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Abstract

We calculate the quantum corrections to synchrotron radiation by method
developed by Schwinger and Tsai. The traditional calculation method working with
the particle wave functions is here replaced by the mass operator approach avoiding
the particle final states and the integration over photon angular distribution. The
algorithm of the calculation of the quantum corrections to the synchrotron radiation
consists in the evaluation of the forward Compton scattering process in the external
magnetic field and then in application of the optical theorem to obtain the angular
and frequency distribution.

1 Introduction

Around year 1947 Floyd Haber, a young staff member and technician in the laboratory of

prof. Pollock, visually observed radiation of electrons moving circularly in the magnetic

field of the chamber of an accelerator (Ternov, 1994). It occurred during adjustment

of cyclic accelerator-synchrotron which accelerated electrons up to 100 MeV (Elder et

al., 1948). The radiation was observed as a bright luminous patch on the background

of the chamber of the synchrotron. It was clearly visible in the daylight. In this way

the ”electron light” was experimentally revealed for the first time as the radiation of
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relativistic electrons of large centripetal acceleration. The radiation was identified with

the Ivanenko and Pomeranchuk radiation, or with the Schwinger radiation and later was

called the synchrotron radiation since it was observed for the first time in synchrotron.

The radiation was considered as the mysterious similarly to the Roentgen mysterious

x-rays.

A number of theoretical studies on the emission of a relativistic accelerating electron

had been carried out long before the cited experiment. The first steps in this line was

treated by Liénard (1898). He used the Larmor formula and extended it to the high-

velocity particles. He also received the total radiation of an electron following a circle of

an circumference 2πR.

In modern physics, Schwinger (1945, 1949) used the relativistic generalization of the

Larmor formula to get the total synchrotron radiation. Schwinger also obtained the

spectrum of the synchrotron radiation from the method which was based on the electron

work on the electromagnetic field, P = −
∫

(j · E)dx, where the intensity of electric field

he expressed as the subtraction of the retarded and advanced electric field of a moving

charge in a magnetic field, E = 1
2
(Eret − Eadv), (Schwinger, 1949).

Schott in 1907 was developing the classical theory of electromagnetic radiation of

electron moving in the uniform magnetic field. His calculation was based on the Poynting

vector. The goal of Schott was to explain the spectrum of radiation of atoms. Of course the

theory of Schott was unsuccessful because only quantum theory is adequate to explain

the emission spectrum of atoms. On the other hand the activity of Schott was not

meaningless because he elaborated the theory of radiation of charged particles moving in

the electromagnetic field. His theory appeared to be only of the academical interest for

40 years. Then, it was shown that the theory and specially his formula has deep physical

meaning and applicability. His formula is at the present time the integral part of the

every textbook on the electromagnetic field.

The classical derivation of the Schott formula is based on the Poynting vector S

(Sokolov et al. 1966) S = (c/4π)(E × H), where E and H are intensities of the

electromagnetic field of an electron moving in the constant magnetic field, where the

magnetic field is in the direction of the axis z. In this case electron moves along the circle

with radius R and the electromagnetic field is considered in the wave zone and in a point

with the spherical coordinates r, θ, ϕ. In this case it is possible to show that the nonzero

components of the radiated field are −Hθ = Eϕ, Hθ = Eθ (Sokolov et al. 1966). They are

calculated from the vector potential A which is expressed as the Fourier integral.

The circular classical trajectory of the electron is created by the Lorentz force

F = (e/c)(v × H). The trajectory is stationary when the radiative reaction is not

considered. The radiative reaction causes the transformation of the circular trajectory to

the spiral trajectory. In quantum mechanics, the trajectory is stationary when neglecting

the interaction of an electron with the vacuum field. The interaction of an electron with

the vacuum field, causes the electron jumps from the higher energetic level to the lower
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ones. In quantum electrodynamics description of the motion of electron in a homogeneous

magnetic field, the stationarity of the trajectories is broken by including the mass operator

into the wave equation. Then, it is possible from the mass operator to derive the power

spectral formula (Schwinger, 1973). Different approach is involved in the Schwinger et al.

article (1976).

We calculate the quantum corrections to synchrotron radiation by method developed

by Schwinger and Tsai. The traditional calculation method working with the particle wave

functions is here replaced by the mass operator approach avoiding the particle final states

and the integration over photon angular distribution. The algorithm of the calculation

of the quantum corrections to the synchrotron radiation consists in the evaluation of the

forward Compton scattering process in the external magnetic field and then in application

of the optical theorem to obtain the angular and frequency distribution.

We answer the question whether the quantum effects are significant correction to the

power spectrum of radiation through the modification of the coefficient attached to the

speed of the charged particle. The quantum correction, if significant, might have impact

on the construction of the next generation of synchrotrons and on the theory of non

thermal radiation from the magnetic stars.

The traditional calculation method of Latal and Erber (2003) working with the particle

wave functions is here replaced by the mass operator approach avoiding the particle final

states and the integration over photon angular distribution.

2 The quantum corrections to synchrotron radiation

The algorithm of the calculation of the quantum corrections to the synchrotron radiation

consists in the evaluation of the forward Compton scattering process in the external

magnetic field and then in application of the optical theorem to obtain the angular and

frequency distribution P (ω, t). The used calculation method has the following advantages.

1. It is used the Green function and only the electron final states are summed from

the beginning.

2. The proper time method enables to solve the problem in the coordinate represen-

tation. The resulting quantum expansion is similar to its classical counterpart, so that

the quantum modification can be easily identified.

3. P (ω, t) can be evaluated exactly in a one-parameter integral.

We will see that there is no indication of a significant second-order quantum correction.

Since the sensitive quantum correction do not depend on the spin, we can consider the

process with the spin-0 particle. We choose the homogenous magnetic field H to be along

the +z-axis and particles to be moving in the xy plane.

We use the forward Compton scattering to compute the spectral density of radiation

P (ω, t). Here, the scattering amplitude describes the scattering of an outgoing real photon

with momentum kµ and polarization eµ∗λ , λ = 1, 2 by a charged particle of energy E. The
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radiative power P (ω, t) is related through the optical theorem to the imaginary part of

the forward scattering.

The action for the forward Compton scattering is of the form [Schwinger, 1973; 1989]:

W =
1

2

∫
(dx)(dx′)ϕ(x)(2Π− k)µeq̂Aµλ(x)∆A

+(x− x′)eq̂Aν∗λ (x′)(2Π− k)νϕ(x′) =

= −1

2

∫
(dx)(dx′)ϕ(x)Mλ(x, x

′)ϕ(x′), (1)

where q̂ is so called the charge matrix (with q11 = 0, q12 = −i, q21 = i, q22 = 0) (Schwinger,

1969; 1970) and

Aµλ(x) = (dωk)
1/2eikxεµλ, (2)

Mλ(x, x
′) = −e2dωk(2Π− k)µε

µ
λe
ikx∆A

+(x, x′)e−ikx(2Π− k)νε
ν∗
λ =

εµλMµν(x, x
′)εν∗λ , (3)

and field ϕ(x) concerns spin-0 particles of the Klein-Gordon equation

(m2 + Π2)ϕ(x) = 0. (4)

The corresponding Green function equation to eq. (4) is

(m2 + Π2)∆A
+ = δ(x− x′). (5)

Furthermore dωk is the invariant phase space measure for the photon

dωk =
dk

(2π)3
1

2ω
=
ωdωdΩ

16π3
; ω = |k0| ≡ |k| (6)

and Πµ is defined by

Πµ =
1

i
∂µ − eq̂Aµ, (7)

where Aµ is the vector potential for the external magnetic field.

For the unpolarized photons we may sum over the polarization using relations

∑
εµλε

ν∗
λ = gµν − (kµk̄ν − kν k̄µ)

kk̄
(8)

with

kµ = ω(1,n); k̄µ = ω(1,−n), (9)

where n is a unit vector along the direction of propagation.
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The synchrotron radiation is determined only by the imaginary part of Mλ. We will

compute the matrix element of Mλ for a particle state, so that we replace Π2 by −m2,

wherever Π2 appears to the left or right hand side of Mλ. It may be easily seen that

ImMλ is gauge invariant because

kµ(ImMµν) ≡ Im
{
−e2dωk(2kΠ− k2)eikx∆A

+(x, x′)e−ikx
′
(2Π− k)ν

}
=

Im
{
e2dωk

[
(−k + Π)2 − Π2

]
eikx∆A

+(x, x′)e−ikx
′
(2Π− k)ν

}
→

→ Im
{
e2dωk(2Π− k)ν

}
= 0 (10)

since the diagonal matrix element of (2Π− k)ν is a real number.

In the derivation of the gauge invariance we have used

(m2 + Π2)ϕ(x) = 0 (11)

(m2 + Π2)∆A
+(x, x′) = δ(x, x′) (12)

and

e−ikx
[
(−k + Π)2 +m2

]
eikx∆A

+(x, x′) = (m2 + Π2)∆A
+(x, x′) = δ(x, x′). (13)

After the polarization summation, we can write

M(x, x′) ≡
2∑

λ=1

Mλ(x, x
′)→ −4e2dωkΠ

µeikx∆A
+(x, x′)e−ikx

′
Πµ. (14)

It is well known that in terms of matrix notation in the coordinate representation, the

Green function can be expressed as

∆A
+(x, x′) = 〈x| 1

m2 + Π2 − iε
|x′〉 = 〈x|i

∫ ∞
0

ds e−isH|x′〉, (15)

where

H = m2 + Π2 (16)

so that

M(x, x′) = 〈x|M|x′〉, (17)

0r,

M(x, x′) = 〈x| − 4ie2dωk

∫ ∞
0

ds Πµeikxe−iHe−ikxΠµ|x′〉. (18)
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In the standard proper-time formulation of quantum mechanics, the time evolution of

an operator ∆ is defined by equation

A(s) = eisHAe−isH. (19)

Using

eA+B = eAeBe
1
2
[A,B] (20)

for [A,B] commuting with both A and B we have

e−isH = e−
1
2
isHe−

1
2
isH (21)

and for Π it is:

M→−4ie2dωk

∫ ∞
0

ds Πµ(s/2)eikx(s/2)e−ikx(−s/2)Πµ(−s/2). (22)

To involve the Compton scattering, we must supplement to the original spin-0-action

∫
(dx)[K(x)ϕ(x)− 1

2
ϕ(x)(Π2 +m2)ϕ(x)] (23)

the term concerning the Compton scattering. The resulting equation of motion is then

(Π2 +m2 +M)ϕ(x) ≡ (Π2
⊥ − E ′2 +m2 +M)ϕ(x) = 0, (24)

where

Π2
⊥ = Π2

x + Π2
y (25)

and

E ′2 ≈ (E2 +M′)1/2 ≈ E +
1

2E
M′, (26)

where E ′ is the new energy eigenvalue of the system andM′ is the diagonal matrix element

of E for particle state of energy E. The total decay rate is then identified to be

γ = −2Im E ′ ≈ − 1

E
ImM′, (27)

which follows from the time dependent of the wave function exp{−iE ′t} and from the

definition of the decay rate.

e−γt ≡ |e−iE′t|2 = e−2(Im E′)t. (28)

We define the relation between γ and the spectral and angular distribution of the

radiative power P (ω,Ω) by equation

6



γ =
dω

ω
dΩP (ω,Ω). (29)

The comparison of eq. (29) with eq. (27) then gives

P (ω,Ω) = −ω
E

(ImM′dωdΩ) =

−ω
E

Im
(
−4ie2dωk

∫ ∞
0

ds Πµ(s/2)eikx(s/2)e−ikx(−s/2)Πµ(−s/2)
)
dωdΩ. (30)

Then, using

dωk =
ωdωdΩ

16π3
(31)

we get

P (ω,Ω) =
e2ω2

4π3

1

E
Re

〈
Π(s/2)eikx(s/2)e−ikx(−s/2)Π(−s/2)

〉
, (32)

where we have introduced 〈· · ·〉 for diagonal matrix element of M. Let us remark that

the clasical formula for P (ω,Ω) can be achieved by transformation Π0 → E, Π = Ev,

s = τ/2E.

To evaluate P (ω,Ω), we use eq. (19), or, its equivalent transcription called Heisenberg

equation

d

ds
A(s) =

1

i
[A(s),H] (33)

The equation (33) generates equations for x(s) and Π(s) in the form

d

ds
x(s) = 2Π(s) (34)

d

ds
Π(s) = 2eq̂FΠ (35)

with the corresponding solution

x(s) = x+

[
e2eq̂Fs − 1

eq̂F

]
Π (36)

with

Π(s) = e2eq̂FsΠ. (37)

It is no problem to get the commutation relations

[xµ,Πν ] = igµν (38)

[Πµ,Πν ] = ieq̂Fµν (39)

7



[
ikx

(
s

2

)
,−ikx

(
−s

2

)]
= − i

eH
(sin 2z − 2z)k2⊥. (40)

Using the last relation and identity

eaeb = ea+be
1
2
[a,b] (41)

for both a, b commuting with [a, b] we get

eikx(s/2)e−ikx(−s/2) =

e−2isωE exp
{

2i

eH
sin z(kΠ)⊥

}
exp

{
−iω

2

eH
(sin z cos z − z) sin2 Θ

}
, (42)

where Θ is the angle between propagation direction of the photon and +z direction and

(kΠ)⊥ ≡ kxΠx + kyΠy (43)

z = seH. (44)

The further identity

bea = ea(b+ [b, a]) (45)

for a, b commuting with [a, b] can be used to obtain the result

P (ω,Ω) =
e2ω2

4π3

1

E
×

Re
∫ ∞
0

〈
e−2isωE exp

{
i
ξ

ωE
(kΠ)⊥

}
exp

{
−i ω

2

eH
(sin z cos z − z) sin2 Θ

}
J

〉
, (46)

where

J ≡
[
Πµ(s/2) + z sin z

(
ke−eq̂Fs

eq̂F

eH

)]
Πµ(−s/2) =

cos zΠ2
⊥ − E2 − ieH sin 2z + 2 sin z

[
sin 2z(kΠ)⊥ + cos 2z

(
k
eq̂F

eH
Π

)
⊥

]
(47)

ξ = 2
ω

ω0

sin z (48)

ω0 =
eH

E
(49)

and where ω0 is so called the synchrotron frequency.
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Now, we need to evaluate the diagonal matrix element

〈· · ·〉 ≡ 〈n| · · · |n〉 (50)

occuring in (46), where |n〉 is the state characterized by the principal quantum number

n. First we calculate the ingredient of 〈· · ·〉 such as 〈n|Π2
⊥|n〉, 〈|(kΠ)⊥|〉, . . . and then we

sum up them.

For a charged particle moving in a constant magnetic field H, the covariant derivatives

satisfy the commutation relations

[Π1,Π2] = ieq̂H. (51)

Introducing the non-Hermitean operators

y =
Π+

(eH)1/2
≡ 1

(2eH)1/2
(Π1 + iΠ2) (52)

y+ =
Π−

(eH)1/2
≡ 1

(2eH)1/2
(Π1 − iΠ2), (53)

we have for y, y+

[y, y+] = 1, (54)

which is the commutation relation for the harmonic oscillator system and it immediately

means that the matrix element of y and y+ between states |n〉 and |n′〉 are

〈n|y|n′〉 = n′1/2δn+1,n′ (55)

〈n|y+|n′〉 = n1/2δn−1,n′ . (56)

Introducing quantities k±

k± =

√
1

2
(k1 + ik2) (57)

we can write easily:

Π2
⊥ = eH(2y+y + 1) (58)

(kΠ)⊥ = (eH)1/2(k+y
+ + k−y) (59)

[
k

(
eq̂F

eH

)
Π

]
⊥

= iq̂(eH)1/2(k+y
+ − k−y). (60)

The diagonal matrix element of Π2
⊥ then is

9



〈n|Π2
⊥|n〉 = 〈n|(2y+y + 1)eH|n〉 = (2n+ 1)eH. (61)

On the other hand we have for the matrix containing (kΠ)⊥ the following procedure:

〈n| exp

{
iξ

ωE
(kΠ)⊥

}
|n〉 = 〈n| exp

{
iχ(k⊥y

+ + k−y)
}
|n〉 =

〈n| exp
{
−1

2
χ2(k⊥k−

}
exp

{
iχk+y

+
}

exp {iχk−y} |n〉 =

e−κ/2〈n|
∞∑
m=0

(iχk+)m

m!
(y+)m

∞∑
l=0

(iχk−)l

l!
(y)l|n〉 =

e−κ/2
∞∑
m=0

(−1)m

m!

(κ)m

m!

n!

(n−m)!
= e−κ/2Ln(κ), (62)

where we used the identity

eaeb = ea+be
1
2
[a,b] (63)

for a, b, commuting with [a, b], and

χ =
ξ

ωE

√
eH (64)

κ = 2

(
ω2

eH

)
sin2 Θ sin2 z. (65)

The symbol Ln(κ) is the Laguerre polynomial Lαn(α = 0) where Lαn is defined as

Lαn(κ) =
∞∑
m=0

(−1)m

(n−m)!

(n+ α)!

(m+ α)!

κm

m!
. (66)

The generalization of eq. (62) can written in the form

〈n| exp

[
iξ

ωE
(kΠ)⊥

]
f((kΠ)⊥)|n〉 = f

(
ωE

1

i

d

dξ

)
〈n| exp

[
iξ

ωE
(kΠ)⊥

]
|n〉. (67)

Finally, by the procedure similar to (62) we obtain

〈n| exp

[
iξ

ωE
(kΠ)⊥

] [
k

(
eq̂F

eH

)
Π

]
⊥
|n〉 =

−1

2
ωω0ξ sin2 Θ〈n| exp

[
iξ

ωE
(kΠ)⊥

]
|n〉. (68)

Using eqs. (62), (67) and (68), we have

exp

[
iξ

ωE
(kΠ)⊥

]
→ e−

κ
2Ln(κ) (69)
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(kΠ)⊥ exp

[
iξ

ωE
(kΠ)⊥

]
→ ωE

(
1

i

d

dξ

)(
e−

κ
2Ln(κ)

)
(70)

(
k
eq̂F

eH
Π

)
⊥

exp

[
iξ

ωE
(kΠ)⊥

]
→ −ω2 sin2 Θ sin ze−

κ
2Ln(κ) (71)

and we get the final compact form for the angular and frequency distribution of the

radiation power P (ω,Ω) for unpolarized photons:

P (ω,Ω) =
e2

4π3

ω2

ω2
0

Re
∫ ∞
0

dz exp
[
−2i

ω

ω0

z
]

exp

[
−i ω

2

eH
(sin z cos z − z) sin2 Θ

]

[
β2 cos z − 1− ieH

E2
sin 2z +

2ω

E
sin2 z

(
2 sin z

1

i

d

dξ
− ω

E
sin2 Θ cos 2z

)]
e−

κ
2Ln(κ), (72)

where ξ is defined by eq. (48) and κ by eq. (65).

Now, we perform the z-integration by parts, using

1

i

d

dξ
=
(

2i
ω

ω0

cos z
)−1 d

dz
(73)

and noting that the boundary term is purely imaginary, so that it can be discarded, which

means, that we can use replacement

sin2 z cos z

(
1

i

d

dξ

)
→ sin2 z

(
1− ω

E
sin2 Θ sin2 z + i

ω0

ω
cot z

)
. (74)

Then, upon substituting eq. (74) into eq. (72), we obtain

P (ω,Ω) =
e2

4π3

ω2

ω2
0

Re
∫ ∞
0

dz exp
[
−2i

ω

ω0

z
]

exp

[
−i ω

2

eH
(sin z cos z − z) sin2 Θ

]
×

[
β2 cos 2z − 1 +

4ω

E
sin2 z

(
1− ω

2E
sin2 Θ

)
+ i

eH

E2
sin 2z

]
e−

κ
2Ln(κ), (75)

which is an exact result, valid to the first order in the fine structure constant α for

arbitrary strong magnetic field.

2.1 High-energy weak-field limit

The most practical applications comes from the situation with the high-energy particles

i.e. for condition E/m � 1 moving in the weak magnetic field with eH/m2 � 1. In

this limiting case the principal quantum number is very large. It can be shown that the

radiation is concentrated in a very narrow cone of angular range of the order m/E in the

forward direction, corresponding to
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cos Θ2 ∼
(
m

E

)2

, (76)

which implies that only a small part of the electron trajectory is effective in producing

the radiation observed in a given direction

z =
1

z
ω0τ ∼

m

E
(77)

and that very high frequency must be radiated

ω � ω0. (78)

Quantum corrections are modifications to this scenario. After some approximations

(Schwinger et al., 1978), it can be shown that

P (ω) =
e2

4π2

1

31/2
ω
m2

E2

∫ ∞
ξ

dtK5/3(t), (79)

where

ξ =
ω

ω0

1

1− ω
E

(80)

ωc =
3

2
(1− β2)−3/2ω0 (81)

and the total power radiated is

P =
∫ E

0
dωP (ω) =

e2

4π2

m2

31/2

∫ E

0

dω

E

ω

E

∫ ∞
ξ

dtK5/3(t) =

α

31/2π
m2Y2

∫ ∞
0

dξξ

(1 + Yξ)3
∫ ∞
0

dtK5/3(t), (82)

where

ξ =
1

Y
ω

E

(
1− ω

E

)−1
(83)

Y =
3

2

eH

m2

E

m
=

3

2

(eh̄/mc)H

mc2
E

mc2
(84)

and for Y � 1 we have

P ∼ e2

4π

2

3
ω2
0

(
E

mc2

)4
(

1− 55(31/2)

24
Y +

56

3
Y2 + · · ·

)
, (85)

from which follows that quantum corrections are controlled by the factor Y and that there

is no evidence for the second-order quantum correction to be more important than the

first correction.
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3 Discussion

The calculus used by Latal and Erber (2003) involves the complex wave functions and by

the long procedures of summing over the particles final states. The main complication

enters when one attempts to integrate over the photon angular distribution, because

of integration of the square of associated Laguerres polynomials in which both their

orders and arguments depend on the angle. The mass operator approach (Schwinger,

1973; 1989) for calculating the synchrotron radiation is avoiding the usage of particle

wave functions, the summation of the particles final states, and the integration over the

photon angular distribution. However, this method involved too much information from

the beginning, so that the needed information (the frequency distribution) has to be

projected out explicitly (Schwinger, 1973; 1989) . It also suffers from the appearance of

a complicated trigonometric function in the exponential.

We here proposed a proper time method (Schwinger, 1951) to compute this process.

We first evaluated the forward Compton scattering process in the external magnetic field,

and then applied the optical theorem to obtain the angular and frequency distribution,

P (ω,Ω). This calculation method has the following attractive characteristics. (1) Only

the electron final states are summed over from the beginning, through the use of Greens

function; (2) the proper time method enables us to solve the problem in the coordinate

representation, and the resulting quantum expression is similar to its classical counterpart,

so that the quantum modification can be easily identified; and (3) can be P (ω,Ω)

evaluated exactly in a one-parameter (proper time) integral form. We find that the

quantum correction to the classical spectrum is essentially the same as settled before.

There is no indication of a significant second-order quantum correction.

References

Elder, F. R., Langmuir, R. V. and Pollock, H. C. (1948). Radiation from Electrons Ac-

celerated in a Synchrotron, Phys. Rev. 74, 52.

Erber, T. and Latal, H. G. (2003). Unified radiation formulas for classical and quantum

electrodynamics, Eur. J. Phys. 24, 6.
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