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Abstract 

A modified Dirac expression for the electron binding energy in hydrogen-like atoms 

is presented, which allows a direct and unambiguous comparison among different 

fine structure constants without bound-state QED theory. The least squares 

analysis of the parameters, describing the spectra of hydrogen and deuterium, is 

grounded on two sets of the most accurately measured energy separations. The 

optimal spectroscopic fine structure constant is found to be equal to 0.00 72 84(1), 

disagreeing with the determinations ultimately based on renormalized QED but 

being in good agreement with the number constant  2�����
� ≈ 0.00 72 84 28 . The 

present work compiles experimental values of the Lamb shift of S, P, and D states 

with n = 1, 2, and 3 derived from those measurements. Accurate predictions for 

hyperfine splitting intervals with n > 1 are given and compared to experimental 

values for n = 2. 

Keywords: fine structure constant, bound-state QED, Dirac binding energy, hydrogen-like atoms, 

Lamb shift, hyperfine splitting. 

Introduction 

Today, the fine structure constant ������� ≈ 0.00 72 97 35 is derived using a Dyson power series in 

powers of the fine structure constant � for the anomalous magnetic moment of the electron. The 

coefficients of this power series are not measurable and are calculated using many hundreds of 

complicated Feynman multiloop diagrams of quantum electrodynamics (free QED) that only a 

handful of theoretical physicists can master. Determinations of the fine structure constant by 

other means (quantum Hall effect, ac Josephson effect) also depend on QED and produce identical 

results agreeing with each other with a precision of better than 1 part per 108. This is not 

surprising because various methods must produce the same result irrespective of the correctness 

of QED since they are based on the same theory [1a]. Unfavorably, extracting the fine structure 

constant from QED itself is not possible [1b]. The spectrum of hydrogen as the main historical 

source of the value for the fine structure constant no longer plays a role in the calculation of its 

value1, and the spectrum is used solely to calculate the auxiliary Rydberg constant  �� of infinitely 

heavy mass, with the unit of energy (J) defined as �� ≡ �
� ������ , acting by its definition as a 

_________ 

1  Quotation from Kramida 2010, p. 608: It is not easy to compare the experimental energy levels and transition 

frequencies of H, D, and T with the QED calculations because the latter are in fact adjusted to fit the experimental 

transition frequencies by adjusting the fundamental constants entering into the QED equations. 
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universal scaling factor for all transitions and substituting for either electron mass me or fine 

structure constant � as required. The author [2a] has derived the fine structure constant ����  

represented by the unit invariant number constant ���� ≡  2�����
� ≈ 0.00 72 84 28 !��� ≈ 137.28#. 

This idea does not require a formula for an observable quantity from which the fine structure 

constant is evaluated. 

The model: an empirical modification to the Dirac equation 

In the following, an algebraic scaling formula is presented that allows to decide, using the spectra 

of hydrogen (H) and deuterium (D), whether ������� or ����  describes its spectrum better. In an 

arbitrary hydrogen-like atom, the electron binding energy $!%, ℓ, (# in the natural energy (J) unit 

{mec2}Codata 2010 shall be represented for )!ℓ = 0#, +!ℓ = 1#, and ,!ℓ = 2# states as 

$!%, ℓ, (# = $-!%, (# ⋅ / ⋅ 01 + 2 + 3ℓ45 %⁄ + 3ℓ�37�8 %⁄ + 3ℓ�37�, %⁄ + 3ℓ�37�$ %⁄ + 3ℓ�379: %⁄ ; (1) 

δ is the Kronecker delta function, and / is a scaling factor of all levels that creates a fictitious Dirac 

particle with mass γ{me}Codata 2010 moving in the field of a stationary point nucleus, and reducing 

the two-body problem to an equivalent one-body problem. This concept is not the correct 

treatment of the relativistic two-body quantum problem and is arbitrarily chosen as the starting 

point (gross structure, Δn ≠ 0) needing corrections. The dimensionless, relativistic Dirac binding 

energy $-!%, (# for a fixed point nucleus Coulomb potential is analytically given by 

$-!%, (# = <!%, (# − 1  

where [CODATA 2018, eq. 25; Kramida, eq. 3] 

<!%, (# = >1 + ? @�
% − 3A�B

���
  

3 = C − DC� − !@�#�E��   

C = ( + 1/2  

Z is the nuclear integer-charge, n is a positive integer called the principal quantum number, ℓ =0,1 GH % − 1 is the orbital angular momentum, and ( = ℓ ± 1/2 is the total angular momentum of 

the electron, which results from combining the orbital motion of the electron with its intrinsic 

angular momentum called spin. The Dirac binding energy fails to take into account the nuclear 

mass and recoil and provides the same energy levels for each atom. Also, effects caused by the 

difference in the nuclear charge distribution are not included. In all expressions, the Planck 

constant {h}Codata 2010 is suppressed because it is solely used as a conversion factor to convert 

energy (J) to frequency (Hz). 

Each hydrogenic atom has its own unique parameter set A to F, which must experimentally be 

determined. They are corrections to the scaled Dirac energy levels $-!%, (#/ , neglecting the 

hyperfine structure (ΔF ≠ 0), and depend on the nucleus and the charge Z. Accounting for 

perturbations of levels with values of orbital angular momentum ℓ > 2  is easily possible by 

analogy. With formula (1), a nucleus with one electron infinitely far away and no other electrons 

nearby has zero binding energy, so all bound state energy levels are negative. The ℓ dependent 

terms in formula (1) remove the degeneracy in ℓ and produce a splitting of levels with the same 

value of j but different values of ℓ, for example, between 2S1/2 and 2P1/2 convincingly proven to 
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exist by WE Lamb and RC Retherford who reported a splitting of 1062(5) MHz [3]. For this reason, 

the splitting of levels (Δℓ ≠ 0) is later called Lamb shift and since then theoretically explained by 

bound state QED, in contrast to ordinary QED for free leptons.2 

The energy difference ΔE between two energy states is given by M$ ≡ $!%�, ℓ�, (�# − $!%�, ℓ�, (�#. 

For the ionization energy of the ground state, this results in N ≡ M$ = $!%� → ∞, 0,1/2# −$!1,0,1/2# = −$!1,0,1/2#. The ionization energy is the negative of the ground state energy, which 

is the largest energy for each atom. A common, accurate method of estimating absolute ionization 

energies is based on a fit of the modified Ritz formula. Using a Ritz series formula does not depend 

on theoretical calculations of the binding energy of any level and is an independent test of the 

validity of the fine structure constant (see note ‘a‘ in Table 5 and Table 7). 

According to formula (1), the transition 2S1/2–4S1/2 energy difference is 

M$ = Q$-!R,�/�# − $-!�,�/�#S/ + 2Q$-!R,�/�# − $-!�,�/�#S/ + 5 ?$-!R,�/�#
4 − $-!�,�/�#

2 A / = M$ ��T  

and for the classic Lamb shift 2P1/2–2S1/2, which is difficult to measure because of the very short 

lifetime (natural line width 100 MHz) of the 2P1/2 state, the energy difference is 

M$ = Q$-!�,�/�# − $-!�,�/�#S/ + 2Q$-!�,�/�# − $-!�,�/�#S/ + 5 $-!�,�/�#
2 / − 8 $-!�,�/�#

2 / 

       = 1
2 !5 − 8#$-!�,�/�#/ = M$ ��T  

 

For each transition, analogous relations can be written representing, in most cases, an 

overdetermined linear system of equations for the parameters A, B, C, D, E, and F, which has a least 

squares solution dependent on /  if the equations are linearly independent. The least squares 

solution best reproduces the input data or the results of measurements by means of expression 

(1). The energy $!%, ℓ, (# calculated with the solutions of the normal equations using formula (1) 

is independent of the scale factor /  and only depends on @�  and quantum numbers. 3  This 

formalism allows, based on a set of measured energy separations, a direct and unambiguous 

comparison among different fine structure constants without theory (bound-state QED), except 

the relativistic Dirac equation, in the analysis. 

The fine structure constant 

In Table C, Kramida [4] tabulated the most accurately measured fine structure intervals 

(differences between the corresponding energy levels) for hydrogen. Table C of this article is a 

copy of Kramida‘s Table C with two additional measurements at the end for the transitions 1S1/2–

3S1/2 and 2S1/2–8D5/2. In order to derive the fine-structure energy levels listed in Table C from 

the available experimental data, purely theoretical corrections using ������� were necessary due 

to the hyperfine splitting (hfs) of one or both fine-structure levels involved in the measured 

transition. Thus, most transitions listed in Table C cannot be considered purely experimental, and 

small systematic errors are most likely to exist in the input data (see Kramida 2010 section 4). 

_________ 

2  Relation 15.3 in [2b] is an incorrect ansatz because it does not take into account the Lamb shift. All results related 

to relation 15.3 must be reconsidered. 
3  This is because the scaling relations  2U = ��VWX

V   ,  5U = Y
V   , 8U = �

V   , ,U = -
V   , $U = Z

V   , :U = [
V   apply. 
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The reported intervals detailed in Table C were utilized to adjust the six parameters A_hyd to F_hyd 

by solving the linear system of equations. Measurements marked “not used” were not used to 

determine the best compromise values of A_hyd to F_hyd, which only approximately satisfy all 

measured intervals. In total, there are six degrees of freedom to fit 29 input values, that is, 

transition frequency measurements. The reliability of the observations was not included in the 

calculation due to unknown systematic uncertainties previously addressed. 

The scaling factor has no influence on the energy values and can arbitrarily be set to one. Table C 

lists, for the 29 measurements considered, the calculated differences ,\<<!�# ≡ M$ ��T − M$!�# 

for � = ������� �4�4  and � = ���� . The mean absolute deviation (MAD) of the 29 input values 

(results of measurements) is 4.03 MHz for ������� �4�4 and 0.82 MHz for ���� , respectively. For 

deuterium, Kramida [4] displayed the most accurately measured fine structure intervals in 

Table G replicated in Table G of this article. In order to adjust the parameters A_deut to F_deut, 19 

linear equations in six unknowns were utilized, resulting in a mean absolute deviation of 4.75 MHz 

for ������� �4�4 and 0.80 MHz for ���� , respectively. Minimizing the function ]2,!�# yields the 

optimal fine structure constant � ^_  without knowing the scaling factor, that is, the Rydberg 

constant  ���� , meaning that the experimental values extracted are disentangled from the 

measurement of the absolute value of the Rydberg constant. The values obtained are displayed 

with estimated error bars in Table 1, revealing for both isotopes that � ^_ = 0.00 72 84!1# is very 

close to ����  and disagrees violently with ������� �4�4. 

Historically, the optimal spectroscopic fine structure constant � ^_  agrees with that found by 

Houston [5], calculating a value of � ≈ 0.00 72 85 !�� ≈ 5.307 ` 10�a# from purely spectroscopic 

measurements of the Rydberg constants for hydrogen and helium. Houston 1927 assumed in his 

evaluation that the relativity equation of Sommerfeld is applicable. In the year 1930, Millikan [6] 

comments that the experimental situation clearly favors, due to his oil drop work, a value of � ≈
0.00 72 84 !��� ≈ 137.29#  that Birge [7] confirmed with the value  ��� = 137.31!5# in 1932 by 

the simultaneous evaluation of the electron charge and the Planck constant from several known 

functional relations between these two constants. It would be interesting to look at the history of 

the measurements after Millikan to extract why the physics community settled down to the fine 

structure constant � ≈ 0.00 72 97 35, and today is aimlessly shifting the accuracy to ever higher 

decimal places. 

Kramida 2010 derived optimized energy levels from the measured fine structure intervals listed 

in Table C using a least-squares optimization (LOPT) code. The level optimization procedure 

involved several iterations using various interpolation and extrapolation procedures and the 
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fitting of the Ritz series formulas for the nD5/2 and nS1/2 series. Table 5 is a copy of Kramida‘s 

Table 5 with 148 frequency intervals, which resulted from the semi-empirical least-squares level 

optimization procedure. Absolute ionization energies tabulated by Kramida 2010 and by NIST are 

additionally included in Table 5. The mean absolute deviation of the 148 high precision 

determinations (Ritz values) from calculated frequencies by formula (1) is 3.67 MHz for ������� �4�4  and 0.78 MHz for ���� , respectively. Ritz values do not depend on theoretical 

calculations of the binding energy of any level. 

For deuterium, the measured fine-structure intervals from Table G were used to derive the energy 

levels using the LOPT code. Table 7 lists Ritz values of 116 intervals resulting from the least 

squares level optimization procedure of Kramida, similar to that employed for hydrogen. In 

Table 7, the ionization energies tabulated by Kramida 2010 and NIST are also included. The mean 

absolute deviation of the 116 Ritz values from calculated frequencies by formula (1) is 2.96 MHz 

for ������� �4�4 and 1.15 MHz for ���� , respectively. 

The mean absolute deviations of the intervals listed in the four tables are summarized below. 

   MAD (MHz) 

  # of intervals ����  ������� �4�4 

Table C H 29 0.82 4.03 

Table 5 H 148 0.78 3.67 

Table G D 19 0.80 4.75 

Table 7 D 116 1.15 2.96 

In all cases, ����  gives significantly smaller mean absolute deviations and describes, without 

further assumptions, the fine-structure energy levels of H and D more accurately applying the 

simple expression (1). In summary, there is convincing spectroscopic evidence with a great deal 

of experimental truth that the fine structure constant �  based on renormalized QED 

determinations should be discarded.  

The Lamb shift 

Without knowing the exact scale factor γ and the fine structure constant, Lamb shifts cannot be 

extracted from the spectra. First, a clear definition is vital to avoid different interpretations of the 

term Lamb shift. Using formula (1), the definition for the Lamb shift ℒ!%)1/2# shall be 

ℒ!%)1/2#  ≡ ℒ!%, 0, 1/2# ≡ $-!%, 1/2# ⋅ / ⋅ 02 + 5 %⁄ ; =  $-!%, 1/2# ⋅ /c�d� ⋅ 5 %⁄   

which can easily be generalized to other Lamb shifts ℒ!%, ℓ, (#. The choice of γ defines the values 

of the Lamb shifts, which are to be understood as effects in addition to what can be obtained from 

the scaled Dirac equation. In the literature, the reference point is not unique due to different 

corrections applied and, in most cases, even undefined. One possibility for an “experimental“ 

reference point is to choose the scaling factor such that for / = /c�d�  the parameter A is zero, 

which implicitly defines /c�d� by 2!/c�d�# = 0 or explicitly4 by /c�d� = 1 + 2!/ = 1#. Corrections 

that affect all states are ascribed to the scaling factor /c�d� and the parameters B to F, which may 

_________ 

4  The explicit expression follows from the scaling relation 2U = 0 = ��VefghWX!Vi�#
Vefgh  . 
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be called dimensionless Lamb shift constants, include all corrections that cannot be described by /c�d� . The scaling factor /c�d�  completely relies on an experimental input, to wit, Table C or 

Table G. The adjusted dimensionless parameters B to F and the experimentally determined 

absolute Lamb shifts for n = 1, 2, and 3 are detailed for / = /c�d�  in Table 1. No theoretical 

calculations except {mec2/h}Codata 2010 are involved to evaluate the experimental data for the 

absolute Lamb shifts from the input data. 

For a nucleus of finite mass M, nuclear motion is accounted for nonrelativistically by replacing the 

electron mass me by the reduced mass, which multiplies all energy levels by the reduced mass 

correction factor /d��  �TT ≡ j1 +  f
k l��

. These factors are tabulated for hydrogen and deuterium 

in Table 1 using CODATA 2010 values for the electron-nuclear mass ratios based on high precision 

Penning trap mass spectrometry. Comparing the factors /d��  �TT ������ �4�4  for both isotopes 

with the experimental scaling factors /c�d�!������� �4�4#  reveals that they are nearly equal. 

Interestingly, if the experimental scaling factors /c�d�Q���� S are divided by the correction factor 

/m�dd ≡ n������� �4�4���� o
�

≈ 1.003 591 800  

there results 0.999 455 690 for H as compared with the CODATA 2010 reduced mass factor 

0.999 455 679, and 0.999 727 643 for D as compared with 0.999 727 631, which means that the 

simple reduced mass correction factors for both isotopes are derived for  ����  very accurately 

from essentially experimental spectroscopic data, implying a reduction of the relativistic two body 

problem to an equivalent one body equation in terms of a single effective mass. The deviations 

relative to the tabulated reduced mass factors /d��  �TT ������ �4�4 are 1.0 parts per 108 for H and 

1.2 parts per 108 for D, respectively. The close agreement 

/c�d�!pGH�#  ≈  /d��  �TT !pGH�# ` /m�dd  

is quite remarkable, since the concept of reduced mass has no theoretical basis in relativistic 

quantum mechanics, and the assumption that the nucleus behaves inertly and plays no role other 

than its mass is an idea of the classic Bohr model. The factor /m�dd  might be interpreted as a 

correction of the spectroscopic electron mass {me}Codata 2010 deduced by CODATA from 

experimental data through a least squares adjustment with the fine structure constant ������� �4�4 

determined by other independent measurements (non-spectroscopic), assuming for the energy 

level the expression [CODATA 2010, equ. 22] 

$!%, ℓ, (# = −  @���%� 01 + 3!%, ℓ, (#; ≡ −  @���%� :_ℓqd�r  

where 3!%, ℓ, (#  is a dimensionless theoretical correction factor, small compared to one, that 

contains the details of the bound-state QED apparatus of each energy level, including the effect of 

the finite size of the nucleus as a function of the rms charge radius. Only the Rydberg constant  �� 

is an adjusted constant in the numerical evaluation carried out by CODATA. The method 

mentioned above consists of comparing measured transitions (primarily the 1S–2S frequency in 

H and the H–D isotope shift of the 1S–2S frequency) with intervals calculated from a complex 

theoretical equation for each energy level scaled with  ��, which indirectly assigns, using �������, 

a fitted value to the absolute electron mass {me}Codata that can by no means be directly compared 

(i.e., without a theoretical contribution) to the artifact SI standard kilogram. 

In order to clarify the significance of the theoretical corrections to the experimental data 

mentioned in the text, only the two gross structure transitions 1S1/2–2S1/2 and 2S1/2–8S1/2 
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from Table C (Kramida 2010, column largest theoretical correction) were fitted to the data points, 

from which ”exact” values for [γzero] and the parameter [B], scaling the Lamb shifts of the nS1/2 

levels in terms of the principal quantum number n, can be extracted. The results, reproducing the 

reduced mass factor of hydrogen without significant change, are displayed in brackets in Table 1, 

which give 2 466 061 413.1859 MHz for the 1S1/2–2S1/2 intervall and 770 649 350.012 MHz for 

the 2S1/2–8S1/2 intervall. The measured values are marked with an asterix (*) in Table C. 5 The 

fitted parameter [B] is an accurate experimental value admitting a direct comparison with nS1/2 

Lamb shift calculations. 

Tritium 

Since tritium (T) is radioactive and difficult to handle, there is little information about its spectrum 

from which a reliable parameter set can be obtained. The Lamb shift parameters B to F of hydrogen 

and deuterium are similar in value, which suggests that the most accurate known Lamb shift 

parameters B to F of hydrogen could be used as a first approximation for tritium. The most 

accurate measured values of four fine structure transitions arranged by Kramida [4] in Table K 

are listed below and compared with the values calculated using formula (1), � = ���� , A = 0, the 

parameters B to F of hydrogen (Table 1), and / = /d��  �TT !s# ` /m�dd. 

Tritium Fine structure 

transition 

ΔEexp (MHz) 

(mean meas. freq.) 

Unc. (MHz) 

(exp.) 
ΔEcalc (MHz) ΔEexp – calc (MHz) 

2P3/2–3D5/2 456 841 568.8 1.6 456 841 565.6 3.2 

2P1/2–3D3/2 456 851 457.2 1.3 456 851 461.5 −4.3 

2S1/2–3P3/2 456 850 405.8 1.4 456 850 405.0 0.8 

2S1/2–3P1/2 456 847 153.8 1.6 456 847 153.7 0.1 

The hyperfine splitting 

Formula (1) considers the Lamb shifts as a perturbation to the scaled Dirac energy levels $-!%, (#/. 

In the following, the hyperfine splitting manifested as a small splitting of the fine-structure energy 

levels is regarded, in analogy to the Lamb shift, as a perturbation to $!%, ℓ, (# of the form 

$!%, ℓ, (, :# = $!%, ℓ, (#t1 − u!ℓ, (, N, :# ⋅ @ ⋅ 5v %⁄ w (2) 

The number I is the spin of the nucleus, and : is the total angular momentum for the whole atom 

with the possible values being ( + N, ( + N − 1, … , |( − N|. Formula (2) can be deduced from the 

rephrased equations 5 and 6 (without off-diagonal terms) given by Kramida 2010 by setting 

 @���%� :_ℓqd�r ≡ −$!%, ℓ, (# 
 

D:!: + 1# − N!N + 1# − (!( + 1#E
(!( + 1#!2ℓ + 1#N ≡ u  

_________ 

5  The exact measurements are not obtained because the numbers in Table 1 are rounded to 12 decimal places. 
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�� z_{mrzY ≡ 5|   

The minus sign in relation (2) ensures that the energy of the F level is lifted and that of the F-1 is 

lowered. From formula (2), the hfs interval between two adjacent levels in a hyperfine multiplet 

can be written as 

!Δ$#_ℓq}~T = $!%, ℓ, (, :# − $!%, ℓ, (, : − 1# = −$!%, ℓ, (# ⋅ 2:
(!( + 1#!2ℓ + 1#N ⋅ @ ⋅ 5| %⁄  (3) 

wich takes into accout Lamb shifts of energy levels. Because the relativistic Dirac theory naturally 

implies the electron’s magnetic dipole moment to be exactly z� = zY , the ratio 
�f
�� in equation (6) 

given by Kramida 2010 was set to one. From simplicity requirements on the approximating 

function, the reduced mass prefactor /d��  �TT 9 has been omitted, assuming that a correction in 

the form of an overall reduced mass factor is adequate. These assumptions make relation (3) 

compatible with the uncorrected expression (22.13) of Bethe and Salpeter [10], and equation (41) 

of Grifffiths [11] setting ge = 2. 

The value of  
�����

��  is not directly accessible experimentally, but it can be traced back to maser 

experiments by Winkler and coworkers, who determined the bound particle ratio of the magnetic 

moments of the nucleus and electron 
�����!��� #

�f!��� # , implying that the bound electron moment in Bohr 

magnetons 
�f!��� #

��  must also be known. This ratio can be approximated by 
�f!~d��#

�� ≡ 1 + p� , 

where ae [Codata 2010] is the very accurately measured electron magnetic moment anomaly. 

Replacing the fine structure constant � by ����  entails that, in addition to 1+ae, the multiplying 

factor /m�dd  must be taken into account, since the electron mass is given by /m�dd0��;������ . 

Combining all this gives 

5| ≡ �� z_{mrzY = �� ⋅ z_{mrz� ⋅ z�zY ≈ �� ⋅ z_{mrz� ⋅ !1 + p�# ≈ ���� � ⋅ z_{mrz� ⋅ !1 + p�#/m�dd (4) 

The following table lists the hyperfine splittings of hydrogen and deuterium, which were 

calculated using relations (3) and hypothesis (4). The scaling factor /c�d�  and the parameter B 

used to compute $!%, ℓ, (# correspond to the values listed in Table 1. 

atom �����!��� #
�f!��� # 109 (meas.) 

!Δ$#���/�}~T
 (MHz) ΔEexp/ΔEcalc 

 Z I F (3) and (4) experiment (correction) 

1H 1 1/2 1 1.519 270 336 [12a]  1420.401  1420.406 [4] 1.000 003 
2H 1 1 3/2 0.466 434 539 [12b]     327.149     327.384 [4] 1.000 718 

The comparison of theoretical results with experimental values shows a remarkable agreement 

(or coincidence?) for hydrogen, and reflects an unclear discrepancy although small with a 

substantial correction factor for deuterium. This might be due to the fact that the ratio of the 

magnetic moment of the deuteron to the magnetic moment of the electron in the 1S state of 

deuterium has never been published. This magnetic ratio should be reevaluated. 

Due to the lack of knowledge on the number of multiplying factors that control hypothesis (4), the 

dimensionless parameter 5| , responsible for the splitting, is difficult to calculate. But the existence 

of high-precision experimental data on the 1S hfs splitting makes it possible to derive an empirical, 
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simple scaling law for other hfs intervals, if the dimensionless parameter 5|  is the same for all 

levels. For hydrogen, the scaling law from the ground-state hyperfine splitting is then 

!Δ$#_ℓq}~T!: − 1; :#  = !Δ$#���/�}~T !0; 1# ⋅ $!%, ℓ, (#
$!1,0,1/2# ⋅ :

(!( + 1#!2ℓ + 1# ∙ 3
4 ⋅ 1

% (5) 

For the scaling law from the ground-state hyperfine splitting of deuterium, the factor 3/4 in 

formula (5) must be replaced by 1/2. In Table 2, theoretical predictions using the scaling relation 

(5) are given and compared to experimental results for 2S1/2 states. For both isotopes, the 

agreement between theory and experiment is impressive with, surprisingly, a relative deviation 

of 30 ppm that is independent of the nucleus. Unfortunately, besides the 2P1/2 hfs splitting in 

hydrogen of 59.22(14) MHz [Kramida 2010, Table A], no reliable experimental data are available 

for other excited states. Theoretical values, calculated by different authors using QED with �������, 

can be found in Kramida's work, allowing a comparison with the values calculated by means of 

expression (5). 
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Table 1: The adjusted dimensionless parameters A to F and the absolute Lamb shifts for n = 1, 2, and 3. 

isotope hydrogen deuterium 

Experimental input Table C Table G 

Number of input values 29 19 � ^_ 0.00 72 838(10) 0.00 72 834(10) 

  ������� �4�4 ����  ������� �4�4 ����  

      

mean abs. dev. (MHz) 4.03 0.82 4.75 0.80 

      

      

γzero  0.999 455 610 362 1.003 045 534 235 0.999 727 563 649 1.003 318 464 318 

[γzero]   [1.003 045 534 890]   

γred mass_Codata 2010  0.999 455 679(1)  0.999 727 631(1)  

γzero / γcorr   0.999 455 690  0.999 727 643 

      

      

A   all levels (ppm) 0 0 0 0 

B    (nS1/2)   −2.411 846 −2.441 530 −2.419 799 −2.450 077 

[B]    [−2.442 137]   

C    (nP1/2)     0.167 457   0.134 688   0.161 442   0.128 073 

D    (nP3/2)     0.105 245 −0.022 870   0.098 994 −0.030 347 

E    (nD3/2)     0.148 730   0.022 573   0.217 980   0.049 010 

F    (nD5/2) (ppm)   0.141 163 −0.021 527   0.189 677 −0.015 156 
      

      

ℒ!1)1/2# (MHz) 7930.4 8028.0 7958.7 8058.3 

ℒ!2)1/2#   991.3 1003.5 994.8 1007.3 

ℒ!2+1/2#   −68.8 −55.4 −66.4 −52.7 

ℒ!2+3/2#   −43.3 9.4 −40.7 12.5 

ℒ!3)1/2#   293.7 297.3 294.8 298.5 

ℒ!3+1/2#   −20.4 −16.4 −19.7 −15.6 

ℒ!3+3/2#   −12.8 2.8 −12.1 3.7 

ℒ!3,3/2#   0.0 0.0 0.0 0.0 

ℒ!3,5/2# (MHz) 0.0 0.0 0.0 0.0 

Notes: 

The value � ^_ is the result of minimizing the mean absolute deviation based on Table C or Table G using formula (1) 

and the solutions of the linear system of equations. The minima were determined by quadratic regression of 13 values 

of the discretized function MAD(α;Table C) or MAD(α;Table G) with α = [0.00 72 78, 0.00 72 90] and Δα = 0.00 00 01. 

The grey-shaded fields present the adjusted dimensionless parameters in formula (1) to compute the essentially 

experimental binding energy $!%, ℓ, (# for ���� . All numbers are rounded to 12 decimal places. 

For the classic Lamb shift 2P1/2–2S1/2 of hydrogen the energy difference $!2,1,1/2# − $!2,0,1/2# is 1058.86 MHz 

using {mec2/h}Codata 2010. 
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Table 2: Absolute values of the hyperfine splitting frequencies in H and D calculated by scaling 

from the hfs of 1S1/2. 

 hydrogen deuterium 

!∆$#}~T 1)1/2 (MHz) 1420.405 751 768(1) a) 327.384 352 5222(17) a) 

5|  (ppm) 0.080 997 276 b) 0.024 884 934 b) 

      !∆$#}~T 2)1/2 (MHz) 177.55 15  40.92 32  

    177.55 69 a) 40.92 45 a) 

 3)1/2     52.60 77  12.12 54  

 4)1/2     22.19 38    5.11 54  

 5)1/2     11.36 32    2.61 91  

 6)1/2       6.57 59    1.51 57  

 7)1/2       4.14 11    0.95 45  

 8)1/2       2.77 42    0.63 94  

 9)1/2       1.94 84    0.44 91  

 10)1/2       1.42 04    0.32 74  

 11)1/2       1.06 72    0.24 60  

 12)1/2 (MHz)     0.82 20    0.18 95  

       

 2+1/2!: = 1# (MHz)   59.18 39    

 2+3/2!: = 2#     23.67 33    

 3+1/2!: = 1#     17.53 59    

 3+3/2!: = 2#       7.01 43    

 3,3/2!: = 2#       4.20 86    

 3,5/2!: = 3#       2.70 55    

 4,5/2!: = 3#       1.14 14    

 4:7/2!: = 4#       0.60 39    

 7:5/2!: = 3#       0.15 21    

 8,3/2!: = 2#       0.22 19    

 8,5/2!: = 3#       0.14 27    

 8:5/2!: = 3# (MHz)     0.10 19    

       

 4,5/2!: = 7/2# (MHz)       0.20 46  

 4,5/2!: = 5/2#         0.14 62  

 8,5/2!: = 7/2#         0.02 56  

 8,5/2!: = 5/2# (MHz)       0.01 83  

Notes: 

Hfs values without a reference are obtained with the help of formula (5) and can be compared with 

theoretical values of Kramida 2010 [hydrogen: Table A and Table 1; deuterium: Table B and Table 2]. 

a) Experimental value [Kramida 2010, p. 591]. 

b) Calculated from the 1S hfs using formula (3). 



12 

Table C: The best available measurements of fine-structure intervals in hydrogen [4]. 

interval  Measured value (MHz) Unc. (MHz) Diff (MHz) 

    ����  ������� 

1S1/2–2S1/2 * 2466061413.187074 0.000034 −0.1 2.1 

2P1/2–2S1/2  1057.847 0.09 −1.0 −2.3 

2P1/2–2P3/2  10969.13 0.1 −0.1 −0.1 

2S1/2–2P3/2  9911.201 0.012 0.8 2.1 

2P1/2–3D3/2 not used 456685852.8 1.7   

2S1/2–3P1/2  456681549.9 0.3 −1.5 −5.1 

2S1/2–3P3/2  456684800.1 0.3 −1.5 −5.0 

3P1/2–3D3/2 not used 456675968.3 3.4   

2S1/2–4P1/2  616520017.568 0.015 −0.3 −3.0 

2S1/2–4S1/2  616520150.636 0.01 0.4 −2.4 

2S1/2–4P3/2  616521388.672 0.01 −0.3 −3.0 

2S1/2–4D5/2  616521843.441 0.024 1.3 −9.6 

2S1/2–6S1/2  730690017.097 0.021 0.2 −0.1 

2S1/2–6D5/2  730690518.592 0.011 0.4 −2.3 

2S1/2–8S1/2 * 770649350.012 0.09 0.3 1.5 

2S1/2–8D3/2  770649504.45 0.08 0.0 0.4 

2S1/2–8D5/2  770649561.584 0.06 0.3 0.5 

2S1/2–10D5/2  789144886.411 0.039 0.2 1.7 

2S1/2–12D3/2  799191710.473 0.09 0.1 2.4 

2S1/2–12D5/2  799191727.404 0.07 0.2 2.4 

3P1/2–3S1/2  314.818 0.048 1.1 0.7 

3P1/2–3D3/2 not used 3244.9 3.1   

3S1/2–3P3/2 not used 2933.5 1.2   

3S1/2–3D3/2  2929.9 0.8 −3.8 −18.9 

3S1/2–3D5/2  4013.155 0.048 2.6 −16.5 

3D3/2–3P3/2  5.5 0.9 2.7 18.3 

3D3/2–3D5/2 not used 1083 0.29   

3P3/2–3D5/2 not used 1078 1.1   

4P1/2–4S1/2  133.2 0.6 0.8 0.7 

4P1/2–4P3/2  1370.85 0.22 −0.3 −0.3 

4P1/2–4D3/2  1371.1 1.2 1.1 −5.5 

4S1/2–4D3/2 not used 1235 2.1   

4S1/2–4P3/2  1237.79 0.29 −1.0 −0.8 

4S1/2–4D5/2  1693 0.4 1.0 −7.0 

4D3/2–4F5/2 not used 456.8 1.6   

4D3/2–4D5/2 not used 458 2.2   

4P3/2–4D5/2 not used 455.7 1.6   

4D5/2–4F7/2 not used 227.96 0.41   

5P1/2–5S1/2 not used 64.6 5   

5P1/2–5D3/2 not used 704 7   

5S1/2–5P3/2 not used 622 10   

5P3/2–5D5/2 not used 232.2 2.9   

5D5/2–5F7/2 not used 117 1.5   

1S1/2–3S1/2 [8] 2922743278.678 0.013 0.2 −1.5 

2S1/2–8D5/2 [9] 770649561.5709 0.02 0.3 0.5 
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Table G: The best available measurements of fine-structure intervals in deuterium [4]. 

interval  Measured value (MHz) Unc. (MHz) Diff (MHz) 

    ����  ������� 

1S1/2–2S1/2   2466732407.52171 0.00015 0.1 0.5 

2P1/2–2S1/2   1059.28 0.06 −0.7 −1.9 

2S1/2–2P3/2   9912.61 0.3 −0.1 1.5 

2P1/2–3D3/2   456810113.8 0.19 −6.0 −26.7 

2S1/2–3P1/2   456805811.7 0.3 −0.7 −4.4 

2S1/2–3P3/2   456809062.6 0.3 −0.9 −4.6 

2P3/2–3S1/2  not used 456796251 30   

2P3/2–3D5/2   456800225.9 1.6 1.5 −23.4 

2P1/2–4D3/2  not used 616690180 40   

2S1/2–4P1/2   616687769.99 0.19 −0.6 −3.5 

2S1/2–4S1/2   616687903.573 0.02 0.5 −2.6 

2S1/2–4P3/2   616689141.73 0.17 −0.4 −3.3 

2S1/2–4D5/2   616689596.72 0.4 1.6 −9.5 

2P3/2–4D5/2  not used 616679760 50   

2P1/2–5D3/2  not used 690691810 50   

2P3/2–5D5/2  not used 61681100 70   

2P1/2–6D3/2  not used 730890320 60   

2P3/2–6D5/2  not used 730879480 80   

2P1/2–7D3/2  not used 755128600 60   

2P3/2–7D5/2  not used 755117710 50   

2P1/2–8D3/2  not used 770860360 210   

2S1/2–8S1/2   770859041.246 0.07 0.2 1.1 

2S1/2–8D3/2   770859195.702 0.006 0.0 0.1 

2S1/2–8D5/2   770859252.850 0.06 0.4 0.2 

2P3/2–8D5/2  not used 770849570 210   

2P1/2–9D3/2  not used 781645760 300   

2P3/2–9D5/2  not used 781634790 300   

2S1/2–10D5/2   789359610.238 0.038 0.2 1.4 

2S1/2–12D3/2   799409168.038 0.09 0.0 2.0 

2S1/2–12D5/2   799409184.967 0.07 0.1 2.1 

3P1/2–3S1/2   315.3 0.4 1.2 0.9 

3P1/2–3P3/2  not used 3250.7 1   

3S1/2–3P3/2  not used 2934.5 5   

3D3/2–3P3/2  not used 5 5   

4P1/2–4S1/2  not used 133 5   

4P1/2–4P3/2   1371.8 0.3 0.2 0.3 
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Table 5: Frequencies of fine-structure transitions in hydrogen derived from the 

level-optimization procedure [Kramida 2010, Table 5]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

Ionization  a) 3288086856.8 0.7 −0.5 5.8 

Ionization   b) 3288086857.128 0.003 −0.1 6.1 

     

1S1/2–2P1/2 2466060355.339 0.009 0.9 4.4 

1S1/2–2S1/2 2466061413.18707 0.00003 −0.1 2.1 

1S1/2–2P3/2 2466071324.389 0.012 0.7 4.2 

1S1/2–3P1/2 2922742963.15 0.21 −1.6 −2.9 

1S1/2–3S1/2 2922743277.97 0.22 −0.5 −2.2 

1S1/2–3P3/2 2922746213.24 0.21 −1.7 −2.9 

1S1/2–4P1/2 3082581430.756 0.015 −0.4 −0.8 

1S1/2–4S1/2 3082581563.823 0.01 0.3 −0.3 

1S1/2–4P3/2 3082582801.858 0.01 −0.5 −0.9 

1S1/2–5P1/2 3156563616.6 1.1 0.0 0.9 

1S1/2–5S1/2 3156563684.8 1.1 0.4 1.3 

1S1/2–5P3/2 3156564318.6 1.1 −0.1 0.9 

1S1/2–5D5/2 3156564549.7 0.7 −1.0 −4.2 

1S1/2–6P1/2 3196751390.79 0.3 −0.2 1.8 

1S1/2–6S1/2 3196751430.284 0.021 0.1 2.0 

1S1/2–6P3/2 3196751797.05 0.03 −0.2 1.8 

1S1/2–7P1/2 3220983314.5 1.2 −0.2 2.7 

1S1/2–7S1/2 3220983339.4 1.2 0.0 2.8 

1S1/2–7P3/2 3220983570.4 1.2 −0.2 2.7 

1S1/2–7D5/2 3220983655.4 0.7 0.3 1.6 

1S1/2–8P1/2 3236710746.525 0.018 0.0 3.5 

1S1/2–8S1/2 3236710763.199 0.009 0.1 3.6 

1S1/2–8P3/2 3236710917.916 0.019 0.0 3.5 

1S1/2–9P1/2 3247493411.9 1.2 0.2 4.1 

1S1/2–9S1/2 3247493423.6 1.2 0.2 4.2 

1S1/2–9P3/2 3247493532.3 1.2 0.2 4.1 

1S1/2–9D5/2 3247493572 0.7 0.1 3.3 

1S1/2–10P1/2 3255206183.1 1.2 0.3 4.7 

1S1/2–10S1/2 3255206191.6 1.2 0.4 4.7 

1S1/2–10P3/2 3255206270.8 1.2 0.3 4.6 

1S1/2–11P1/2 3260912757.7 1.2 0.3 4.9 

1S1/2–11S1/2 3260912764.1 1.2 0.4 5.0 

1S1/2–11P3/2 3260912823.6 1.2 0.3 4.9 

1S1/2–11D5/2 3260912845.1 0.7 0.0 4.2 

1S1/2–12P1/2 3265253073.3 1.2 0.3 5.1 

1S1/2–12S1/2 3265253078.2 1.2 0.3 5.1 

1S1/2–12P3/2 3265253124 1.2 0.2 5.1 

2P1/2–2S1/2 1057.848 0.09 −1.0 −2.3 

2P1/2–2P3/2 10969.05 0.015 −0.2 −0.2 

2P1/2–3S1/2 456682922.63 0.22 −1.4 −6.6 
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Table 5: Frequencies of fine-structure transitions in hydrogen derived from the 

level-optimization procedure [Kramida 2010, Table 5]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

2P1/2–3D3/2 456685852.6 0.6 −5.0 −25.5 

2P1/2–4S1/2 616521208.484 0.013 −0.6 −4.7 

2P1/2–4D3/2 616522444.5 0.23 −2.2 −12.7 

2P1/2–5S1/2 690503329.4 1.1 −0.5 −3.2 

2P1/2–5D3/2 690503960.5 0.7 −3.1 −9.0 

2P1/2–6S1/2 730691074.945 0.023 −0.8 −2.4 

2P1/2–6D3/2 730691441.05 0.04 −1.4 −4.9 

2P1/2–7S1/2 754922984.1 1.2 −0.9 −1.5 

2P1/2–7D3/2 754923214.8 0.7 −1.1 −3.0 

2P1/2–8S1/2 770650407.86 0.012 −0.8 −0.8 

2P1/2–8D3/2 770650562.298 0.012 −1.0 −1.9 

2P1/2–9S1/2 781433068.3 1.2 −0.6 −0.2 

2P1/2–9D3/2 781433176.5 0.7 −1.0 −1.2 

2P1/2–10D3/2 789145915 0.05 −1.0 −0.6 

2P1/2–11S1/2 794852408.8 1.2 −0.5 0.6 

2P1/2–11D3/2 794852467.8 0.7 −1.0 −0.2 

2P1/2–12S1/2 799192722.9 1.2 −0.5 0.8 

2P1/2–12D3/2 799192768.321 0.013 −1.0 0.1 

2S1/2–2P3/2 9911.202 0.012 0.8 2.1 

2S1/2–3P1/2 456681549.96 0.21 −1.4 −5.0 

2S1/2–3S1/2 456681864.78 0.22 −0.4 −4.3 

2S1/2–3P3/2 456684800.05 0.21 −1.5 −5.1 

2S1/2–4P1/2 616520017.569 0.015 −0.3 −2.9 

2S1/2–4S1/2 616520150.636 0.01 0.4 −2.4 

2S1/2–4P3/2 616521388.671 0.01 −0.3 −3.0 

2S1/2–4D5/2 616521843.443 0.024 1.3 −9.6 

2S1/2–5P1/2 690502203.4 1.1 0.1 −1.2 

2S1/2–5S1/2 690502271.6 1.1 0.5 −0.9 

2S1/2–5P3/2 690502905.4 1.1 0.1 −1.3 

2S1/2–6P1/2 730689977.6 0.03 −0.1 −0.3 

2S1/2–6S1/2 730690017.097 0.021 0.2 −0.1 

2S1/2–6P3/2 730690383.86 0.04 −0.1 −0.3 

2S1/2–6D5/2 730690518.592 0.011 0.4 −2.3 

2S1/2–7P1/2 754921901.3 1.2 −0.1 0.5 

2S1/2–7S1/2 754921926.2 1.2 0.1 0.7 

2S1/2–7P3/2 754922157.2 1.2 0.0 0.6 

2S1/2–8P1/2 770649333.338 0.018 0.1 1.4 

2S1/2–8S1/2 770649350.012 0.009 0.3 1.5 

2S1/2–8D3/2 770649504.45 0.08 0.0 0.4 

2S1/2–8P3/2 770649504.729 0.019 0.1 1.4 

2S1/2–8D5/2 770649561.584 0.007 0.3 0.5 

2S1/2–9P1/2 781431998.7 1.2 0.3 2.0 

2S1/2–9S1/2 781432010.4 1.2 0.4 2.0 
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Table 5: Frequencies of fine-structure transitions in hydrogen derived from the 

level-optimization procedure [Kramida 2010, Table 5]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

2S1/2–9P3/2 781432119.1 1.2 0.3 2.0 

2S1/2–10P1/2 789144769.9 1.2 0.5 2.5 

2S1/2–10S1/2 789144778.4 1.2 0.5 2.5 

2S1/2–10P3/2 789144857.6 1.2 0.4 2.5 

2S1/2–10D5/2 789144886.41 0.4 0.2 1.7 

2S1/2–11P1/2 794851344.5 1.2 0.4 2.8 

2S1/2–11S1/2 794851350.9 1.2 0.5 2.8 

2S1/2–11P3/2 794851410.4 1.2 0.4 2.8 

2S1/2–12P1/2 799191660.1 1.2 0.4 3.0 

2S1/2–12S1/2 799191665 1.2 0.4 3.0 

2S1/2–12D3/2 799191710.473 0.01 0.1 2.4 

2S1/2–12P3/2 799191710.9 1.2 0.4 3.0 

2S1/2–12D5/2 799191727.404 0.007 0.2 2.4 

2P3/2–3S1/2 456671953.58 0.22 −1.1 −6.4 

2P3/2–3D3/2 456674883.5 0.6 −4.9 −25.3 

2P3/2–3D5/2 456675966.74 0.22 1.4 −22.9 

2P3/2–4S1/2 616510239.434 0.016 −0.4 −4.5 

2P3/2–4D3/2 616511475.45 0.23 −2.0 −12.5 

2P3/2–4D5/2 616511932.24 0.03 0.5 −11.7 

2P3/2–5S1/2 690492360.4 1.1 −0.3 −2.9 

2P3/2–5D3/2 690492991.4 0.7 −2.9 −8.9 

2P3/2–5D5/2 690493225.3 0.7 −1.7 −8.4 

2P3/2–6S1/2 730680105.895 0.024 −0.6 −2.2 

2P3/2–6D3/2 730680472 0.04 −1.2 −4.7 

2P3/2–6D5/2 730680607.39 0.016 −0.4 −4.4 

2P3/2–7S1/2 754912015 1.2 −0.7 −1.4 

2P3/2–7D3/2 754912245.7 0.7 −0.9 −2.8 

2P3/2–7D5/2 754912331 0.7 −0.4 −2.6 

2P3/2–8S1/2 770639438.81 0.015 −0.5 −0.6 

2P3/2–8D3/2 770639593.248 0.015 −0.8 −1.7 

2P3/2–8D5/2 770639650.382 0.014 −0.5 −1.5 

2P3/2–9S1/2 781422099.2 1.2 −0.4 0.0 

2P3/2–9D3/2 781422207.5 0.7 −0.8 −0.9 

2P3/2–9D5/2 781422247.6 0.7 −0.6 −0.9 

2P3/2–10S1/2 789134867.2 1.2 −0.3 0.5 

2P3/2–10D3/2 789134945.95 0.05 −0.8 −0.4 

2P3/2–10D5/2 789134975.21 0.04 −0.6 −0.3 

2P3/2–11S1/2 794841439.7 1.2 −0.3 0.8 

2P3/2–11D3/2 794841498.7 0.7 −0.8 −0.1 

2P3/2–11D5/2 794841520.7 0.7 −0.7 0.0 

2P3/2–12S1/2 799181753.8 1.2 −0.4 0.9 

2P3/2–12D3/2 799181799.271 0.015 −0.7 0.3 

2P3/2–12D5/2 799181816.202 0.014 −0.6 0.4 
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Table 5: Frequencies of fine-structure transitions in hydrogen derived from the 

level-optimization procedure [Kramida 2010, Table 5]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

3P1/2–3S1/2 314.82 0.05 1.1 0.7 

3P1/2–3D3/2 3244.8 0.6 −2.6 −18.2 

3P1/2–3P3/2 3250.09 0.03 −0.1 0.0 

3S1/2–3D3/2 2929.9 0.6 −3.8 −18.9 

3S1/2–3P3/2 2935.27 0.06 −1.2 −0.8 

3S1/2–3D5/2 4013.16 0.05 2.6 −16.5 

3D3/2–3P3/2 5.3 0.6 2.5 18.1 

3D3/2–3D5/2 1083.2 0.6 6.3 2.4 

3P3/2–3D5/2 1077.89 0.07 3.7 −15.8 

4P1/2–4S1/2 133.067 0.018 0.7 0.6 

4P1/2–4P3/2 1371.102 0.018 −0.1 0.0 

4P1/2–4D3/2 1369.08 0.23 −0.9 −7.5 

4S1/2–4D3/2 1236.02 0.23 −1.6 −8.0 

4P3/2–4D5/2 454.77 0.03 1.6 −6.6 

5P1/2–5S1/2 68.201 0.019 0.4 0.4 

5P1/2–5D3/2 699.2 1.3 −2.2 −5.6 

5P1/2–5P3/2 702.019 0.012 0.0 0.0 

5S1/2–5P3/2 633.818 0.022 −0.4 −0.4 

5D3/2–5D5/2 233.92 0.08 1.3 0.5 

5P3/2–5D5/2 231.1 1.3 −0.9 −5.1 

8D3/2–8D5/2 57.134 0.01 0.3 0.1 

12D3/2–12D5/2 16.931 0.012 0.1 0.1 

Notes: 

a) Ritz series limit [Kramida 2010, Table D]. 

b) NIST: Atomic Spectra Database 78 [version 5.11]: Ionization Energies Form. 

Energy has been determined from bound-state QED ab initio calculations. 
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Table 7: Frequencies of fine-structure transitions in deuterium derived from 

the level-optimization procedure [Kramida 2010, Table 7]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

Ionization  a) 3288981521.1 2.3 −1.1 3.1 

Ionization   b) 3288981522.062 0.003 −0.09 4.1 

     

1S1/2–2P1/2 2466731348.24 0.06 0.7 2.5 

1S1/2–2S1/2 2466732407.52171 0.00015 0.1 0.5 

1S1/2–2P3/2 2466742320.1 0.3 0.0 2.0 

1S1/2–3P1/2 2923538219.2 0.3 −0.6 −3.9 

1S1/2–3S1/2 2923538534.6 0.5 0.7 −3.0 

1S1/2–3P3/2 2923541470.1 0.3 −0.9 −4.1 

1S1/2–4P1/2 3083420177.53 0.17 −0.6 −3.0 

1S1/2–4S1/2 3083420311.095 0.02 0.5 −2.1 

1S1/2–4P3/2 3083421549.28 0.15 −0.4 −2.8 

1S1/2–5P1/2 3157422491 7 −3.0 −4.1 

1S1/2–5S1/2 3157422559 6 −2.9 −4.0 

1S1/2–5P3/2 3157423193 7 −3.3 −4.3 

1S1/2–5D5/2 3157423433.2 2.3 5.0 −0.3 

1S1/2–6P1/2 3197621201 7 −2.5 −2.5 

1S1/2–6S1/2 3197621241 6 −1.8 −1.8 

1S1/2–6P3/2 3197621608 7 −1.9 −1.9 

1S1/2–6D5/2 3197621746.3 2.3 2.2 −0.2 

1S1/2–7P1/2 3221859720 6 −0.7 0.1 

1S1/2–7S1/2 3221859745 6 −0.4 0.4 

1S1/2–7P3/2 3221859976 6 −0.6 0.2 

1S1/2–7D5/2 3221860061.9 2.3 0.8 0.1 

1S1/2–8P1/2 3237591432.01 0.3 0.1 1.5 

1S1/2–8S1/2 3237591448.768 0.07 0.3 1.7 

1S1/2–8P3/2 3237591603.48 0.04 0.1 1.6 

1S1/2–9P1/2 3248377032 7 0.9 2.8 

1S1/2–9S1/2 3248377044 6 1.2 3.1 

1S1/2–9P3/2 3248377153 7 1.5 3.4 

1S1/2–9D5/2 3248377191.5 2.3 0.2 1.4 

1S1/2–10P1/2 3256091901 7 0.2 2.5 

1S1/2–10S1/2 3256091910 6 0.7 3.0 

1S1/2–10P3/2 3256091989 7 0.4 2.7 

1S1/2–11P1/2 3261800029 7 0.8 3.4 

S1/2–11S1/2 3261800035 6 0.5 3.0 

1S1/2–11P3/2 3261800095 7 0.9 3.5 

1S1/2–11D5/2 3261800116.1 2.3 0.2 2.4 

1S1/2–12P1/2 3266141526 6 1.2 4.0 

1S1/2–12S1/2 3266141531 6 1.3 4.1 

1S1/2–12P3/2 3266141577 7 1.4 4.2 

2P1/2–2S1/2 1059.28 0.06 −0.7 −1.9 

2P1/2–2P3/2 10971.9 0.4 −0.7 −0.4 

2P1/2–3S1/2 456807186.4 0.5 0.0 −5.4 
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Table 7: Frequencies of fine-structure transitions in deuterium derived from 

the level-optimization procedure [Kramida 2010, Table 7]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

2P1/2–3D3/2 456810114.2 1.8 −5.6 −26.3 

2P1/2–4S1/2 616688962.86 0.07 −0.2 −4.5 

2P1/2–4D3/2 616690198.83 0.24 −1.8 −12.5 

2P1/2–5S1/2 690691211 7 −3.3 −6.3 

2P1/2–5D3/2 690691850.8 2.3 2.8 −3.4 

2P1/2–6D3/2 730890262.7 2.3 0.8 −2.9 

2P1/2–7S1/2 755128397 7 −0.9 −1.9 

2P1/2–7D3/2 755128628.2 2.3 −0.6 −2.8 

2P1/2–8S1/2 770860100.53 0.6 −0.5 −0.8 

2P1/2–8D3/2 770860254.98 0.06 −0.7 −1.8 

2P1/2–9S1/2 781645696 7 0.8 0.9 

2P1/2–9D3/2 781645803.1 2.3 −0.8 −1.2 

2P1/2–10S1/2 789360562 7 0.3 0.8 

2P1/2–10D3/2 789360640.26 0.07 −0.7 −0.6 

2P1/2–11S1/2 795068687 7 0.0 0.8 

2P1/2–11D3/2 795068745.9 2.3 −0.6 −0.1 

2P1/2–12S1/2 799410183 7 0.8 1.9 

2P1/2–12D3/2 799410227.32 0.06 −0.7 0.1 

2S1/2–2P3/2 9912.6 0.3 −0.1 1.5 

2S1/2–3P1/2 456805811.7 0.3 −0.7 −4.4 

2S1/2–3S1/2 456806127.1 0.5 0.7 −3.5 

2S1/2–3P3/2 456809062.6 0.3 −0.9 −4.6 

2S1/2–4P1/2 616687770.01 0.17 −0.6 −3.5 

2S1/2–4S1/2 616687903.573 0.02 0.5 −2.6 

2S1/2–4P3/2 616689141.76 0.16 −0.4 −3.3 

2S1/2–4D5/2 616689596.72 0.04 1.6 −9.5 

2S1/2–5P1/2 690690083 6 −3.6 −5.1 

2S1/2–5P3/2 690690785 7 −3.8 −5.4 

2S1/2–6P1/2 730888794 7 −2.0 −2.5 

2S1/2–6P3/2 730889200 7 −2.4 −2.9 

2S1/2–7P1/2 755127312 7 −1.2 −0.9 

2S1/2–7P3/2 755127568 7 −1.2 −0.8 

2S1/2–8P1/2 770859024.49 0.03 0.0 1.0 

2S1/2–8P3/2 770859195.96 0.04 0.0 1.0 

2S1/2–9P1/2 781644625 7 1.3 2.8 

2S1/2–9P3/2 781644745 7 0.9 2.4 

2S1/2–10P1/2 789359494 7 0.7 2.5 

2S1/2–10P3/2 789359582 7 0.9 2.7 

2S1/2–11P1/2 795067621 6 0.3 2.4 

2S1/2–11P3/2 795067687 6 0.3 2.4 

2S1/2–12P1/2 799409119 7 1.7 4.0 

2S1/2–12P3/2 799409169 7 0.9 3.2 

2P3/2–3S1/2 456796214.5 0.6 0.7 −5.0 

2P3/2–3D3/2 456799142.3 1.8 −4.9 −25.8 
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Table 7: Frequencies of fine-structure transitions in deuterium derived from 

the level-optimization procedure [Kramida 2010, Table 7]. 

interval ΔERitz (MHz) Unc. (MHz)  ΔERitz−ΔEcalc (MHz) 

 (Ritz values)  ����  ������� 

     

2P3/2–4S1/2 616677991 0.3 0.5 −4.1 

2P3/2–4D3/2 616679227 0.4 −1.0 −12.0 

2P3/2–4D5/2 616679684.1 0.3 1.7 −11.0 

2P3/2–5S1/2 690680239 7 −2.7 −5.9 

2P3/2–5D3/2 690680878.9 2.3 3.6 −2.9 

2P3/2–5D5/2 690681113 2.3 5.0 −2.4 

2P3/2–6S1/2 730878921 7 −1.6 −3.7 

2P3/2–6D3/2 730879290.9 2.3 1.6 −2.4 

2P3/2–6D5/2 730879426.3 2.3 2.3 −2.1 

2P3/2–7S1/2 755117425 7 −0.3 −1.5 

2P3/2–7D3/2 755117656.4 2.3 0.2 −2.2 

2P3/2–7D5/2 755117741.7 2.3 0.7 −2.0 

2P3/2–8S1/2 770849128.7 0.3 0.3 −0.3 

2P3/2–8D3/2 770849283.1 0.3 0.0 −1.4 

2P3/2–8D5/2 770849340.3 0.3 0.4 −1.2 

2P3/2–9S1/2 781634724 7 1.4 1.2 

2P3/2–9D3/2 781634831.3 2.4 0.0 −0.7 

2P3/2–9D5/2 781634871.4 2.3 0.2 −0.6 

2P3/2–10S1/2 789349590 7 0.9 1.1 

2P3/2–10D3/2 789349668.4 0.3 0.1 −0.1 

2P3/2–10D5/2 789349697.7 0.3 0.3 0.0 

2P3/2–11S1/2 795057715 7 0.6 1.1 

2P3/2–11D3/2 795057774 2.3 0.1 0.3 

2P3/2–11D5/2 795057796 2.3 0.2 0.4 

2P3/2–12S1/2 799399211 7 1.4 2.2 

2P3/2–12D3/2 799399255.5 0.3 0.1 0.6 

2P3/2–12D5/2 799399272.4 0.3 0.2 0.6 

3P1/2–3S1/2 315.4 0.4 1.3 1.0 

3P1/2–3P3/2 3250.9 0.4 −0.3 −0.2 

3D3/2–3D5/2 1083.6 2.4 6.4 2.5 

4P1/2–4S1/2 133.57 0.17 1.1 0.9 

Notes: 

a) Ritz series limit [Kramida 2010, Table H]. 

b) NIST: Atomic Spectra Database 78 [version 5.11]: Ionization Energies Form. 

Energy has been determined from bound-state QED ab initio calculations. 

 


