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Abstract
These are some notes on category theory that might be useful to a

first year graduate student in mathematics. This is the first of a three
part series including references to literature, on the theme of identity,
examples of objects defined using the universal property and a section on
monomorphisms and epimorphisms.

1 Some History

• 1930-40s Formulation of the universal mapping problem and the solution
satisfying it, example Free modules, Bourbaki series, Theory of sets ,
original Hermann publications.

• 1945 Category Theory, Maclane and Eilenberg[3]

• 1956 Cartan and Eilenberg[2]

• 1958 Kan Adjoint functors[5]

• 1964 Freyd adjoint functor theorem[4]

2 Identity

Let C be a category and X ∈ Obj C. By definition[6], X has an identity mor-
phism 1X ∈ MorC(X,X). A morphism f : X → Y in C is called an isomorphism
if there exists another morphism g : Y → X such that f◦g = IdY and g◦f = IdX.
Given two functors F,G : C → D, a morphism θ : F → G of functors parametrized
by objects in C is defined such that if A B

α then the following diagram

commutes,
F(A) F(B)

G(A) G(B)

F(α)

θ(A) θ(B)

G(α)

. So, there is a category of functors from C to
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D. An isomorphism in this category is called an isomorphism of functors.

There is a notion similar to isomorphism of categories called "equivalence of
categories". Let F : C → D be a functor. The categories C and D are equivalent
if there exists a functor G : D → C such that F(G(D)) = D ′ and G(F(C)) = C ′

where D and D ′ are same upto isomorphism and similarly for C and C ′ for all
objects C ∈ Obj C and D ∈ Obj D. This can also be written as F ◦G = 1D and
G ◦ F ∈ 1C.

3 Examples of an object that are defined using a
Universal Property

3.1 Product

Let C be a category in which objects called products exist(to be defined now).
Let E1,E2 ∈ Obj C. A product of E1,E2 is the triple P,π1,π2 such that P(short
for the triple) is unique upto unique isomorphism. That is to say, it satisfies
a universal property. More precisely, it is a final object in some suitable cate-
gory. The maps in the triple are called projection maps. They are named so in
analogy with the familiar products and their projection maps to the constituent
objects. If P ′ is an object in the category of sets along with two maps, which are
the projection maps to E1 and E2, then there is a map from P to the product
defined above. Exchanging P and the product defined above there is a map
from E1 × E2 to P. This is depicted in the following commutative diagram:

E1

P ′ P

E2

∃!

π′
1

π′
2

π1

π2

For example, the triple consisting of the cartesian product of two sets and
the projection maps is a product, so products exist in the category of sets Set.

These two maps are inverses of each other and the isomorphism between
them is unique. This is the universal property of the product in the category
of magmas. A product object exists in a category if such conditions are true
in that category. In fact this construction exists in the category of sets as well.
(y, x) is an example of a different product P. There is an obvious isomorphism
between P to E1 × E2 such that (y, x) 7→ (x,y).
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3.2 Extension

Let C be a category in which objects called Extensions exist(to be defined now)
in which monomorphisms are injective and epimorphisms are surjectives. Let
the category have zero objects as well. Objects have properties of atleast groups.

Let G, F ∈ Obj C such that F G . The triple E = (E, i,π) is an
extension of G by F if there exists an object E which satisfies a universal property
as shown in the commutative diagram below

0 0

0 F E G 0

E1

i

i1
f

π

π1

.

The following proposition shows that the category of groups has extensions.

Proposition 1. In the category of groups, let E,E∞ be two extensions of G
by F. If u : E → E1 be a morphism then u is an isomorphism.

Proof.
F E G

E1

i

i1

π

u
π1 Let u(x) = e1. So π(x) = π1 ◦ u(x) = π1(e1) =

eG. Thus x ∈ Ker π = Im i. So, x = i(x ′). i1(x
′) = u ◦ i(x ′) = u(x) = e1 =⇒

x ′ = ef since i1 is injective. Thus x = e. So, Ker u is trivial and thus u is
injective.
π = π ◦ u is surjective and π is surjective so u is surjective.

A map s : G → E is called a section of the extension if π ◦ s = IdG. A map
r : E → F is called a retraction of the extension if r◦i = IdF. For example, direct
products in the category of groups. In the category of groups, if E is isomorphic
to F×G then it is called a trivial extension. Following are some equivalent ways
of saying that E is a trivial extension of G by F.

Theorem 2. E extension of G by F.[1] TFAE

1. E is a trivial extension.

2. E has a retraction r.

3. E has a section s such that s(G) is contained in the centralizer of i(F).

3



Proof. E ∼ F×G. So, (i) =⇒ (ii).

F

E F×G

G

f

r=π1◦f

π

π1

π

(i) implies (iii)
F

F×G E

G

i

f

i1

s

So, the section is s = f ◦ i1. Let y1 ∈ i1(G),y ∈ f ◦ i(F). So,

y1 = (e, x1) and y = (x, e) and thus y1y = yy1. s(G) commutes with every
element of i(F), since F×G is isomorphic to E.
( ii implies i)
(r,π) : E → F × G is a morphism of extensions so it is an isomorphism by the
above proposition and thus E is a trivial extension.
( iii implies i)
(i, s) : F×G → E is a morphism of extensions so it is an isomorphism.

4 Monomorphisms and Epimorphisms

Definition 3 (Monomorphism). An monomorphism in a category C is a
morphism f : U → V that satisfies left cancellation: for any C and any
morphisms g,h : W ⇒ U, whenever f ◦ g = f ◦ h, then g = h.

Proposition 4. Composition of monomorphisms are monomorphisms.

Proof. h1,h2 : U ⇒ V morphisms.
f : V → W, g : W → X monomorphisms.
If (g◦ f)◦h1 = (g◦ f)◦h2 then using associativity, g◦ (f◦h1) = g◦ (f◦h2) =⇒
f ◦ h1 = f ◦ h2 =⇒ h1 = h2. So, composition of monomorphisms is a
monomorphism.

Proposition 5. In the category of sets and groups, a monomorphism and
injective map are same.

Proof. Let f : V → W be an injective map in the category of sets(groups).
Let h1,h2 : U ⇒ V be set(group) morphisms such that f ◦ h1 = f ◦ h2. So,
f(h1(x)) = f(h2)(x) =⇒ h1(x) = h2(x) for all x ∈ U. So, h1 = h2 and thus f

is a monomorphism.
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Let f : V → W be a monomorphism in the category of sets(groups). Let
h1,h2 : U ⇒ V be set(group) morphisms. Let U be a singleton set consisting
of the element u. Let h1(u) = x and h2(u) = y. Let f(x) = f(y), so f(h1(u)) =

f(h2(u)) and thus f ◦ h1 = f ◦ h2 since it f ◦ h1(u) = f ◦ h2(u) for all elements
u ∈ U. Since f is a monomorphism, h1 = h2 and thus x = y. So, f is an
injective map in the category of sets and groups.

Definition 6 (Epimorphism). An epimorphism in a category C is a mor-
phism f : A → B that satisfies right cancellation: for any C and any mor-
phisms g,h : B ⇒ C, whenever g ◦ f = h ◦ f, then g = h.

Proposition 7. Composition of epimorphisms are epimorphisms.

Proposition 8. In the category of sets and groups, a epimorphism and
surjective map are same.

The result will be proved only in the category of sets. Readers are invited
to prove it in the category of groups.

Proof. Let f : A → B be an epimorphism in the category of sets. Let g,h :

B ⇒ C be set morphisms. Let C = 0, 1. Letg(b) = 1 if b ∈ f(A) and g(b) = 0

otherwise. Let h(b) = 1 for all b ∈ B. g ◦ f(a) = h ◦ f(a) = 1 for all a ∈ A. So,
g ◦ f = h ◦ f and thus g = h since f is an epimorphism. This impels B = f(A)

and thus f is surjective.
Let f : A → B be a surjective map. Let g,h : B ⇒ C be set morphisms such
that h1 ◦ f = h2 ◦ g. Since f is surjective, B = f(A) and thus for all b ∈ B there
is an element a ∈ A such that b = f(a). h1(b) = h1(f(a)) = h2(f(a)) = h2(b)

for all b ∈ A. So, h1 = h2 and thus f is an epimorphism.

Example 9. An injective map is an epimorphism in the category of rings.
Given the morphism i : Z → Q, let h1,h2 : Q → R where R is another ring
such that h1◦i = h2◦i. 1R = h1(1) = h1(q/q) = h1(q)h1(1/q) where q ∈ Z−0.
So, h1(1/q) = 1/h1(q) = h1(q)

−1. Similarly, h2(1/q) = h2(q)
−1. h1(p/q) =

h1(p)h
−1

1
(q) = h1(i(p))(h1(i(q)))

−1 = h2(i(p))(h2(i(q)))
−1 = h2(p/q) where

p ∈ Z. So, h1 = h2 and thus i is an epimorphism.
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