-j+1). (19)

j=1 j=1
Expanding, yields:

S2=>"[-22+(2n+3)j — (n+1)]. (20)

j=1
Solving for S2, we obtain:

2n+3 n+1
2 1
S, = 3 Sy — 3
expressing the sum of the squares in terms of lower power
sums. Substituting known values of S, and SO gives:

S2_2n+3 n?+n _n+1(n)_2n3+3n2+n
"3 2 3 B 6 ‘

S (21)

(22)

This approach reveals a connection between S2 and
Lebesgue summation. By shifting focus from indices to
values of odd numbers, we gain a new perspective. The
table below illustrates the transformation from double to
single sum for n = 5:
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2. The cases (k,2) for k> 2

When k£ > 2, in constructing the corresponding
Lebesgue sum for these cases, we can still use the func-
tion (25 — 1), but the function u;? is no longer a simple
counting measure as seen in the case of u?. Instead,

p? becomes a more complicated arithmetic function. To
better understand this, we will outline the step-by-step
construction for the specific case k = 3, with n = 5. In
this case, we have:

3 nP+n iy
s =

2 2

The generalized sum for £ = 3 becomes:

(23)

n

) 3, 20+ 2n—1. n%2+n
Si=>" {—93+232+ j- :

- 2 2
Jj=1



which simplifies to:

3 2n2 +2n—1 n+1
SSZ*SQ Slf SO
n* +2n3 + n? 1,2
= (Sn)" (24)

This result expresses the cube sum S3 as a function of
lower-order sums, and interestingly, it matches the square
of the linear sum S!. The following table summarizes the
process of transforming the double sum S3 into a single
sum:

1S5 7 [@i=D] pf [[2j—-D)ui]
) 9 5 45
4 7 9 63
3 5 12 60
2 3 14 42
1 1 15 15
AR R

D. The form (k,h) = (k,3)

Our method suggests the possibility of a broader
hierarchy of sum representations of the form
(k,1),(k,2), (k,3),..., each of which can be analyzed
using the approach outlined above. The non-uniqueness
of these decompositions becomes apparent from the fact
that different associated polynomials must be used. In
fact, the decomposition of a power sum into weighted
sums of lower-order powers is inherently flexible and
not restricted to a single representation. To illustrate
this point, we can explore the specific case of the form
(k,h) = (k,3) using the established methodological
framework.  This investigation will reveal the fun-
damental malleability of power sum representations.
The sequence 3j2 —3j+1, j = 1,2...n, satisfies the
identity:

i:(?,j? —3j+1) =43 (25)
j=1

It follows that we can express the sum S¥ for k > 3 in
this way:
n n

SE=>"(32=3j+1)> i, (26)

j=1 i=j

which simplifies to:

SE="(35% -3 + L)ul, (27)

where:
ph =Sk — §h 3. (28)
In particular, for & = 3, we have:
,u?:S’g—S?_lzn—j—l—l. (29)

Thus, the generalized sum for k£ = 3 becomes:
Sp=> (B =3j+1)(n—j+1)
J

Il
-

-

Il
-

[—35° +3j%n + 652 — 3jn — 4j +n + 1]. (30)
J

Simplifying this expression leads to:

3(n+2) In+4 n+1
3 _ 2 1 0
Sy = 7 S: 7 S, + 1 Sy
nt 4+ 2n3 4+ n?
= — 1 (31)

Comparison of Eq. (24) with Eq. (30) shows that the de-
composition of S into combinations of lower sums is not
unique. While the final result is fixed, the route taken to
arrive at it can vary. We can then think of obtaining rep-
resentations of sums of progressively higher orders that
provide equivalent decompositions for the same sum but
with different coefficients.

II. CONCLUSION

Our reformulation provides a new perspective on power
sums, revealing hidden structures that go beyond their
apparent simplicity. By introducing the weighting factors
u?, we express power sums as weighted sums of sequences
of odd numbers in the form (k,h) = (k,2) with k£ > 2.
This provides a consistent framework for analyzing power
sums of different orders. In particular:

1) For k = 2, the weights simplify to: u? =n—j+1
This allows us to interpret S2 as a Lebesgue sum of the
step function 25 — 1 over a discrete measure space. The
measure ,u? “counts” the contributions of each odd num-
ber.

2) For k > 2, the weighting factors u? become more com-
plex, assigning decreasing weights to odd numbers and
reflecting the influence of the higher-order power sum.
3) Unlike the case of k = 2, which involves multiple se-
quences, the method for £ > 2 is based on a single se-
quence of odd numbers.

While this reformulation does not improve computational
efficiency, it does provide a systematic way to decom-
pose power sums into lower-order sums that may reveal
new patterns, relationships, and identities. Using this
approach with k¥ = 3 demonstrates the non-uniqueness
of power sum decompositions. This flexibility allows for
multiple valid decompositions, depending on the desired
outcome—whether computational efficiency or theoretical
insight. The non-uniqueness highlights the richness of
power sums and suggests new avenues of investigation,
as different decompositions can provide alternate ways
to understand their properties.
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