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ABSTRACT 

 

A unified mathematical framework, referred to as Picard–Fuchs Hypergeometric Manifolds (PFHM), is introduced to 

integrate modular symmetry, coupled dynamics and energy conservation. PFHM are constructed using a synthesis of 

Ramanujan’s real period functions, Picard–Fuchs differential equations and Gaussian hypergeometric functions. We argue 

that PFHM provide an effective representation of two-dimensional coupled subsystems embedded in three-dimensional 

manifolds with dihedral symmetry.  These coupled subsystems exhibit constrained energy reciprocity, making PFHM a 

robust tool for elucidating stable, closed and homoclinic orbits in Hamiltonian systems.  An application of the proposed 

method is explored in the context of quantum entanglement.  The intrinsic energetic reciprocity and symmetry of PFHM 

are shown to be analogous to the nonlocal correlations in entangled quantum systems.  Modelling entangled pairs as 

constrained subsystems, the PFHM framework sheds new light on the energy dynamics and nonlocal correlations 

underpinning quantum entanglement.   
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INTRODUCTION 

 

Hamiltonian systems capture the dynamics of physical phenomena through conservation laws. Yet, the behavior of 

coupled subsystems, particularly in higher-dimensional manifolds, presents significant analytical and computational 

challenges. This paper proposes a unified framework that combines modular symmetry, coupled dynamics, and energy 

conservation.  This framework links three mathematical constructs that are known for their versatility in addressing 

complex systems: 

1. Picard–Fuchs differential equations (henceforth PF).  PF are simple, linear, ordinary differential equations whose 

solutions describe the periods of elliptic curves (Shen 2017; Kreshchuk and Gulden, 2019).  Well-suited for 

defining periods of algebraic varieties, PF characterize the behavior of physical systems over parameter spaces.  

They have the unvaluable advantage of encompassing period-energy functions, allowing energy to be used as a 

parameter. 

2. Gaussian hypergeometric functions.  In particular, the Gaussian hypergeometric special function 2F1 (a,b;c;z) is 

characterized by three regular singular points where the growth of solutions in the complex plane is bounded by 

an algebraic function (Becken and Schmelcher, 2000; Olde Daalhuis 2010).  It allows the construction of 

manifolds with rich symmetry properties and smooth interrelations between subsystems (Ratner et al., 2001; 

Jong et al., 2015).   

3. Ramanujan’s real period functions.  They provide a foundation for describing modular structures (Shen 2017).   

 

 

Picard–Fuchs Hypergeometric Manifolds (PFHM) can be constructed as follows: 

1. Hypergeometric manifolds.  Begin with a two-dimensional base manifold defined using Gaussian 

hypergeometric functions. The base manifold is governed by the Picard–Fuchs equation: 

, 

               where . 

 

2. Ramanujan’s period functions.  Define modular transformations on M2, embedding it in a higher-dimensional 

space. The transformation generates symmetries corresponding to 

dihedral structures. 

 

3. Three-dimensional coupled systems.  Extend M2 to a three-dimensional manifold M3 by coupling two 

subsystems with Hamiltonian interactions: 
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, 

               where is the coupling potential. 

 

 

The hypergeometric version of PF is satisfied by a set of integral period functions that define geometries characterized 

by simple, closed plane curves originating at regular points (Beukers and Heckman, 1989; Fürnsinn and Yurkevich, 2023).   

PFHM are characterized by a double-periodic elliptic function and a countable toric section of the Hamiltonian (Klee 

2018a).  Given the system’s Hamiltonian , the associated real period function  can be described by the 

integral-differential algorithm (Klee 2019):  

 

 
 

with the same signatures  found in the Ramanujan theory of elliptic functions related to the integral period 

functions ,  and  (Ramanujan 1914; Shen 2017).   

When the potential reaches its minimum, the phase curves form closed loops, which can be characterized using the period 

function  (Klee 2019): 

. 

 

The invariant differential can be integrated on any loop around the Riemannian 

surface .  

This means that the total Hamiltonian H enforces energetic reciprocity: 

 

, 

 

ensuring that energy shifts in one subsystem inversely mirror shifts in the other. This reciprocity leads to constrained 

dynamics that stabilize periodic orbits. 

This framework is especially valuable for describing the behaviour of stable, periodic closed trajectories in multi-

dimensional phase spaces, such as homoclinic orbits connecting saddle points and periodic orbits exhibiting dihedral 

symmetry of M3.  Additionally, the PFHM framework also facilitates chaotic dynamics under certain parameter 

conditions, where nonlinear interactions induced by the coupling potential amplify sensitivity to initial 

conditions (Guo et al., 2021).  

 

In sum, PFHM is a versatile tool that enables the generation of numerous algorithms and series of identities (Klee 2018a).  

Slight changes in the variable period  and/or the Gaussian hypergeometric function lead to entirely different 

manifolds, which can be interpreted in the context of (physical or biological) dynamical systems exhibiting dihedral 

symmetry.  Notably, the systems’ energetic requirements and constraints can be calculated by plotting cross sections of 

the toric energy surface with plane curves.  In the sequel, we will assess the phase space and the Hamiltonian of dynamical 

systems characterized by stable and closed orbits, with special emphasis on their energetic features.   

 

 

 

FROM HYPERGEOMETRIC PHASE SPACES TO REAL SYSTEMS  

 

We propose that PFHM could serve as a mathematical framework to elucidate the phase spaces and energetic dynamics 

of real systems.  To provide a proof-of-concept example, consider the phase space trajectories of three-dimensional system 

composed of the orthogonal subsystems S1 and S2 characterized by homoclinic, stable, closed orbits, where period 

integrals along the contour curves enable the evaluation of time dynamics (Klee 2018b).  See Figure.  The S1’s planar 

layer contains a family of Hamiltonian level curves indexed by energy   with the lowest energetic level located 

at the center and the higher on the borders.  The higher the energy, the larger the closed orbit crossed by a hypothetical 

particle traveling in the S1’s phase space.  The HPFM procedure allows S1 and its family of Hamiltonian curves to be 

coupled with S2 Hamiltonian curves that reciprocally influence each other. The single complex dynamical system formed 

by the two subsystems S1 and S2 displays peculiar features:    

1) The two-dimensional subsystems are located on perpendicular planes inside a three-dimensional phase space.   

2) The system is finite and features dihedral symmetry. 

3) The constrained trajectories of the subsystems follow homoclinic, stable and closed orbits.  
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4) The system could be treated either as continuous or quantized.    

5) Due to the extreme value theorem, a real-valued function that is continuous on the closed and bounded interval 

must attain at least a maximum and a minimum on a compact manifold.  

6) Plotting cross sections of the toric energy surfaces allows energy inversion symmetry.  Differently from other 

Hamiltonian surfaces, the real period T(α) determines the complex period T(1-α) up to a rescaling, leading to 

energy inversion  
α

1−α 
  (Klee 2018a).     

7) For every fixed value of the Hamiltonian, equipotential subspaces can be found in every subsystem.  Therefore, 

changes in radius and energetic levels in S1 are inversely correlated with changes in radius and energetic levels 

in S2 (Figure).  Contrary to S1, the S2 energetic values decrease from the center to the periphery.     

8) The (physical or biological) subsystems S1 and S2 are coupled by an inverse linear function in such a way that 

the total energy of the system is conserved.  Energetic increases in S1 must be balanced by inversely proportional 

energetic decreases in S2.  This means that the dynamics result in linear, balanced, reciprocally induced energetic 

constraints between the S1 and S2 subsystems.    

 

The closed orbits with coupled Hamiltonian dynamics could represent energetic levels of physical forces like gravitation 

or electromagnetism, energy exchanges between coupled plasma waves, coupled celestial orbits in three-body problems, 

oscillatory dynamics in coupled neurons, predator-prey systems with constrained energy exchanges, paths followed by 

social agents’ networks, etc. In the sequel, we will focus on the special case of quantum entanglement.  

 

Figure 2.  The dynamical three-dimensional system S1-S2 features dihedral symmetry with real period function T(α) = 

2F1 (1/6, 5/6; 1; α). Every one of the two perpendicular two-dimensional planar layers contains a family of Hamiltonian 

level curves indexed by energy.  By adjusting the α value upward or downward, distinct and predictable time dynamics 

emerge within each subsystem (thicker circles). In contrast to subsystem S1, the energetic values of S2 decrease from the 

center to the periphery, such that changes in the energy of S1 are inversely proportional to those in S2.  Modified from 

Klee (2018b); Klee (2019). 
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QUANTUM ENTANGLEMENT THROUGH THE LENS OF PICARD–FUCHS HYPERGEOMETRIC 

MANIFOLDS 

 

Despite experimental validation, a comprehensive framework linking the nonlocal correlations of quantum entanglement 

to the underlying dynamics remains elusive (Nakata and Murao, 2020; Köhnke et al., 2021).  Since PFHM are manifolds 

derived from the modular structures and symmetries inherent in hypergeometric functions, they naturally account for 

coupled dynamics and reciprocal interactions, making them a promising framework for modelling the behaviour of 

entangled particles.  PFHM allows the description of the coordinate variables in terms of complex values matching each 

plane curve to a Riemann surface  with nontrivial topology.  This observation provides the mathematical and 

logical backbone to treat quantum entanglement in terms of paths traveling inside PFHM-like manifolds (Krutyanskiy et 

al., 2023).   

 

PFHM for quantum systems is constructed using three core components: 

1. Base manifold representation.  The state space of two entangled particles is modeled using a two-dimensional 

hypergeometric manifold with state amplitudes defined as solutions to the Picard–Fuchs equation: 

 

, 

where represents the quantum state amplitudes and a, b, c parameterize the system. 

 

2. Extension to PFHM.  By embedding M2 into a three-dimensional manifold M3, the coupled dynamics of 

entangled subsystems are described by a Hamiltonian: 

 

, 

where is the interaction potential that encapsulates entanglement. 

 

3. Symmetry and reciprocity.  Using modular transformations derived from Ramanujan’s period functions, the 

energy dynamics of the coupled system satisfy reciprocity: 

 

. 

 

 

Once PFHM has been established for quantum systems, quantum entanglement can be modelled using the following 

procedure:   

1.  Representing entangled states.  In the PFHM framework, an entangled quantum state  is represented as a 

point on M3.  For a two-particle system: 

, 

where and are basis states. The amplitudes α and β evolve on the manifold according to the Picard–Fuchs 

equations, with the coupling potential encoding the entanglement. 

 

2. Energetic reciprocity in entangled systems. The constrained energetic reciprocity in PFHM reflects the 

conservation laws in quantum systems: 

. 

 

In entangled states, changes in one subsystem’s energy spectrum are instantaneously mirrored in the other, preserving the 

total system’s symmetry.  Within a PFHM-like phase space, the energetic configuration of particles in one subsystem can 

be predicted by examining the energetic configuration of particles in the coupled subsystem.   
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3. Quantum measurement as a geometric projection.  Quantum measurement is modeled as a projection of the state 

vector onto a specific submanifold of M3.  The outcome of a measurement collapses the manifold’s global 

symmetry into localized states, consistent with observed quantum correlations.  

 

 

In sum, by embedding quantum systems in a higher-dimensional manifold, the dihedral symmetry of PFHM captures the 

nonlocal nature of entanglement.  The simultaneous correlation of entangled particles becomes clear when viewed as 

embedded within hypergeometric coupled phase spaces, where their trajectories are governed by constraints imposed by 

conservation laws inherent in the Hamiltonian.   

 

 

 

 

CONCLUSIONS 

 

We introduce a new mathematical approach for modeling Hamiltonian dynamics in complex coupled systems while 

leaving room for empirical validation and interdisciplinary exploration.  The concept of energetic reciprocity in coupled 

Hamiltonian subsystems with dihedral symmetry aligns with the conservation principles and the coupled behaviors 

observed in biological and physical systems, offering new insights into periodic and chaotic behaviors.  For example, in 

cryptography and image processing, a message or visual image encoded within the invariant orbits of PHFM subsystems 

can be mapped onto the orbits of another subsystem, creating a hypergeometric projection of the original data. Similar to 

mapping a world chart, homoclinic or heteroclinic projections between two coupled hypergeometric manifolds can be 

performed, offering additional applications in digital imaging and memory storage. 

 

This paper specifically explores PFHM as a structured framework for modelling quantum entanglement.  Taking into 

account the constrained inverse reciprocity of trajectories within coupled subsystems, the modular structures, the energetic 

reciprocity and the higher-dimensional symmetries, PFHM offers a novel approach to understanding the dynamics and 

nonlocality of entangled systems.  The framework is very flexible and can be adapted to multi-particle entanglement and 

extended to infinite-dimensional systems.  The extension of PFHM to field-theoretic systems suggests applications in 

describing entangled fields, particularly in curved spacetime or scenarios involving the AdS/CFT correspondence 

 

Our study has its limitations. While the concept offers several strengths, it ventures into complex theoretical terrain that 

demands rigorous validation and enhanced conceptual clarity. In particular, the mapping of quantum observables onto 

PFHM needs further refinement, especially for systems with high degrees of freedom. Developing experimental designs 

to test the predictions of the PFHM framework is an essential next step. 

   

Future research should aim to extend PFHM to non-Hamiltonian systems and investigate computational techniques for 

solving PFHM-derived equations in high-dimensional spaces. Additionally, future work will focus on expanding this 

structured framework to incorporate quantum computing, specifically to model qubits in entangled states (Graham et al., 

2022). Indeed, the geometric properties of PFHM can be used to optimize quantum gate operations by maintaining the 

reciprocity and symmetry crucial for preserving entanglement. 

 

In summary, the connection between dynamical systems (e.g., homoclinic paths), Hamiltonian mechanics and quantum 

entanglement represents a significant leap from abstract mathematical structures to dynamic systems. This suggests a 

unifying framework that could provide a versatile approach to understanding complex interactions across disciplines. 
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