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Abstract. This note formalizes and applies the Principle of Structural De-

pendency, which asserts that if the foundation of a mathematical structure B
consists of another structure A, then A cannot exhibit a property distinct from

B, while B may possess properties not shared by A. We verify this principle

and apply it systematically to reconstruct concise proofs of several classical
theorems, including Cantor’s theorem, the Fundamental Theorem of Algebra,

the Jordan Curve Theorem, the Monotone Convergence Theorem, and the

Pythagorean Theorem. These reconstructions emphasize the structural un-
derpinnings of these results, offering a novel perspective and demonstrating

how foundational relationships can simplify complicated proofs.

1. Introduction

The study of mathematical structures often reveals deep interdependency be-
tween their properties. These relationships frequently allow for insights into proofs
by leveraging the foundational composition of one structure within another. The
Principle of Structural Dependency provides a systematic framework for analyzing
and understanding such relationships.

This principle articulates that if a structure B is fundamentally built upon an-
other structure A, then A cannot possess a property not shared by B. This de-
pendency stems from the embedding of A within the foundation of B. However,
B, as a more complex structure, may acquire properties beyond those of A. This
insight provides a versatile tool for reasoning about the properties of structures and
reconstructing proofs of classical mathematical results with clarity and brevity.

In this paper, we begin by rigorously formalizing the Principle of Structural
Dependency and proving it within a mathematical framework. Following this, we
apply the principle to several classical theorems, illustrating how it can simplify
proofs and illuminate the relationships between foundational and derived struc-
tures. The focus is on an expository style to make the applications accessible while
maintaining mathematical rigor.

2. The Principle of Structural Dependency

2.1. Statement of the Principle. Let A and B be mathematical structures.
Suppose the foundation of B consists of A, which we denote by A ⊂ F(B). Then:

P(A) ∩ P(B) = P(A),
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where P(A) and P(B) represent the sets of properties of A and B, respectively.
This means that A cannot exhibit a property distinct from B, while B may exhibit
properties that extend beyond those of A.

2.2. Proof of the Principle. Since the foundation of B consists of A, we have
A ⊂ F(B), where ⊂ denotes an embedding of one structure into another. Further-
more, by the definition of foundational embedding, F(B) ⊂ B. Combining these
inclusions, we deduce A ⊂ F(B) ⊂ B. Now, any property p ∈ P(A) must also belong
to P(B) because A is embedded in B. This guarantees that P(A) ∩ P(B) = P(A).
Conversely, as B is a more comprehensive structure, it may exhibit properties that
are not present in A, consistent with P(B) ⊇ P(A). This asymmetry underscores
the directional nature of the embedding, completing the proof.

3. Applications to Classical Theorems

The utility of the Principle of Structural Dependency lies in its ability to simplify
and rewrite classical proofs by focusing on structural embeddings and property
inheritance. Below, we apply the principle to reconstruct concise proofs of several
well-known results, some of which can be found in [1].

3.1. Cantor’s Theorem. Statement: The power set P(A) of a set A has a
strictly greater cardinality than A.

Proof Reconstruction: The foundation of P(A) is A, as P(A) consists of
subsets of A. Thus, A ⊆ F(P(A)) ⊂ P(A). Thus by the principle of structural de-
pendency, we deduce that |P(A)| > |A|.

3.2. Fundamental Theorem of Algebra. Statement: Every non-constant poly-
nomial p(z) with complex coefficients has at least one root in C.

Proof Reconstruction: The foundation of the complex polynomial p(z) is C,
as p(z) is constructed over the field of complex numbers. Hence, F(p(z)) ⊇ C. - C,
being algebraically closed, transfers this property to p(z), ensuring that p(z) cannot
lack roots within C. By the principle of structural dependency, it follows that p(z)
must share the algebraic closure property, guaranteeing at least one root.

3.3. Jordan Curve Theorem. Statement: A simple closed curve C in R2 di-
vides the plane into two disjoint regions: an interior and an exterior.

Proof Reconstruction: C is embedded in R2, with C ⊂ F(R2) ⊂ R2. By the
principle of structural dependence, it follows that P(C) ⊂ P(R2). The claim follows
from this embedding of properties.

3.4. Monotone Convergence Theorem. Statement: Let (an) be a bounded
monotone sequence of real numbers. Then (an) converges to a limit in R.

Proof Reconstruction:
The sequence (an) is a subset of R and its foundation is R, which means R =

F((an)). That is, each term in the sequence (an) can be constructed from R. The
completeness property of R guarantees that every non-empty subset of R that is
bounded above has a least upper bound (supremum). The sequence (an), being
bounded and monotone, inherits this completeness property from its foundation
F((an)) = R. Thus, the supremum of (an) exists in R, and it is the limit of
the sequence. By the structural dependency principle, we know that the sequence
(an) cannot possess properties distinct from those of its foundation, R. Hence,
the boundedness and monotonicity of (an) ensure that it inherits the completeness
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property of R. The convergence of (an) is therefore guaranteed by the structure of
R.

3.5. Pythagorean Theorem. Statement: In a right triangle with side lengths a,
b, and hypotenuse c, the relation c2 = a2 + b2 holds.

Proof Reconstruction:
The triangle is a geometric object embedded in the Euclidean plane R2. There-

fore, the foundation of the triangle is R2, implying R2 = F(Triangle). The Euclidean
plane R2 is equipped with the standard Euclidean metric, which measures the dis-
tance between two points (x1, y1) and (x2, y2) as

d =
√

(x2 − x1)2 + (y2 − y1)2. The right triangle inherits this metric as a property
of its foundation. In a right triangle, the hypotenuse c is the distance between
two points, which can be computed using the Euclidean metric. The two sides a
and b are also distances measured along the axes. By the property inherited from
the topology of the Euclidean metric, the distance c satisfies c2 = a2 + b2, where
a2 and b2 are the squares of the lengths of the perpendicular sides. Applying the
structural dependency principle, the triangle cannot have any property distinct from
those of its foundation R2. The Euclidean metric, as a property of R2, applies to
the triangle, guaranteeing the Pythagorean relation.

4. Conclusion

The Principle of Structural Dependency provides a powerful framework for un-
derstanding the interplay between mathematical structures and their properties.
By focusing on foundational embeddings, this principle not only elucidates the re-
lationships between structures but also simplifies proofs of classical theorems. The
reconstructions presented here illustrate its versatility and potential for broad ap-
plication across various fields of mathematics. Future investigations could explore
its implications in topology, analysis, and algebra, extending its reach and utility.
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