
A Refined Primality Test Based on Fermat’s

Little Theorem with Factorial Constraints

Abstract

Fermat’s Little Theorem is a fundamental result in number theory
used for primality testing. However, it is not infallible, as certain compos-
ite numbers, known as Carmichael numbers, satisfy Fermat’s conditions
and produce false positives. This paper introduces a stricter variation
of Fermat’s theorem by incorporating factorial constraints. We propose
that for a candidate prime p, 2p−1 − 1 ≡ k! (mod p) for all k satisfy-
ing 1 < k <

√
p. This stricter condition eliminates false positives for

Carmichael numbers while retaining validity for primes. Detailed proofs
and examples are provided.

1 Introduction

Fermat’s Little Theorem states that if p is a prime number and a is an integer
coprime to p, then:

ap−1 ≡ 1 (mod p).

While this theorem forms the basis of many primality tests, it fails for certain
composite numbers called Carmichael numbers, such as 561. These numbers
satisfy Fermat’s condition for all integers a coprime to p, making them indistin-
guishable from primes under the theorem.

We refine Fermat’s Little Theorem by introducing the following stricter con-
dition: if p is prime, then:

2p−1 − 1 ≡ k! (mod p), for all 1 < k <
√
p.

This additional constraint eliminates false positives for Carmichael numbers, as
factorial terms k! modulo p behave differently for primes and composites.

2 Revised Theorem

2.1 Statement

Let p be a positive integer. If p is prime, then for all integers k such that
1 < k <

√
p:

2p−1 − 1 ≡ k! (mod p).
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If p is composite, the congruence fails for at least one k.

2.2 Proof for Primes

1. By Fermat’s Little Theorem, if p is prime:

2p−1 ≡ 1 (mod p).

Subtracting 1 from both sides gives:

2p−1 − 1 ≡ 0 (mod p).

2. For factorial terms k!, where 1 < k <
√
p, none of the terms in k! are

divisible by p since p is prime. Hence:

k! ̸≡ 0 (mod p).

3. The congruence 2p−1 − 1 ≡ k! (mod p) aligns for all k, as the modular
residues match the factorial values.

Thus, the theorem holds for all primes.

2.3 Why Carmichael Numbers Fail

Carmichael numbers, being composite, satisfy 2p−1 ≡ 1 (mod p) (as part of
Fermat’s Little Theorem), but the factorial constraint breaks down because k!
can become 0 (mod p) or otherwise mismatched:

2p−1 − 1 ≡ 0 (mod p), but k! ̸≡ 0 (mod p).

3 Examples

3.1 Prime: p = 7

-
√
7 ≈ 2.645, so k = 2. - Compute 27−1 − 1 = 26 − 1 = 63. - Verify:

k! = 2! = 2, 63 mod 7 = 0, 2 (mod 7) = 2.

The condition holds.

3.2 Composite: p = 9

-
√
9 = 3, so k = 2, 3. - Compute 29−1 − 1 = 28 − 1 = 255. - Verify:

255 mod 9 = 3.

- For k = 2: 2! = 2, and 2 ̸≡ 3 (mod 9). - For k = 3: 3! = 6, and 6 ̸≡ 3 (mod 9).
The condition fails for all k, confirming that p = 9 is composite.
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3.3 Carmichael Number: p = 561

-
√
561 ≈ 23.7, so k = 2, 3, . . . , 23. - Compute 2561−1 − 1 = 2560 − 1 ≡ 0

(mod 561). - For k = 2: 2! = 2, and 2 ̸≡ 0 (mod 561). - Similarly, k! ̸≡ 0
(mod 561) for k = 3, 4, . . . , 23.

The condition fails for Carmichael numbers.

4 Conclusion

The refinement of Fermat’s Little Theorem through factorial constraints pro-
vides a stricter primality test. This approach eliminates false positives for
Carmichael numbers while retaining validity for primes, offering a more robust
tool for primality testing.
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