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Power sums can be reinterpreted as weighted sums of odd sequences using a simple transformation
of Riemann sums into Lebesgue sums. This reformulation introduces a self-referential framework
in which power sums are expressed as linear combinations of power sums in descending order.
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I. INTRODUCTION

Consider a sequence of n rectangles on a plane, each
with a base of 1 and heights that increase according
to the powers of the integers: 1k, 2k, 3k, . . . , nk, where
k = 0, 1, 2 . . . . The cumulative area of these rectangles
serves as a visual interpretation of a power sum of powers,
denoted as follows:

Sk
n ≡

n∑
i=1

ik, k = 0, 1, 2, . . . . (1)

In particular, when k = 0, we encounter the simple case:

S0
n =

n∑
i=1

1 = n, (2)

which is the total area of n square units. The sum Sk
n

can be interpreted as the Riemann sum (and integral) of
a step function f(x) = ⌊x⌋k defined in the interval [1, n],
where ⌊x⌋ represents the floor function. Our primary goal
was to derive a closed-form expression for an unknown
power sum Sk

n using a recursive framework. We show
that this problem can be solved by representing Sk

n as a
linear combination of the previously known power sums
Si
n, for i < k. This approach leads to the following final

representation:

Sk
n =

k−1∑
i=0

aiS
i
n, (3)

where ai are either rational numbers or polynomials in
n with rational coefficients. Note that we have included
i = 0 in the sum, as S0

n = n is a known quantity that
may appear in the linear combination.

A. The general case

Our method begins by manipulating the formal struc-
ture of a generic sum, decomposing it into an equivalent
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expression. Specifically, we express any power sum Sk
n in

what we call its (k, h)-form:

Sk
n =

n∑
i=1

ik =

n∑
i=1

ihik−h, h = 0, 1, 2 . . . , h ≤ k. (4)

This move favors the possibility of a fractional represen-
tation of the power sum if we look for a polynomial ph(j)
such that:

i∑
j=1

ph(j) = ih. (5)

By the inverse relation between summations and finite
differences, the degree of the polynomial must be (h−1),
so that its summation yields the ih term. By substituting
this into Eq. (4), we obtain the double sum:

Sk
n =

n∑
i=1

i∑
j=1

ph(j)i
k−h. (6)

To simplify this double sum, we have to change the order.
Considering that 1 ≤ j ≤ i ≤ n, we allow j to range
from 1 to n, and for each j, variable i ranges from j
to n. Finally, because ph(j) depends only on j, we can
factor it out of the inner sum, yielding a more manageable
expression:

Sk
n =

n∑
j=1

ph(j)

n∑
i=j

ik−h. (7)

The inner sum,
∑n

i=j i
k−h, can evidently be expressed as

the difference between the power sums Sk−h
n and Sk−h

j−1

(assumed known), and we denote this difference as µk
j :

n∑
i=j

ik−h = Sk−h
n − Sk−h

j−1 ≡ µk
j . (8)

So the power sum Sk
n can now be expressed as:

Sk
n =

n∑
j=1

ph(j)µ
k
j . (9)

By developing the product in the sum, we get a polyno-
mial pk(j) of order k containing all the decreasing powers
of j. Executing the summation and shifting the jk sum-
mation to the left, we obtain the desired result.
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B. The form (k, h) = (1, 1)

Here, with p1(j) = j0 = 1, Eq. (4) becomes:

S1
n =

n∑
i=1

i =

n∑
i=1

1∑
j=1

1 · i. (10)

Reversing the order of summation, we get:

S1
n =

n∑
j=1

n∑
i=j

1 =

n∑
j=1

(n− j + 1) = −S1
n + n2 + n, (11)

from which:

S1
n =

(n+ 1)n

2
=

n+ 1

2
S0
n. (12)

C. The form (k, h) = (k, 2)

Consider the sequence of the first i odd numbers
{1, 3, 5, . . . , 2i− 1}. The sum of its elements is:

i∑
j=1

(2j − 1) = 2

i∑
j=1

j −
i∑

j=1

1 = i2 + i− i = i2. (13)

It follows that we can manage the (k, 2)-form of the sum
with p2(j) = 2j − 1 and get:

Sk
n =

n∑
j=1

(2j − 1)

n∑
i=j

ik−2, (14)

where

n∑
i=j

ik−2 = Sk−2
n − Sk−2

j−1 ≡ µk
j . (15)

So the power sum µk
j can now be expressed as:

µk
j =

n∑
j=1

(2j − 1)µk
j . (16)

This formulation decomposes the sum of powers of order
k into sums over the sums of lower-order powers Sk−2

n

and Sk−2
j−1 , providing a recursive structure for expressing

higher-order sums in terms of lower-order ones.

1. The form (k, h) = (2, 2)

The case (2, 2) has a significant interpretation. We
have:

µ2
j = S0

n − S0
j−1 = n− j + 1, (17)

which satisfies the “boundary conditions”:

µ2
1 = n, µ2

n = 1. (18)

Thus, the double sum can be formally reduced to a sim-
pler form, interpretable as a Lebesgue sum of the step
function 2j − 1 over a discrete measure space. The mea-
sure µ2

j “counts” the contributions of each odd number,
weighted by itself [1]:

S2
n =

n∑
j=1

(2j − 1)µ2
j =

n∑
j=1

(2j − 1)(n− j + 1). (19)

Expanding, yields:

S2
n =

n∑
j=1

[−2j2 + (2n+ 3)j − (n+ 1)]. (20)

Solving for S2
n, we obtain:

S2
n =

2n+ 3

3
S1
n − n+ 1

3
S0
n, (21)

expressing the sum of the squares in terms of lower power
sums. Substituting known values of S1

n and S0
n gives:

S2
n =

2n+ 3

3

(
n2 + n

2

)
− n+ 1

3
(n) =

2n3 + 3n2 + n

6
.

(22)

This approach reveals a connection between S2
n and

Lebesgue summation. By shifting focus from indices to
values of odd numbers, we gain a new perspective. The
table below illustrates the transformation from double to
single sum for n = 5:

S2
5 σ1 σ3 σ5 σ7 σ9 µ2

j

∑
L

9 1 9
7 7 2 14

5 5 5 3 15
3 3 3 3 4 12

1 1 1 1 1 5 5∑
R 12 22 32 42 52 55

2. The cases (k, 2) for k > 2

When k > 2, in constructing the corresponding
Lebesgue sum for these cases, we can still use the func-
tion (2j − 1), but the function µk

j is no longer a simple

counting measure as seen in the case of µ2
j . Instead,

µk
j becomes a more complicated arithmetic function. To

better understand this, we will outline the step-by-step
construction for the specific case k = 3, with n = 5. In
this case, we have:

µ3
j =

n2 + n

2
− j2 − j

2
. (23)

The generalized sum for k = 3 becomes:

S3
n =

n∑
j=1

[
−j3 +

3

2
j2+

2n2+ 2n− 1

2
j − n2 + n

2

]
,
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which simplifies to:

S3
n =

3

4
S2
n +

2n2 + 2n− 1

4
S1
n − n+ 1

4
S0
n

=
n4 + 2n3 + n2

4
= (S1

n)
2. (24)

This result expresses the cube sum S3
n as a function of

lower-order sums, and interestingly, it matches the square
of the linear sum S1

n. The following table summarizes the
process of transforming the double sum S3

5 into a single
sum:

S3
5 j (2j−1) µ3

j (2j−1)µ3
j

5 9 5 45
4 7 9 63
3 5 12 60
2 3 14 42
1 1 15 15∑5

j1
15 25 55 225

D. The form (k, h) = (k, 3)

Our method suggests the possibility of a broader
hierarchy of sum representations of the form
(k, 1), (k, 2), (k, 3), . . . , each of which can be analyzed
using the approach outlined above. The non-uniqueness
of these decompositions becomes apparent from the fact
that different associated polynomials must be used. In
fact, the decomposition of a power sum into weighted
sums of lower-order powers is inherently flexible and
not restricted to a single representation. To illustrate
this point, we can explore the specific case of the form
(k, h) = (k, 3) using the established methodological
framework. This investigation will reveal the fun-
damental malleability of power sum representations.
The sequence 3j2 − 3j + 1, j = 1, 2 . . . n, satisfies the
identity:

i∑
j=1

(3j2 − 3j + 1) = i3. (25)

It follows that we can express the sum Sk
n for k ≥ 3 in

this way:

Sk
n =

n∑
j=1

(3j2 − 3j + 1)

n∑
i=j

ik−3, (26)

which simplifies to:

Sk
n =

n∑
j=1

(3j2 − 3j + 1)µk
j , (27)

where:

µk
j = Sk−3

n − Sk−3
j−1 . (28)

In particular, for k = 3, we have:

µ3
j = S0

n − S0
j−1 = n− j + 1. (29)

Thus, the generalized sum for k = 3 becomes:

S3
n =

n∑
j=1

(3j2 − 3j + 1)(n− j + 1)

=

n∑
j=1

[
−3j3 + 3j2n+ 6j2 − 3jn− 4j + n+ 1

]
. (30)

Simplifying this expression leads to:

S3
n =

3(n+ 2)

4
S2
n − 3n+ 4

4
S1
n +

n+ 1

4
S0
n

=
n4 + 2n3 + n2

4
. (31)

Comparison of Eq. (24) with Eq. (30) shows that the de-
composition of S3

n into combinations of lower sums is not
unique. While the final result is fixed, the route taken to
arrive at it can vary. We can then think of obtaining rep-
resentations of sums of progressively higher orders that
provide equivalent decompositions for the same sum but
with different coefficients.

II. CONCLUSION

Our reformulation provides a new perspective on power
sums, revealing hidden structures that go beyond their
apparent simplicity. By introducing the weighting factors
µ2
j , we express power sums as weighted sums of sequences

of odd numbers in the form (k, h) = (k, 2) with k ≥ 2.
This provides a consistent framework for analyzing power
sums of different orders. In particular:
1) For k = 2, the weights simplify to: µ2

j = n − j + 1.

This allows us to interpret S2
n as a Lebesgue sum of the

step function 2j − 1 over a discrete measure space. The
measure µ2

j “counts” the contributions of each odd num-
ber.
2) For k > 2, the weighting factors µk

j become more com-
plex, assigning decreasing weights to odd numbers and
reflecting the influence of the higher-order power sum.
3) Unlike the case of k = 2, which involves multiple se-
quences, the method for k > 2 is based on a single se-
quence of odd numbers.
While this reformulation does not improve computational
efficiency, it does provide a systematic way to decom-
pose power sums into lower-order sums that may reveal
new patterns, relationships, and identities. Using this
approach with k = 3 demonstrates the non-uniqueness
of power sum decompositions. This flexibility allows for
multiple valid decompositions, depending on the desired
outcome–whether computational efficiency or theoretical
insight. The non-uniqueness highlights the richness of
power sums and suggests new avenues of investigation,
as different decompositions can provide alternate ways
to understand their properties.
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