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Abstract. In this paper, we study the map between problem and solution

spaces. We introduce and develop a functional analysis on the topology of

problems and their solution spaces. We introduce the notion of an isotope and
corresponding isotope problem spaces and examine various notions compatible

with this space.

1. Background

In [2],[1], [3] and [4] the theory of problems and their solution spaces with their
topology was introduced and studied in great detail.
Let X denotes a solution (resp. answer) to problem Y (resp. question). Then
we call the collection of all problems to be solved to provide a solution X to the
problem Y the problem space induced by providing a solution X to problem Y .
We denote this space by PY (X). If K is any subspace of the space PY (X), then
we denote this relation by K ⊆ PY (X). If the space K is a subspace of the space
PY (X) with K 6= PY (X), then we write K ⊂ PY (X). We say that problem V is a
sub-problem of problem Y if providing a solution to problem Y furnishes a solution
to problem V . If V is a subproblem of the problem Y , then we write V ≤ Y . If V
is a subproblem of the problem Y and V 6= Y , then we write V < Y and call V a
proper sub-problem of Y .
Similarly, Let X denotes a solution (resp. answer) to problem Y (resp. question).
Then we call the collection of all solutions to problems obtained as a result of
providing the solution X to the problem Y the solution space induced by providing
the solution X to problem Y . We denote this space by SY (X). If K is any subspace
of the space SY (X), then we denote this relation by K ⊂ SY (X). We make the
assignment T ∈ SY (X) if solution T is also a solution in this space.
Let PY (X) be the problem space induced by providing the solution X to problem
Y . Then we call the number of problems in the space (size) the complexity of
the space and denote by C[PY (X)] the complexity of the space. We make the
assignment Z ∈ PY (X) if problem Z is also a problem in this space. Similarly, let
SY (X) be the solution space induced by providing the solution X to problem Y .
Then we call the number of solutions in the space (size) the index of the space and
denote by I[SY (X)] the index of this space.
Let PX(Y ) and SX(Y ) denotes the problem and solutions spaces, respectively,
induced by providing solution X to problem Y . We say the problem space PX(Y )
is compact if and only if there exists a finite number of problem spaces

PU1(V1),PU2(V2), . . . ,PUk
(Vk)
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such that
PX(Y ) ⊂ PU1(V1) ∪ PU2(V2) ∪ · · · ∪ PUk

(Vk).

Similarly, we say the solution space SX(Y ) is compact if and only if there exists a
finite number of solution spaces SU1

(V1),SU2
(V2), . . . ,SUk

(Vk) such that

SX(Y ) ⊂ SU1(V1) ∪ SU2(V2) ∪ · · · ∪ SUk
(Vk).

2. Maps between problem and solution spaces

In this section, we study the analysis of map between between problem spaces
and solution spaces. We examine how the notion of boundedness and compactness
are preserved under the map.

Definition 2.1. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
We say f is continuous if and only if for any subspace PR(U) ⊆ PS(T ) with
complexity C[PR(U)] ≥ k there exists a subspace PW (Z) ⊆ PX(Y ) with complexity
C[PW (Z)] ≥ k such that f(PW (R)) ⊆ PR(U). Similarly, we say the map f :
SX(Y ) −→ SS(T ) between problem spaces is continuous if and only if for any
subspace SR(U) ⊆ SS(T ) with index I[SR(U)] ≥ k there exists a subspace SW (Z) ⊆
SX(Y ) with index I[SW (Z)] ≥ k such that f(SW (R)) ⊆ SR(U).

Definition 2.2. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
We say f is bounded if f(PU (T )) is a finite subset of problems in PS(T ) for each
bounded PU (T ) ⊂ PX(Y ).

Definition 2.3. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces. We
say f is compact if and only if f(PX(Y )) is compact.

We expose the fact that compactness of a map between problem spaces can be
inherited from the compactness of the space on which it acts.

Theorem 2.4 (Stability theorem). Let f : PX(Y ) −→ PS(T ) be a map between
problem spaces. If PX(Y ) is compact, then f is compact.

Proof. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces and suppose
the space PX(Y ) is compact. Then there exists a finite number of problems spaces
PK1(L1), · · · ,PKn(Ln) such that

PX(Y ) ⊂ PK1
(L1) ∪ · · · ∪ PKn

(Ln).

We observe that f(PX(Y ) ∩ PK1
(L1)) ⊆ f(PK1

(L1))). Using this relation, we can
put

f(PX(Y )) ⊆
n⋃
j=1

f(PX(Y ) ∩ PKj
(Lj)) ⊆

n⋃
j=1

f(PKj
(Lj)).

This proves that the range f(PX(Y )) is compact and hence f is also compact. �

3. Isotope and Isotope problem and solution spaces

In this section we study the notion of an isotope of problem and solution spaces.

Definition 3.1. Let V and U be any two problems. We say V and U are compatible
if there exists a problem space PX(Y ) such that V,U ∈ PX(Y ). We denote this
compatibility by V � U or U � V . Similarly, we say two solutions R,S to some
(possibly) distinct problems are compatible if there exists a solution space SX(Y )
such that R,S ∈ SX(Y ). We denote this compatibility by R � S or S �R.
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Definition 3.2. Let U and V be compatible problems. We say V and U admits a
merger in the space PX(Y ) if there exists a problem S ∈ PX(Y ) such that V < S
and U < S and V,U are the only maximal subproblem of S. In notation, we
write V ./ U = S ∈ PX(Y ) or U ./ V = S ∈ PX(Y ). Similarly, let R and T
be compatible solutions. We say R and T admits a merger in the space SX(Y ) if
there exists a solution W ∈ SX(Y ) such that R < W and T < W and R, T are the
only maximal sub-solutions of W . In notation, we write R ./ T = W ∈ SX(Y ) or
R ./ T = W ∈ PX(Y )

We now launch the notion of an isotope.

Definition 3.3. Let PX(Y ) and SX(Y ) be the problem space and the correspond-
ing solution space, induced by assigning solution Y to problem X. We denote an
isotope on PX(Y ) as the map Iso : PX(Y ) −→ R such that

(i) Iso(V ) ≥ 0 for each V ∈ PX(Y ) and
(ii) Iso(V ./ U) ≤ Iso(V ) + Iso(U) provided U, V ∈ PX(Y ) admits a merger.

A similar axiom also holds for solution spaces.

The notion of an isotope may not be viewed as an abstract notion. For example,
if we consider a problem V ∈ PX(Y ) with solution U ∈ SX(Y ) and the induced
problem space PV (U) ⊂ PX(Y ), then we can associate a number to problem V to
be

(C[PV (U)])
1

C[PV (U)]
−1

where C[PV (U)] as usual denotes the complexity of the space. Similarly for a
solution U in the solution space SX(Y ), we can assign a number to the solution U
to be

(I[SV (U)])
1

I[PV (U)]
−1

where I[PV (U)] as usual denotes the index of the space. One could verify that these
two maps satisfy the axioms of an isotope. In particular, an isotope is a pseudo
semi-norm.

Definition 3.4. Let PX(Y ) and SX(Y ) be a problem and a corresponding solution
space whose topology admits an isotope. A problem (resp. solution) space equipped
with an isotope is an isotope problem (resp. isotope solution) space. We denote
these spaces with (PX(Y ), Iso(·)) and (SX(Y ), Iso(·)), respectively.

Definition 3.5. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. We put the isotope of f , denoted Iso(f), to be

Iso(f) := sup
V ∈PX(Y )
Iso(V ) 6=0

Iso(f(V ))

Iso(V )
.

We say f is bounded if Iso(f) < ∞. A similar characterization also holds for
solution spaces.

Proposition 3.1. Let f : PX(Y ) −→ PS(T ) be a map between problem spaces.
Then Iso(f) < ∞ if and only if there exists an absolute constant c > 0 such that
Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ).
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Proof. Suppose Iso(f) <∞ then by definition 3.5 there exists an absolute constant

c > 0 such that Iso(f(V ))
Iso(V ) ≤ c for all V ∈ PX(Y ). It implies immediately that

Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ). Conversely, suppose Iso(f(V )) ≤ c Iso(V )
for all V ∈ PX(Y ) then

Iso(f) := sup
V ∈PX(Y )
Iso(V ) 6=0

Iso(f(V ))

Iso(V )
<∞.

�

3.1. Bounded isotope problem spaces. In this section, we introduce and study
the notion of a bounded isotope problem and solution spaces.

Definition 3.6. Let PX(Y ) be an isotope problem space induced by providing
solution Y to problem X. We say the space PX(Y ) is bounded if Iso(V ) < ∞ for
all V ∈ PX(Y ).

Remark 3.7. We now show that a bounded map between problem spaces maps
bounded subspaces to a bounded set of problems.

Proposition 3.2. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. Suppose PK(L) ⊂ PX(Y ) be a bounded sub-problem space. If Iso(f) < ∞,
then f(PK(L)) is bounded in PS(T ).

Proof. Consider the map f : PX(Y ) −→ PS(T ) such that Iso(f) < ∞. Then
there exists an absolute constant c > 0 such that Iso(f(V)) ≤ c Iso(V ) for all
V ∈ PX(Y ). The requirement that PK(L) is bounded implies that Iso(V ) <∞ for
all V ∈ PK(L). This implies that Iso(f(V )) ≤ d for all V ∈ PK(L). This proves
that f(PK(L)) is bounded in PS(T ). �

A similar characterization could be made and proofs can be constructed by
replacing the problem spaces PK(L) with the corresponding induced solution spaces
SK(L).

3.2. Continuous maps between isotope problem and solution spaces. In
this section, we introduce the notion of continuity of a map between isotope problem
spaces.

Definition 3.8. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem
spaces. We say f is continuous if for any ε > 0 there exists some δ > 0 such that
with Iso(V ) < δ then Iso(f(V )) < ε for V ∈ PX(Y ).

We expose the relationship that exists between continuity and boundedness of
maps between problem space. In fact, we show that these two seemingly disparate
notions are equivalent in problem theory.

Theorem 3.9. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem spaces.
Then Iso(f) <∞ if and only if f is continuous.

Proof. Let f : PX(Y ) −→ PS(T ) be a map between isotope problem spaces. Sup-
pose that Iso(f) < ∞ , then there exists an absolute constant c > 0 such that
Iso(f(V )) ≤ c Iso(V ) for all V ∈ PX(Y ). Let ε > 0 and choose δ := ε

c so that
with Iso(V ) < δ then Iso(f(V )) ≤ c Iso(V ) < cδ = ε. This proves that f is
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continuous. Conversely, suppose that f is continuous and assume that f is not
bounded. Then for each n ≥ 1 there exists a sequence {Vn} ⊂ PX(Y ) such that
Iso(f(Vn)) > n Iso(Vn) for all n ≥ No > 0. Put 1

n < Iso(Vn) < 1 − 1
n , then (by

continuity) we get 1 < n Iso(Vn) < Iso(f(Vn)) < 1, which is absurd. �

4. Further remarks

In this work, we introduced a novel theoretical framework centred on abstract
problem and solution spaces, alongside the innovative concept of isotopes and iso-
tope spaces. The theory extends classical notions such as boundedness, continuity,
and compactness into a more generalized setting tailored for these spaces. We es-
tablished that boundedness and continuity are equivalent within the scope of this
framework and proposed a new interpretation of compactness based on finite cov-
erings, distinct from classical sequential compactness. Additionally, we defined the
notion of isotopes, which, while analogous to operator norms, possess unique prop-
erties that reflect the underlying structure of the problem space. This foundational
exposition is designed to offer a fresh perspective on abstract mappings and their
behaviour, opening potential avenues for applications in both theoretical and ap-
plied mathematics. As the theory is still in its formative stages, further exploration
is required to develop its sequential compactness, refine the behaviour of mappings
on intersections, and examine its potential connections to existing mathematical
disciplines.
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