A Brief Proof that Pi is Irrational

Timothy W. Jones

Abstract

Assuming π is rational both multiples of π and $\pi/2$ exist as a factorial. But this implies both $\sin(j!)$ and $\cos(j!)$ are zero contradicting the sum of their squares is one.

Easy Case

Suppose for a contradiction $\pi = 22/7$. Then 11! will be a multiple of $\{22, 2, 7\}$. Let

$$\frac{7}{22}11! = n_1.$$

This is an integer and yields $\pi n_1 = 11!$, giving $\sin n_1 \pi = \sin(11!) = 0$. Let

$$\frac{2 \cdot 7}{22} 11! = n_2.$$

This too is an integer and yields

$$\frac{\pi}{2}n_2 = 11!,$$

giving $\cos(n_2 \pi/2) = \cos(11!) = 0.$

But using the Pythagorean identity $\cos^2(11!) + \sin^2(11!) = 1$, not 0, a contradiction.

General Case

Assume $\pi = p/q$, then there exists a j! that has factors of $\{p, q, 2\}$ in it. Let

$$n_1 = j! \frac{q}{p}$$

and

$$n_2 = j! \frac{2q}{p}.$$

Both are integers and

$$n_1 \frac{p}{q} = j!$$
 and $n_2 \frac{p}{2q} = j!$

gives

$$\sin(j!) = \cos(j!) = 0,$$

contradicting $\cos^2(j!) + \sin^2(j!) = 1$.

References

- [1] I. Niven, A simple proof that π is irrational, *Bull. Amer. Math. Soc.* **53** (1947) 509.
- [2] _____, *Irrational Numbers*, Carus Mathematical Monographs, no. 11, Mathematical Association of America, Washington, DC, 1985.