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Abstract

The recent proliferation of so-called open-
source large language models (such as LLaMA,
Falcon, Mistral) has introduced a broader range
of alternatives for AI practitioners and re-
searchers. However, the majority of these mod-
els cannot be considered truly open-source, as
they often provide only partial artifacts, such
as final model weights or inference code. Fur-
thermore, technical documentation accompa-
nying these models tends to focus on high-
level architectural decisions and superficial met-
rics, leaving critical aspects of the training
process, including dataset composition, dis-
tribution, model checkpoints, and intermedi-
ate results, largely undisclosed. This lack of
transparency presents a significant barrier to
progress in the field, restricting the potential for
open, collaborative research. In the absence of
access to original datasets, attempts to further
train or fine-tune these models by third parties
are susceptible to issues such as catastrophic
forgetting.In response to this challenge, we pro-
pose a method that facilitates more effective
supervised fine-tuning of these closed-source
models, without requiring access to the original
data, while mitigating the risk of catastrophic
forgetting.

1 Introduction

Catastrophic forgetting represents a critical chal-
lenge for large language models (LLMs) and neural
networks (NNs). This phenomenon is character-
ized by the models’ propensity to abruptly lose
previously acquired knowledge when assimilating
new information. Such a limitation significantly
impedes the development of robust and reliable arti-
ficial intelligence systems, particularly in dynamic
contexts where ongoing learning from novel data
is imperative.

Catastrophic forgetting—the tendency of deep
neural networks to "forget" previously acquired
knowledge when introduced to new informa-
tion—has been a subject of investigation since 1989

McCloskey and Cohen, 1989. This phenomenon is
most evident when models are sequentially trained
on distinct tasks; however, it also occurs when-
ever a model learns information in a sequential
manner, particularly when there are shifts in data
distribution over time. In practical machine learn-
ing applications, it is common for new training data
to be introduced continuously. To incorporate this
new information into model training, developers
face a choice: they can either retrain the entire
model from scratch, starting with randomly ini-
tialized weights and utilizing all available training
data, a process that is computationally intensive,
or they can take an existing model trained on prior
data and perform fine-tuning on the newly acquired
data. However, since new data typically originates
from a distribution that is slightly different from
that of the old data, significant changes in distri-
bution can exacerbate the effects of catastrophic
forgetting during the fine-tuning process.

The landscape of Large Language Models
(LLMs) has undergone a remarkable transforma-
tion over the past year, characterized by an unprece-
dented surge in both their popularity and capabili-
ties. Leading this evolution are proprietary LLMs
such as GPT-4 OpenAl, 2023 and Claude Claude,
2023, which have garnered significant attention
within the AI community owing to their excep-
tional power and versatility. Concurrently, the re-
cent emergence of openly accessible yet highly
capable LLMs, including LLaMA (Touvron et al.,
2023a,b), Falcon (Penedo et al., 2023), and Mis-
tral (Jiang et al., 2023), has empowered researchers
and practitioners to easily acquire, customize, and
deploy LLMs across a broader range of environ-
ments and applications.

Catastrophic forgetting and overtraining (or over-
fitting) represent distinct challenges encountered
in the training of neural networks and large lan-
guage models. Catastrophic forgetting occurs when
a model discards previously acquired knowledge
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upon assimilating new information, particularly in
sequential learning contexts. This phenomenon
is attributed to the modifications in model weights
that disrupt the performance of earlier tasks. In con-
trast, overtraining arises when a model becomes
excessively attuned to the training data, leading
it to capture noise and specific details rather than
generalizable patterns, ultimately resulting in poor
performance on new, unseen data. While catas-
trophic forgetting undermines knowledge retention
in dynamic learning environments, overfitting sig-
nificantly restricts the model’s ability to generalize
effectively from the training set to novel data.

When continuing training, in order to address
both catastrophic forgetting and overfitting, it re-
quires us to have knowledge of both the original
data and its distribution.

Despite the increasing prominence and acces-
sibility of open-source large language models
(LLMs), a significant trend has emerged towards
restricting visibility and access to the intricacies of
their training, fine-tuning, and evaluation method-
ologies. This includes critical components such as
the underlying training code and datasets, which
are essential for a comprehensive understanding of
model behavior and performance.

This approach limits our ability to perform SFT
(Supervised Fine-Tuning) on these models.

Because using the same data easily leads to over-
fitting, while differences in data distribution can
cause catastrophic forgetting, better SFT (Super-
vised Fine-Tuning) requires an alternative approach
for models that do not disclose their original SFT
data. We can reverse-engineer the model parame-
ters to extract the distribution of the original SFT
data, then generate new SFT data based on this
distribution, and mix it with our own SFT data in a
certain proportion. This allows for more effective
fine-tuning.

This paper presents the following contributions:

* We deciphered the hidden data distribution of
open-source models through model parame-
ters and used it for experience replay during
SFT fine-tuning to better mitigate catastrophic
forgetting.

* We obtained the optimal instruction responses
through mutual scoring among three models,
significantly improving the response quality
and enhancing the effectiveness of SFT.

2 Background and Related Work

2.1 Data Rehearsal

Robins (ROBINS, 1995) introduced the concept of
rehearsal in 1995, shortly following the advent of
the notion of catastrophic forgetting. In essence,
this approach entails incorporating data from pre-
vious tasks during the training of new ones. While
this method has demonstrated considerable efficacy,
it necessitates maintaining access to historical data,
or at the very least, an independent and identically
distributed (i.i.d.) subsample of such data, which
may not always be feasible. Furthermore, inte-
grating past data increases the overall volume of
training data, resulting in longer training durations
for each epoch during model fine-tuning.

Since most large models do not have publicly
available datasets for rehearsal, the common ap-
proach is to use some public sft datasets mixed
with their own sft datasets to simulate a review
process. However, this approach can lead to cer-
tain issues. Our approach involves extracting the
concealed data distribution of the supervised fine-
tuning (SFT) instructions directly from the model
parameters.

2.2 Continue Fine-tuning

Our methodology addresses the challenge of con-
tinual fine-tuning, wherein the model undergoes
successive fine-tuning with newly acquired data
post-initial fine-tuning. Continual learning is es-
sential for models that must adapt to dynamic envi-
ronments, assimilating information from a continu-
ous data stream while retaining previously learned
knowledge. A critical obstacle in this domain is
the issue of catastrophic forgetting, which refers
to the pronounced degradation in performance on
earlier tasks when the model is exposed to novel
data. As the model adjusts its parameters to in-
corporate new information, it inadvertently over-
writes previously acquired knowledge, thereby di-
minishing its effectiveness on prior tasks. To ad-
dress this, the research community has proposed
a range of strategies, typically classified into four
main categories: Replay-Based (Shin et al., 2017;
Ren et al., 2024), Regularization-Based (Mi et al.,
2020), Gradient-Based (Lee et al., 2021), and
Architecture-Based (Geng et al., 2021) approaches.
In our experiments, we adopted a basic experience
replay mechanism, reduced the initial learning rate
to avoid overfitting.



3 Methods

Our experiments are divided into three parts: the
first part involves extracting the original SFT data
distribution from the model; the second part mixes
the extracted SFT data with new data for training;
and the third part uses commonly available gen-
eral SFT data mixed with new data for training,
comparing the results with those from the second
part.

3.1 Extracting the instruction distribution.

Cracking the instruction distribution consists of
three steps: (1) instruction generation, (2) response
generation, and (3) filtering high-quality responses.
The pipeline can be fully automated without any
human intervention.

Step 1: Instruction Generation.

The objective of this step is to extract unreleased
training data from the model’s parameters. Given
an open-weight aligned large language model (e.g.,
Llama-3-70B-Instruct), we design a pre-query tem-
plate in the format of the predefined instruction
template.

We input the prompt
"<Istart_header_idl>user<lend_header_idI>"
into the large model (Llama-3-70B-Instruct),
which generates a single instruction in response.
By repeating this process 100,000 times, we obtain
a total of 100,000 instructions, which collectively
represent the current instruction distribution of the
large model.

Step 2: Response Generation. The objective of
this step is to generate responses to the instructions
obtained in Step 1.

We send these instructions to Llama-3-70B-
Instruct and two additional powerful large language
models( such as gpt4 and Qwen2-72B-Instruct).
For each instruction, each model generates three
responses, resulting in a total of nine responses for
each instruction.

Step 3: Filtering High-quality Responses. For
each instruction, we evaluate nine generated re-
sponses using the three models previously men-
tioned, assigning quality scores to each response.
The scores from the three models are then averaged
to identify the response with the highest overall
score.

Combining the optimal response with the corre-
sponding instruction forms the instruction dataset.
The exact prompt we use for scoring is provided in
Table 2.

3.2 Data mixing and training.

Mix the extracted SFT data with our new SFT data,
then proceed with training. The new SFT data
accounts for 17% of all the data. The learning rate
is set to le-6.

3.3 Comparative experiment.

Use other open-source SFT datasets instead of the
extracted SFT data for comparative experiments to
identify which dataset used for experience replay
results in less catastrophic forgetting.

Baselines for Supervised Fine-Tuning and
Preference Optimization. These datasets include:
Evol Instruct (Xu et al., 2023), UltraChat (Ding
et al., 2023), ShareGPT (Chiang et al., 2023),
WildChat (Zhao et al., 2024),GenQA (Chen et al.,
2024), OpenHermes 1 (Teknium, 2023b), Open-
Hermes 2.5 (Teknium, 2023a), and Tulu V2 Mix
(Ivison et al., 2023). ShareGPT and WildChat are
representative human-written datasets containing
112K and 652K high-quality multi-round conversa-
tions between humans and GPT, respectively. Evol
Instruct, UltraChat, and GenQA are representative
open-source synthetic datasets. Following (Meng
et al., 2024), we use the 208K sanitized version
of Ultrachat provided by HuggingFace!. Open-
Hermes 1, OpenHermes 2.5, and Tulu V2 Mix are
crowd-sourced datasets consisting of a mix of di-
verse open-source instruction datasets, with 243K,
1M, and 326K conversations, respectively.

We evaluated a variety of tasks featured on the
Hugging Face Open LLM Leaderboard (Beech-
ing et al., 2023), as presented in Table 1. The
tasks include MMLU-PRO (Massive Multitask
Language Understanding - Professional) (Wang
et al., 2024), GPQA (Graduate-Level Google-Proof
Q&A Benchmark) (Rein et al., 2023), IFEval
(Zhou et al., 2023) and MATH level 5 (Hendrycks
et al., 2021). Our experimental results demonstrate
that employing our approach (extracting instruc-
tion distributions from the model) yields improved
fine-tuning performance.

3.4 Ablation Study

We tested the responses generated directly by the
target model without using the three models for
filtering, and the results are presented in Table 1.We
also tested generating three responses solely by the
target model without using the other two models

1https: //huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k


https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k

Alignment Setup MMLU-PRO (5) GPQA (0) IFEval(0) MathLvl5(4) Average
Llama-3-70B-Instruct 46.74 4.92 80.99 23.34 39.00
Extracted-Instructions-Unfiltered 46.11 4.72 81.31 23.11 38.81
One-Model-Filtered 46.55 491 81.72 23.06 39.06
Three-Models-Mix-Filtered 46.73 4.88 81.93 23.29 39.21
ShareGPT 46.14 4.31 81.31 20.24 38.00
Evol Instruct 45.76 4.64 82.52 22.30 38.81
GenQA 43.33 4.48 80.43 15.41 3591
OpenHermes 1 45.31 4.21 81.91 15.52 36.74
OpenHermes 2.5 45.63 4.79 82.33 15.62 37.09
Tulu V2 Mix 46.47 4.19 82.69 16.62 37.49
WildChat 45.83 4.12 81.32 22.11 38.35
UltraChat 45.15 4.08 81.57 20.31 37.78

Table 1: This table compares the performance of models fine-tuned with supervision using the extracted instruction
dataset for experience replay against baseline models and the official instruction model across various downstream
benchmarks. All models are fine-tuned with supervision on the Llama-3-70B-Instruct model.

and then selecting the best one,and the results are
presented in Table 1.

4 Conclusion

In this paper, we developed a method to extract
instruction distributions from a model trained on
an unpublished instruction dataset. We then lever-
aged two additional powerful models to collabora-
tively generate high-quality responses, forming an
instruction dataset used as experience replay data
during model fine-tuning. Compared to other base-
line methods, our approach mitigates catastrophic
forgetting and enhances fine-tuning performance.

5 Limitations

We conducted experiments only on Llama-3-70B-
Instruct, achieving favorable results. Due to compu-
tational constraints, we did not perform extensive
testing on other models.
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Below is a user instruction and an Al response. Evaluate the quality of the AI’s response based on
how well it fulfills the user’s request. Assign a score based on the following 5-point scale:

1: The response is incomplete, off-topic, or contains irrelevant, vague, or missing information. It may
repeat the user’s question, include personal opinions, or be written from a non-Al perspective (e.g.,
blog-like). It may also have promotional or irrelevant content.

2: The response addresses some of the user’s request but lacks detail or direct relevance. It provides
only a general approach instead of a specific solution.

3: The response is helpful but lacks an Al perspective. It covers the user’s request but appears taken
from a personal blog, webpage, or similar source. It may include personal opinions, experiences, or
mentions of external content.

4: The response is clear, complete, and written from an AI’s perspective. It directly addresses the
user’s request, but there may be minor room for improvement, such as clarity or conciseness.

5: The response is excellent, written from an AI’s perspective, with a clear focus on the user’s request.
It is thorough, well-organized, and shows expert knowledge without irrelevant content. The response
is logical, easy to follow, and engaging.

Provide a brief justification for your score and then write "Score: <rating>" in the last line.

<generated instruction>
<output>

Table 2: A prompt used to evaluate the quality of a response.
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