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Abstract001

The recent proliferation of so-called open-002
source large language models (such as LLaMA,003
Falcon, Mistral) has introduced a broader range004
of alternatives for AI practitioners and re-005
searchers. However, the majority of these mod-006
els cannot be considered truly open-source, as007
they often provide only partial artifacts, such008
as final model weights or inference code. Fur-009
thermore, technical documentation accompa-010
nying these models tends to focus on high-011
level architectural decisions and superficial met-012
rics, leaving critical aspects of the training013
process, including dataset composition, dis-014
tribution, model checkpoints, and intermedi-015
ate results, largely undisclosed. This lack of016
transparency presents a significant barrier to017
progress in the field, restricting the potential for018
open, collaborative research. In the absence of019
access to original datasets, attempts to further020
train or fine-tune these models by third parties021
are susceptible to issues such as catastrophic022
forgetting.In response to this challenge, we pro-023
pose a method that facilitates more effective024
supervised fine-tuning of these closed-source025
models, without requiring access to the original026
data, while mitigating the risk of catastrophic027
forgetting.028

1 Introduction029

Catastrophic forgetting represents a critical chal-030

lenge for large language models (LLMs) and neural031

networks (NNs). This phenomenon is character-032

ized by the models’ propensity to abruptly lose033

previously acquired knowledge when assimilating034

new information. Such a limitation significantly035

impedes the development of robust and reliable arti-036

ficial intelligence systems, particularly in dynamic037

contexts where ongoing learning from novel data038

is imperative.039

Catastrophic forgetting—the tendency of deep040

neural networks to "forget" previously acquired041

knowledge when introduced to new informa-042

tion—has been a subject of investigation since 1989043

McCloskey and Cohen, 1989. This phenomenon is 044

most evident when models are sequentially trained 045

on distinct tasks; however, it also occurs when- 046

ever a model learns information in a sequential 047

manner, particularly when there are shifts in data 048

distribution over time. In practical machine learn- 049

ing applications, it is common for new training data 050

to be introduced continuously. To incorporate this 051

new information into model training, developers 052

face a choice: they can either retrain the entire 053

model from scratch, starting with randomly ini- 054

tialized weights and utilizing all available training 055

data, a process that is computationally intensive, 056

or they can take an existing model trained on prior 057

data and perform fine-tuning on the newly acquired 058

data. However, since new data typically originates 059

from a distribution that is slightly different from 060

that of the old data, significant changes in distri- 061

bution can exacerbate the effects of catastrophic 062

forgetting during the fine-tuning process. 063

The landscape of Large Language Models 064

(LLMs) has undergone a remarkable transforma- 065

tion over the past year, characterized by an unprece- 066

dented surge in both their popularity and capabili- 067

ties. Leading this evolution are proprietary LLMs 068

such as GPT-4 OpenAI, 2023 and Claude Claude, 069

2023, which have garnered significant attention 070

within the AI community owing to their excep- 071

tional power and versatility. Concurrently, the re- 072

cent emergence of openly accessible yet highly 073

capable LLMs, including LLaMA (Touvron et al., 074

2023a,b), Falcon (Penedo et al., 2023), and Mis- 075

tral (Jiang et al., 2023), has empowered researchers 076

and practitioners to easily acquire, customize, and 077

deploy LLMs across a broader range of environ- 078

ments and applications. 079

Catastrophic forgetting and overtraining (or over- 080

fitting) represent distinct challenges encountered 081

in the training of neural networks and large lan- 082

guage models. Catastrophic forgetting occurs when 083

a model discards previously acquired knowledge 084
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upon assimilating new information, particularly in085

sequential learning contexts. This phenomenon086

is attributed to the modifications in model weights087

that disrupt the performance of earlier tasks. In con-088

trast, overtraining arises when a model becomes089

excessively attuned to the training data, leading090

it to capture noise and specific details rather than091

generalizable patterns, ultimately resulting in poor092

performance on new, unseen data. While catas-093

trophic forgetting undermines knowledge retention094

in dynamic learning environments, overfitting sig-095

nificantly restricts the model’s ability to generalize096

effectively from the training set to novel data.097

When continuing training, in order to address098

both catastrophic forgetting and overfitting, it re-099

quires us to have knowledge of both the original100

data and its distribution.101

Despite the increasing prominence and acces-102

sibility of open-source large language models103

(LLMs), a significant trend has emerged towards104

restricting visibility and access to the intricacies of105

their training, fine-tuning, and evaluation method-106

ologies. This includes critical components such as107

the underlying training code and datasets, which108

are essential for a comprehensive understanding of109

model behavior and performance.110

This approach limits our ability to perform SFT111

(Supervised Fine-Tuning) on these models.112

Because using the same data easily leads to over-113

fitting, while differences in data distribution can114

cause catastrophic forgetting, better SFT (Super-115

vised Fine-Tuning) requires an alternative approach116

for models that do not disclose their original SFT117

data. We can reverse-engineer the model parame-118

ters to extract the distribution of the original SFT119

data, then generate new SFT data based on this120

distribution, and mix it with our own SFT data in a121

certain proportion. This allows for more effective122

fine-tuning.123

This paper presents the following contributions:124

• We deciphered the hidden data distribution of125

open-source models through model parame-126

ters and used it for experience replay during127

SFT fine-tuning to better mitigate catastrophic128

forgetting.129

• We obtained the optimal instruction responses130

through mutual scoring among three models,131

significantly improving the response quality132

and enhancing the effectiveness of SFT.133

2 Background and Related Work 134

2.1 Data Rehearsal 135

Robins (ROBINS, 1995) introduced the concept of 136

rehearsal in 1995, shortly following the advent of 137

the notion of catastrophic forgetting. In essence, 138

this approach entails incorporating data from pre- 139

vious tasks during the training of new ones. While 140

this method has demonstrated considerable efficacy, 141

it necessitates maintaining access to historical data, 142

or at the very least, an independent and identically 143

distributed (i.i.d.) subsample of such data, which 144

may not always be feasible. Furthermore, inte- 145

grating past data increases the overall volume of 146

training data, resulting in longer training durations 147

for each epoch during model fine-tuning. 148

Since most large models do not have publicly 149

available datasets for rehearsal, the common ap- 150

proach is to use some public sft datasets mixed 151

with their own sft datasets to simulate a review 152

process. However, this approach can lead to cer- 153

tain issues. Our approach involves extracting the 154

concealed data distribution of the supervised fine- 155

tuning (SFT) instructions directly from the model 156

parameters. 157

2.2 Continue Fine-tuning 158

Our methodology addresses the challenge of con- 159

tinual fine-tuning, wherein the model undergoes 160

successive fine-tuning with newly acquired data 161

post-initial fine-tuning. Continual learning is es- 162

sential for models that must adapt to dynamic envi- 163

ronments, assimilating information from a continu- 164

ous data stream while retaining previously learned 165

knowledge. A critical obstacle in this domain is 166

the issue of catastrophic forgetting, which refers 167

to the pronounced degradation in performance on 168

earlier tasks when the model is exposed to novel 169

data. As the model adjusts its parameters to in- 170

corporate new information, it inadvertently over- 171

writes previously acquired knowledge, thereby di- 172

minishing its effectiveness on prior tasks. To ad- 173

dress this, the research community has proposed 174

a range of strategies, typically classified into four 175

main categories: Replay-Based (Shin et al., 2017; 176

Ren et al., 2024), Regularization-Based (Mi et al., 177

2020), Gradient-Based (Lee et al., 2021), and 178

Architecture-Based (Geng et al., 2021) approaches. 179

In our experiments, we adopted a basic experience 180

replay mechanism, reduced the initial learning rate 181

to avoid overfitting. 182
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3 Methods183

Our experiments are divided into three parts: the184

first part involves extracting the original SFT data185

distribution from the model; the second part mixes186

the extracted SFT data with new data for training;187

and the third part uses commonly available gen-188

eral SFT data mixed with new data for training,189

comparing the results with those from the second190

part.191

3.1 Extracting the instruction distribution.192

Cracking the instruction distribution consists of193

three steps: (1) instruction generation, (2) response194

generation, and (3) filtering high-quality responses.195

The pipeline can be fully automated without any196

human intervention.197

Step 1: Instruction Generation.198

The objective of this step is to extract unreleased199

training data from the model’s parameters. Given200

an open-weight aligned large language model (e.g.,201

Llama-3-70B-Instruct), we design a pre-query tem-202

plate in the format of the predefined instruction203

template.204

We input the prompt205

"<|start_header_id|>user<|end_header_id|>"206

into the large model (Llama-3-70B-Instruct),207

which generates a single instruction in response.208

By repeating this process 100,000 times, we obtain209

a total of 100,000 instructions, which collectively210

represent the current instruction distribution of the211

large model.212

Step 2: Response Generation. The objective of213

this step is to generate responses to the instructions214

obtained in Step 1.215

We send these instructions to Llama-3-70B-216

Instruct and two additional powerful large language217

models( such as gpt4 and Qwen2-72B-Instruct).218

For each instruction, each model generates three219

responses, resulting in a total of nine responses for220

each instruction.221

Step 3: Filtering High-quality Responses. For222

each instruction, we evaluate nine generated re-223

sponses using the three models previously men-224

tioned, assigning quality scores to each response.225

The scores from the three models are then averaged226

to identify the response with the highest overall227

score.228

Combining the optimal response with the corre-229

sponding instruction forms the instruction dataset.230

The exact prompt we use for scoring is provided in231

Table 2.232

3.2 Data mixing and training. 233

Mix the extracted SFT data with our new SFT data, 234

then proceed with training. The new SFT data 235

accounts for 17% of all the data. The learning rate 236

is set to 1e-6. 237

3.3 Comparative experiment. 238

Use other open-source SFT datasets instead of the 239

extracted SFT data for comparative experiments to 240

identify which dataset used for experience replay 241

results in less catastrophic forgetting. 242

Baselines for Supervised Fine-Tuning and 243

Preference Optimization. These datasets include: 244

Evol Instruct (Xu et al., 2023), UltraChat (Ding 245

et al., 2023), ShareGPT (Chiang et al., 2023), 246

WildChat (Zhao et al., 2024),GenQA (Chen et al., 247

2024), OpenHermes 1 (Teknium, 2023b), Open- 248

Hermes 2.5 (Teknium, 2023a), and Tulu V2 Mix 249

(Ivison et al., 2023). ShareGPT and WildChat are 250

representative human-written datasets containing 251

112K and 652K high-quality multi-round conversa- 252

tions between humans and GPT, respectively. Evol 253

Instruct, UltraChat, and GenQA are representative 254

open-source synthetic datasets. Following (Meng 255

et al., 2024), we use the 208K sanitized version 256

of Ultrachat provided by HuggingFace1. Open- 257

Hermes 1, OpenHermes 2.5, and Tulu V2 Mix are 258

crowd-sourced datasets consisting of a mix of di- 259

verse open-source instruction datasets, with 243K, 260

1M, and 326K conversations, respectively. 261

We evaluated a variety of tasks featured on the 262

Hugging Face Open LLM Leaderboard (Beech- 263

ing et al., 2023), as presented in Table 1. The 264

tasks include MMLU-PRO (Massive Multitask 265

Language Understanding - Professional) (Wang 266

et al., 2024), GPQA (Graduate-Level Google-Proof 267

Q&A Benchmark) (Rein et al., 2023), IFEval 268

(Zhou et al., 2023) and MATH level 5 (Hendrycks 269

et al., 2021). Our experimental results demonstrate 270

that employing our approach (extracting instruc- 271

tion distributions from the model) yields improved 272

fine-tuning performance. 273

3.4 Ablation Study 274

We tested the responses generated directly by the 275

target model without using the three models for 276

filtering, and the results are presented in Table 1.We 277

also tested generating three responses solely by the 278

target model without using the other two models 279

1https://huggingface.co/datasets/
HuggingFaceH4/ultrachat_200k
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Alignment Setup MMLU-PRO (5) GPQA (0) IFEval(0) Math Lvl 5 (4) Average
Llama-3-70B-Instruct 46.74 4.92 80.99 23.34 39.00

Extracted-Instructions-Unfiltered 46.11 4.72 81.31 23.11 38.81
One-Model-Filtered 46.55 4.91 81.72 23.06 39.06

Three-Models-Mix-Filtered 46.73 4.88 81.93 23.29 39.21
ShareGPT 46.14 4.31 81.31 20.24 38.00

Evol Instruct 45.76 4.64 82.52 22.30 38.81
GenQA 43.33 4.48 80.43 15.41 35.91

OpenHermes 1 45.31 4.21 81.91 15.52 36.74
OpenHermes 2.5 45.63 4.79 82.33 15.62 37.09

Tulu V2 Mix 46.47 4.19 82.69 16.62 37.49
WildChat 45.83 4.12 81.32 22.11 38.35
UltraChat 45.15 4.08 81.57 20.31 37.78

Table 1: This table compares the performance of models fine-tuned with supervision using the extracted instruction
dataset for experience replay against baseline models and the official instruction model across various downstream
benchmarks. All models are fine-tuned with supervision on the Llama-3-70B-Instruct model.

and then selecting the best one,and the results are280

presented in Table 1.281

4 Conclusion282

In this paper, we developed a method to extract283

instruction distributions from a model trained on284

an unpublished instruction dataset. We then lever-285

aged two additional powerful models to collabora-286

tively generate high-quality responses, forming an287

instruction dataset used as experience replay data288

during model fine-tuning. Compared to other base-289

line methods, our approach mitigates catastrophic290

forgetting and enhances fine-tuning performance.291

5 Limitations292

We conducted experiments only on Llama-3-70B-293

Instruct, achieving favorable results. Due to compu-294

tational constraints, we did not perform extensive295

testing on other models.296
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Below is a user instruction and an AI response. Evaluate the quality of the AI’s response based on
how well it fulfills the user’s request. Assign a score based on the following 5-point scale:
1: The response is incomplete, off-topic, or contains irrelevant, vague, or missing information. It may
repeat the user’s question, include personal opinions, or be written from a non-AI perspective (e.g.,
blog-like). It may also have promotional or irrelevant content.
2: The response addresses some of the user’s request but lacks detail or direct relevance. It provides
only a general approach instead of a specific solution.
3: The response is helpful but lacks an AI perspective. It covers the user’s request but appears taken
from a personal blog, webpage, or similar source. It may include personal opinions, experiences, or
mentions of external content.
4: The response is clear, complete, and written from an AI’s perspective. It directly addresses the
user’s request, but there may be minor room for improvement, such as clarity or conciseness.
5: The response is excellent, written from an AI’s perspective, with a clear focus on the user’s request.
It is thorough, well-organized, and shows expert knowledge without irrelevant content. The response
is logical, easy to follow, and engaging.
Provide a brief justification for your score and then write "Score: <rating>" in the last line.

<generated instruction>
<output>

Table 2: A prompt used to evaluate the quality of a response.
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