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Abstract

This article has been based on a lecture handout for high school stu-
dents. Most of the calculus books mention the method of partial fractions
in an algorithmic way. I have described the reason behind the method. It
has been mentioned as a theorem without proof in Problems in analysis
by Prof Maron published by Mir Publications of the Soviet Era. cited
in the text of the article. It is possible that the proof is also included in
some book maybe in Russian language but I have not come across the
reasoning in any English language book and thus is novel to the best of
my knowledge. The proof uses arguments accessible to high school stu-
dents who have seen polynomials and complex numbers before, such as
the class I was lecturing in India.

1 Introduction

Antiderivatives of a large class of functions called the rational functions will be
discussed in this article. Rational functions of a single variable, R(x) are of the
form P(x)

Q(x) where P(x) and Q(x) are polynomials over the reals.

2 The theorem

We will discuss the main result[1] which will enable us to compute the an-
tiderivative of any rational function. The idea is to express any rational function
of a single variable as a sum of a polynomial and fractions of the forms A

x−a

k and
Mx+N

x2+cx+d

r all of whose antiderivatives are known and easier to compute. The
polynomial Q(x) in its most general form can be written as product of powers
of linear and quadratic factors. A zero of any polynomial over R either is real or
complex whose imaginary part in non-zero, say a. If a is real, a power of the lin-
ear polynomial x−a is a factor and if a is complex then a power of the quadratic
polynomial over R, (x − a)(x − a) = x2 − (a + ax + aa) = x2 − 2Re(a) + |a|2
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is a factor since complex roots of a polynomial with coefficients in R occur in
conjugate pairs. If a is a root of f(z) = 0 then f(z) = 0 has a as a root and
f(z) = f(z) since the coefficients are real. So all the factors are either linear or
quadratic which cannot be factorized further over R.

So, Q(x) can be written as (x−a)k(x−b)l...(x2+c1x+d1)
r1(x2+c2x+d2)

r2 ...
If P(x)

Q(x) is a proper fraction, that is degree of P(x) is less than degree of Q(x)

then P(x)
Q(x) can be written as sum of fractions called partial fractions as follows:

P(x)

Q(x)
=

A1

(x− a)
+

A2

(x− a)2
+ ...+

Ak

(x− a)k
+

B1

(x− b)
+

B2

(x− b)2
+ ...

Bl

(x− b)l
+ ...+

M1x+N1

(x2 + cx+ d)
+

M2x+N2

(x2 + cx+ d)2
+ ...

Mr1x+Nr1

(x2 + cx+ d)r1
+

R1x+ L1

(x2 + px+ q)
+

R2x+ L2

(x2 + px+ q)2
+ ...

Rr2x+ Lr2
(x2 + px+ q)r2

+ ...

(1)

where A1,A2...Ak,B1B2...Bk...M1,N1...Mr1 ,Nr1 , ...,R1,L1, ...Rr2 ,Lr2 ... are
real numbers to be determined.

A proper rational expression such as P(x)
(x−a)2 can be written as bx+c

(x−a)2 since
the denominator is square of a linear factor and thus is a quadratic and so the
numerator must be a linear polynomial or a constant. This can also be written
as A1

(x−a) +
A2

(x−a)2 since adding up and equating coefficients of the numerators
lead to a unique solution A1 = b and A2 = ab + c. Similarly partial fractions
can be written for for other powers of linear factors in the denominators and all
the powers quadratic factors in the denominators. P(x)

Q(x) can be written as sum
of proper rational functions with the factors of Q(x) as their denominators.

A rational function which is not proper can be written as a sum of a poly-
nomial and a proper rational function. This is because the numerator can be
written as the sum of product of the denominator with the quotient polynomial
and remainder polynomial whose degree is less than that of the denominator.

3 Examples

One in which the integrand is not a proper fraction:

Problem 1.

I =

∫
x4 − 3x2 − 3x− 2

x3 − x2 − 2x

Solution. The integrand is not a proper fraction. x4 − 3x2 − 3x − 2 = x(x3 −

x2 − 2x) + (x3 − x2 − 2x) + (−x − 2) = (x + 1)(x3 − x2 − 2x) − (x + 2), so the
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integrand can be written as

x4 − 3x2 − 3x− 2

x3 − x2 − 2x
= x+ 1−

x+ 2

x3 − x2 − 2x
.

The first term is a polynomial and thus can be integrated easily. The sec-
ond term is a proper fraction and can be written as partial fractions and then
integrated as in the previous example as follows:

x+ 1− (
−1

x
+

2

3(x− 2)
+

1

3(x+ 1)
)

and thus the integral is

I = x2/2+ x+ ln|x|− (2/3)ln|x− 2|− (1/3)ln|x+ 1|+ c

where c is a constant of integration. ■

A quadratic factor, equating coefficients:

Problem 2.
I =

∫
xdx

x3 + 1
.

Solution. The integrand can be written as x
x3+1

= x
(x+1)(x2−x+1) = A

(x+1) +
Bx+C

(x2−x+1) . Adding the partial fractions and equating the numerators, x = A(x2−

x + 1) + (Bx + C)(x + 1). This is identically true, so the coefficients are same.
A+B = 0,−A+B+C = 1,A+C = 0. Thus C = B = −A and from the second
equation A = −1/3, so B = C = −A = 1/3.

The antiderivative is I =
∫
−dx/3(x + 1) + (1/3)

∫ (x+1)dx
x2−x+1

. The first an-
tiderivative is (−1/3) ln |x + 1| and the second integral can be computed us-
ing the trig substitution by tan function after writing the denominator in
the form t2 + a2 since tan2 θ + 1 = sec2 θ and d tanθ

dθ
= sec2 θ. Completing

the square in the denominator, x2 − x + 1 = (x2 − 2(1/2)x + 1/4 − 3/4) =

(x − 1/2)2 + (
√
(3)/2)2. Writing (x − 1/2) as t, the second antiderivative is∫ (t+3/2)dt

t2+3/4
=

∫
tdt

t2+3/4
+ 3/2 dt

t2+(
√

(3)/2)2
.

The first antiderivative is of the form (1/2)
∫ f′(x)dx

f(x) and thus can be written
as (1/2)

∫
dz
z

where z = f(x) which is (1/2) ln |z| = (1/2) ln |f(x)| = (1/2) ln(t2 +

3/4) = (1/2) ln((x−1/2)2+3/4) = (1/2) ln(x2−x+1) since t2+3/4 is always pos-
itive. The second antiderivative, using the tan substitution t = (

√
(3)/2) tan θ,

is
√
(3) tan−1(t/(

√
(3)/2)) =

√
(3) tan−1 2x−1√

(3)
. ■
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