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Abstract

This article addresses several key issues with
the current laws of electrodynamics, including
Lorentz’s law, Faraday’s law, and the Maxwell-
Ampère law, by highlighting various scenarios
where these laws fail to describe physical phenom-
ena. It also presents a case where the condition
∇ · B⃗ ̸= 0 occurs, challenging the standard
belief that magnetic fields always have zero
divergence. The article argues that magnetic
fields, as traditionally understood, do not actually
exist. Instead, effects thought to be caused by
magnetic fields are simply due to electric fields
(no need to include special theory of relativity).
A new concept introduced in the article is the
“drag property of the electric field,” a previously
unknown characteristic that creates the illusion
of a magnetic field. Using this drag property,
the article derives a set of revised electrodynamic
laws that consistently apply across all situa-
tions. Additionally, it addresses the failure of
the traditional atomic model and suggests a new
approach. The article also challenges the idea
that space is empty, proposing that space is filled
with something rather than being a true vacuum.
This research offers a fresh perspective on both
electromagnetic theory and the nature of space.

[General note: Please note that I am not a
professional in research writing, so there may be
some errors. I appreciate your understanding.
• If you don’t have enough time to read, just read
the sec-3.1, 3.2, 4.1 and 6; these are sufficient to
justify the article’s title and theme of the entire
paper.]

1 Introduction

The relation between electric field and magnetic
field is given by Maxwell’s third and fourth equa-
tion as

∇× E⃗ = −dB⃗

dt
(1)

∇× B⃗ = µJ⃗ + µϵ
dE⃗

dt
(2)

But we have another set of equation which also
relates the electric and magnetic field known as
field transformation equation , given by [1][2]

E⃗ = B⃗ × v⃗B (3)

B⃗ = µϵ (v⃗E × E⃗) (4)

where vB and vE represents the velocity of mag-
netic field and electric field respectively.
Using this equation-4 and principle of superposi-
tion of field, we can calculate magnetic field pro-
duced due to any shape of current carrying wire.

1.1 Finding magnetic field due to a cur-
rent carrying straight wire using
field transformation equation

The principle of superposition states that at ev-
ery point, fields due to all different sources live in
superposition, and the net field at that point is
the vector sum of all the different fields present
there. This means that if there is a null point near
a system of charge, it doesn’t mean that no field
is present there i.e., a null point can’t be treated
as field-free space. It only signifies that the net
electric field is zero, but the fields are still present
there.
Taking the case of current carrying wire, let (λr,
Er, vr) and (λm, Em, vm) are the linear charge
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Figure 1: A Current carrying wire

density, electric field and the speed of correspond-
ing rest charge and moving charge respectively.
Here, wire is neutral, so λr + λm = 0 and E⃗r +
E⃗m = 0.
Er and Em live in superposition. When the free
electrons move, the field associated with it also
moves (with the same speed), while the field of
rest charge remains at rest (vr = 0).
Using the field transformation equation 4, we can
obtain the magnetic field of surrounding region as

B⃗net = µϵ
∑

v⃗i × E⃗i

= µϵ (���
0

v⃗r × E⃗r) + µϵ (v⃗m × E⃗m)

= µϵ v⃗m × (E⃗m∥ + E⃗m⊥)

(where E⃗m∥ and E⃗m⊥ are the parallel and perpen-

dicular components of E⃗m w.r.t. the wire (direc-
tion of motion of electron) and n̂ is a unit vector
along v⃗m × E⃗m⊥.)

= µϵ vmEm⊥ n̂ (∵ v⃗m × E⃗m∥ = 0)

= µϵ vm
λm

4πϵr
(sinα + sinβ) n̂

=
µ I

4πr
(sinα + sinβ) n̂ (I = λmvm)

1.2 Deriving Biot-Savart law using field
transformation equation

Figure 2: A curved current carrying wire

We can also derive Biot-Savart law using the same
concept (principle of superposition and field trans-
formation equation 4).
Suppose dEm is the electric field due to the moving
elemental charge λmdl (free electrons) at point p
at distance r

dEm =
λmdl

4πϵ r2

The magnetic field (dB) produced at point P due
to this moving electric field will be

dB⃗P = µϵ v⃗m × dE⃗m = µϵ vm dEm sin θ n̂

(where n̂ is unit vector along v̂m × Êm⊥)

= µϵ vm
λmdl

4πϵ r2
sin θ n̂

=
µ

4π

I dl

r2
sin θ n̂ (I = λmvm)

=
µ

4π

I d⃗l × r̂

r2

2 Categorization of field

Before proceeding, we need to categorize the field
on the basis of their source and their dependence
on observer as below

2.1 Primary and secondary fields

On the basis of source of fields, it can be classified
into two categories:
1. Primary field
This type of field is created by source charge
(electric charge or magnetic charge). It initiates
from the source and terminates at infinity. When
a charge of opposite nature comes near it, it does
not terminate or bend there because fields from
different sources live in superposition, without
affecting each other. In field line representation,
we draw the paths along net electric field or
magnetic field, but not along the individual fields
and so it seems like that field line is terminating
or bending in presence of external charge which
is not actually true (as if field lines really bends
then any charge +q1 can’t apply any force on a
charge +q2, if there is any third charge +q3 in
between them, which is against the principle of
superposition of charge).
It is a conservative type of field and its field line
follows a straight path (curl is zero).
Example: Electric field produced by charges
E⃗ = kq/r2r̂ , (

∮
E⃗p · d⃗l = 0)

2. Secondary field
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This type of field does not incur any source charge.
It is always created by some another fields (called
parent field or producer field). Its field line can be
straight, circular or any type of curve depending
upon, how it is produced. It is non-conservative
in nature.
Example: Magnetic field produced by moving
electric charge or electric field (B⃗ = v⃗×E⃗), electric
field produced by moving magnet or magnetic
field (E⃗ = µϵ B⃗ × v⃗).

Let us denote primary electric field as E⃗p and

secondary electric field as E⃗s.

Gauss law: This law states that ∇ · E⃗ =
ρ

ϵ
but

the electric field mentioned here can’t be secondary
electric field as this law deals with the fields of
electric charges i.e., primary electric field. Hence,
the actual representation of this law will be

∇ · E⃗p =
ρ

ϵ
(5)

2.2 Absolute and non-absolute field

On the basis of dependence of field on the observer,
it can be classified into two types.
(1) Absolute field and (2) non-
absolute field
1. Non-absolute field
It is an observer-dependent field. The magnetic
field produced by moving charge is a non-absolute
magnetic field as it depends on the velocity of

charge w.r.t. the observer given by B⃗ =
µ

4π

qv⃗ × r̂

r2
,

where v⃗ is the velocity of q w.r.t. observer [3].
2. Absolute field
This type of field does not depend on the observer.
Its magnitude remains the same for each and ev-
ery observer, whether it is at rest or motion (we
are not including special theory of relativity here).
The electric field produced by charges or the mag-
netic field produced by current-carrying wires are
the examples of absolute magnetic field.
Note:- The magnetic field produced by moving
charge is a non-absolute field, but the mag-
netic field produced by moving charges of a neu-
tral medium (current-carrying wire, sheet or any
conducting neutral medium) is absolute field or
observer-independent in nature which can be seen
mathematically also as below .
Consider the case of current-carrying wire, where
λr and λm are moving with velocity v⃗r and v⃗m
respectively w.r.t. any observer S. The total mag-
netic field that would be produced by these moving

charge system in its surrounding space will be

B⃗ = µϵ (v⃗m × E⃗m) + µϵ (v⃗r × E⃗r)

= µϵ
λmvm
2πϵ r

n̂+ µϵ
λrvr
2πϵ r

n̂

=
µ(λmvm + λrvr)

2πϵ r
n̂

=
µI

2πr
n̂

(∵ I = λmvm + λrvr = λmvm − λmvr = λm(vm − vr) )

It is not containing any observer-dependent pa-
rameter, and hence, it is an absolute field which
remains the same for every frame of reference.

3 Failure of Lorentz Law

The magnetic force F⃗m12 on a charge q1 due to an
another charge q2, moving with velocity v⃗1 and v⃗2
respectively (w.r.t. any observer S) is given as [4]

F⃗m12 = q1v⃗1 × B⃗2 =
µ

4π

q1q2
r2

[v⃗1 × (v⃗2 × r̂12)] (6)

where r is the distance between the charges, B⃗2

is the magnetic field field produced by the moving
charge q2 (at the position of q1) and r̂12 is a unit
vector from q2 to q1.

Proof :
F⃗m12 = q1v⃗1 × B⃗2 = q1v⃗1 ×

 µ

4π

q2v⃗2 × r̂12
r2


=

µ

4π

q1q2
r2

[v⃗1 × (v⃗2 × r̂12)]

OR, = µϵ q1E2 [v⃗1 × (v⃗2 × r̂12)]


However, there is a problem in this equation as
this force is depending on the velocity of charges
w.r.t. the observer. This seems paradoxical be-
cause it supports that a zero force in one frame
can be non-zero in some other frame or vice versa,
which is not possible.
An observer cannot know if the system is moving
or not, but it can always know about the system’s
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acceleration (whether the observer is inside or out-
side the system) because acceleration is absolute.
Hence, if a system experiences zero force in
any one frame, it will be zero in all the other
frames as well, as it’s acceleration will be
zero for all the frame.
However, the above equation doesn’t support this.
Here are a few situations that clearly prove this
equation to be wrong.

3.1 Charges moving with the same ve-
locity don’t experience or apply any
magnetic force on each other

Suppose two charges (q1 and q2) are fixed across a
nonconducting rod and two observers S and S’ are
there. S is at rest, and S’ is moving with velocity
−v⃗ at angle θ (w.r.t. the system) as shown in Fig.
3.
In the S frame, this charge system is stable as there
is no torque in this system. Its stability is not
depending on the observer S’ or the value of θ.
Also there isn’t any magnetic force on the charges
q1 and q2 as no magnetic field is present in this
frame.

Figure 3: Two charge system (stationary) w.r.t. S

But for S’, these charges are moving with velocity
v⃗ (fig-4) and so producing magnetic field. In this
figure 4, the magnetic field produced by charges q1
(at the position of q2) and q2 (at the position of
q1) will be respectively

B⃗q1 =
µ

4π

q1v⃗ × r̂21
r2

=
µ

4π

q1v

r2
sin θ ⊗

B⃗q2 =
µ

4π

q2v⃗ × r̂12
r2

=
µ

4π

q2v

r2
sin θ ⊙

where r is the distance between the charges, r̂21
and r̂12 are the unit vectors from q1 to q2 and q2 to
q1 respectively. Nevertheless, charges are moving,
the electric field will be in the radial direction [5],
and so the electric force on both charges will be
along the rod, i.e., Fe12 = Fe21 (toward each other,
along the rod).
But, because of the magnetic field, the magnetic

force on charge q1 due to q2 (F⃗m12) and on q2 due
to q1 (F⃗m21) will be (applying Lorentz law):

F⃗m12 = q1v⃗ × B⃗q2 =
µ

4π

q1q2 v
2

r2
sin θ âx

F⃗m21 = q2v⃗ × B⃗q1 =
µ

4π

q1q2 v
2

r2
sin θ (−âx)

Figure 4: Two charge system (moving) w.r.t. S’

Same result we will get, if we apply equation-6
directly.
So in the frame of S’, there is a net torque in this
system, and hence it should rotate anticlockwise
(clockwise if q1 and q2 are of opposite polarity) to
align itself along z-axis (or along the v⃗).
This experiment is sufficient to proves that equa-
tion 6 is wrong as it is giving different result for
the same experiment when observed from different
frames which is not possible as the laws of physics
are the same in all inertial frames of reference that
are moving at a constant velocity.
The Lorentz law is also failing here as the magnetic
force (F⃗m = qv⃗ × B⃗) on the charges q1 and q2 in
S frame is zero while in the S’ frame, it is non-zero.

The question arise here is, (i) will this moving
charge-pair (or any two charge moving with same
velocity as shown in fig-4) rotate or not due to
the presence of a magnetic force? (ii) will there
be any magnetic force on these moving charges q1
and q2?
If it rotates, then it means that a stationary
charge pair should also rotate (fig-3) as it is also
moving w.r.t. some other observer, which can’t be
true as (i) it will violates the law of conservation of
energy; (ii) the magnitude of torque and the final
stable position of this system will be unpredictable
(For S, this charge pair is stable for all value of θ
while for S’, it is stable only for θ = 0o and 90o)
as there can be more than one observer at a time.
So, the solution of this experiment is that it will
not rotate at all.
This proves that charges moving with the same
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velocity do not experience or apply any magnetic
force on each other, regardless of the observer or
the value of θ (fig-4); otherwise, for some observer
(like S), it will be violation of law of physics
(rotation without having any rotating force or
torque).

One interesting question arise here is: how do two
identical current-carrying wires (velocity of elec-
trons in both wires is the same) attract each other
if the magnetic force between two moving charges
moving with the same velocity is zero? (actual ex-
planation is mentioned in sec 5.3)
Note that its explanation using the concept of sta-
tionary magnetic field (present understanding) is
not correct as the concept of stationary magnetic
field itself is wrong (mentioned in sec-6.4).

Modification in Lorentz force equation

The Lorentz law states that the total force on a
charge moving in an electromagnetic field (E⃗+ B⃗)
is given as

F⃗q = qE⃗ + qv⃗q × B⃗ (7)

Here, the electric field can be either a primary elec-
tric field, a secondary electric field, or both. Sim-
ilarly, the magnetic field can be both, but the pri-
mary magnetic field doesn’t exist, and hence it is
always the secondary magnetic field (B⃗). So, it can
be written as

F⃗q = q(E⃗p + E⃗s) + qv⃗q × B⃗

= q(E⃗p + B⃗ × v⃗B) + qv⃗q × B⃗

= qE⃗p − q(v⃗B × B⃗) + qv⃗q × B⃗

= qE⃗p + q(v⃗q − v⃗B)× B⃗

= qE⃗p + qv⃗q,B × B⃗

(8)

Here, the velocity of charge is not w.r.t the ob-
server, but it is w.r.t the magnetic field.

EMF in a coil, moving with a magnet

A magnet always creates a circular electric field
(secondary) around itself, whenever it moves, given
by equation 3 i.e., E⃗s = B⃗ × v⃗B.
Suppose a coil is moving with a magnet as shown
in figure 5.
Due to the secondary electric field, there should
be a current in the coil because of the induction of
EMF in the coil due to E⃗s as

Eloop =
∮

E⃗s · d⃗l =
∮
(B⃗ × v⃗B) · d⃗l (9)

Figure 5: Magnet-coil system

But consider the same case from the magnet frame.
In this case, both the coil and magnet are station-
ary, and so no EMF or current is there (Faraday ex-
periment), violating the previous case. So it proves
that the previous equation of EMF is not true.
The actual equation of Eloop can be find using equa-
tion 8 (modified Lorentz force equation) as

E =

∫
F⃗q · d⃗l
q

=

∫
(qE⃗p + qv⃗q,B × B⃗) · d⃗l

q

=

∫
E⃗p · d⃗l +

∫
(v⃗q,B × B⃗) · d⃗l

For a closed loop, it will become

Eloop =
∮

��
��*

0
E⃗p · d⃗l +

∮
(v⃗q,B × B⃗) · d⃗l

=

∮
(v⃗q,B × B⃗) · d⃗l

OR , =

∮
(B⃗ × v⃗B,q) · d⃗l

(10)

So, Eloop is not depending on the velocity of the
magnetic field or coil, but depending on the rela-
tive velocity between the magnetic field and coil.
In the above case, vq,B = 0, and hence, Eloop = 0
i,e no matter from which frame, it is observed, it
will be same for all.
This explains why the same EMF induces in a coil
when
(i) The coil is stationary and a magnet passes
through it, OR
(ii) The magnet is stationary and a coil passes
through it.
However, according to many physicists, these
EMFs are getting induced through a totally differ-
ent mechanism and came out to be the same be-
cause there is some deep connection between these
two situations. But the above derived equation of
Eloop (equation-10) could be the simplest explana-
tion of this.
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A magnetic field always moves along with
its producer charge

Section 3.1 proved that the magnetic force between
two moving charge having the same velocity is zero.
It is possible only if vq,B = 0, otherwise not, as
in that case vq,B ̸= 0 ⇒ Fm ̸= 0. This means
that “magnetic fields always move along with the
producer charge”.
So using this concept and equation 8 , equation 6
can be modified as

F⃗m12 = q1v⃗12 × B⃗2 =
µ

4π

q1q2
r2

[v⃗12 × (v⃗2 × r̂12)]

(11)

But this equation also fails in multiple cases. Few
of then is mentioned below.

3.2 Two charges, approaching each
other

We have a system as shown in fig-6, where two non-
conducting rod (R1 and R2) is there, placed in a
line. The first rod have two uncharged beads (b1
and b2) while the other have two charged beads
(b3 and b4) having charge q and −q respectively.
Beads are free to slide over the rod.
Here, b3 and b4 are moving toward each other under
electrostatic attraction (let their velocities are u âx
and −u âx respectively (take the direction from left
to right of the page as x-axis and bottom to top as
z-axis)) while the uncharged beads b1 and b2 are
stationary.

Figure 6: Two approaching charges w.r.t. S

For observer S (system frame), beads b3 and b4 will
simply collide with each other (let the collision is
completely inelastic) and the position of rod R1

and R2 will remain same before and after the col-
lision i.e., the motion of charges will not affect the
position of rods.
However, does the situation remain the same for
S’ (moving with velocity −v⃗ w.r.t the system (we
will use this two observer S and S’ in this entire pa-
per, so if not mentioned, just assume it))? NO!.
For S’, charges are moving (with velocity v ẑ) and
so magnetic field comes into play and changes the
situation.
In this case (fig-7), the magnetic field produced by
the charged bead b3 (at the position of b4) and b4

Figure 7: Two approaching charge w.r.t. S’

(at the position of b3) will be respectively

B⃗b3 =
µ

4π

q(v⃗ + u⃗)× r̂b4b3
d2

=
µ

4π

qv

d2
⊗

B⃗b4 =
µ

4π

−q(v⃗ − u⃗)× r̂b3b4
d2

=
µ

4π

qv

d2
⊗

where r̂b4b3 and r̂b3b4 are the unit vectors from b3
to b4 and b4 to b3 respectively.
On applying the modified Lorentz force equation
(equation-8) and the concept that magnetic field
always moves along with its producer charge, the
magnetic force on the beads b3 and b4 will be re-
spectively

F⃗m,b3 = q v⃗(q,Bb4
) × B⃗b4 = q (2u⃗)× B⃗b4

= − µ

2π

q2vu

d2
ẑ

F⃗m,b4 = −q v⃗(−q,Bb3
) × B⃗b3 = q (−2u⃗)× B⃗b3

= − µ

2π

q2vu

d2
ẑ

In another way, we can directly use the equation-11
and we will get the same result i.e., the magnetic
forces on the beads b3 and b4 will be

F⃗m,b3 = F⃗m,b4 = − µ

2π

q2vu

d2
ẑ

This force on b3 and b4 came in the same direction
(in the direction of v⃗). So for S’, the rod R2 will
gain some velocity (after the collision) because of
the magnetic force, which implies that position of
rods will not remain the same after the collision
of charges, irrespective of what we observe in the
S frame. So, this proves that modified equation
(equation 11) also fails as here it is predicting
different result for different observer.

Now the same question arises here: which one is
true, i.e., will the rod R2 move or not?
We can clearly say that it will not move at all, as
if it moves, then
(i) what will be the direction of motion and the
magnitude of final velocity of rod R2 as there
can be more than one observer like S’ at a time
(having different velocities in different directions)?
For each observer, the direction of this magnetic

6



force will be opposite to v⃗ (measured w.r.t. that
observer), and so the direction of the net magnetic
force will become unpredictable (indeterminate).
Also the magnitude of this force depends on the
observer, i.e., if larger is the velocity of observer
w.r.t. the system, larger will be the magnetic
force and so the final velocity of rod R2 (w.r.t the
observer or R1) which is not possible as observers
can’t affect any system or decide the final velocity
of R2.
(ii) there must be a such responsible force in the
S frame also, which isn’t;
(iii) it violates Newton’s third law as the action
and reaction force on charges comes in the same
direction (F⃗m,b3 = F⃗m,b4).
So, the solution of this experiment is that the rod
R2 will move at all (w.r.t R1), and the conclusion
is that two charges moving toward each other,
do not experience or apply any magnetic force
on each other, no matter from which frame it is
getting observed.

A few more cases where equation-11 fails are: -

• A charge is connected to
a line charge through a non-
conducting spring, as shown in
the figure, which is oscillating
perpendicularly to it. For S,
this oscillation is simple to and
fro motion of charge.
But for the S’ frame, this
charge system is moving (with
speed v), and so producing
magnetic field in its surround-
ing region which mean that
this oscillation is not as sim-
ple as seems in S frame (for
S’) because now there is an additional force (mag-
netic force), perpendicular to the direction of os-
cillation. In addition, the direction of this force
changes whenever the charge changes its direction
of motion (at extreme positions).
So, this equation-11 is predicting different result
for the different observer which is not possible.
• Consider a hydrogen atom having a revolving
electron. For S (stationary observer), the orbit of
atom is circular. But for the S’ frame (moving
away from the atom, in the plane of electron’s or-
bits), this orbit becomes elliptical as now there is a
magnetic force (use equation 11) due to the mag-
netic field produced by the moving nucleus. But,
it is not possible because the shape of orbit can’t
be affected by an observer.

It again proves that equation 11 is not always true.
It is limited to some fixed cases. Therefore, we
need to find a formula that can handle each and
every case.

4 Failure of Faraday law

4.1 EMF in a coil, moving toward a
current-carrying wire

Suppose we have a wire carrying current I, and a
rectangular coil is moving toward it with velocity
vc î as shown in figure 8(a). The total magnetic
fux inside the coil will be

ΦB =

∫
B⃗ · dA⃗ =

∫
µI

2πr
ldr

Due to the motion of the coil, this magnetic flux
inside the coil changes and it leads to the induction
of an EMF inside it as given by Faraday law

E = −dΦB

dt
= − d

dt

∫ µI

2πr
ldr


= −µIl

2π

r2∫
r1

d

dt

dr

r

 =
µIvcl

2π

(
1

r1
− 1

r2

)
= B1vcl −B2vcl (12)

Figure 8: (a) A coil is moving in magnetic field (b)
A coil is moving in electric+magnetic field

In this situation (fig-8(a)), λr and λe of the neutral
wire is at rest and motion respectively (velocity
of λe = vm ĵ, I = λevm). The magnetic field
that is increasing inside the coil is produced only
due to λe (as vr = 0). There is no contribution
of λr in it. So, if we remove λr from this system,
still the same EMF will induce in the coil as the
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surrounding magnetic field will still remain the
same (primary electric field will not affect this
EMF as

∮
E⃗p · d⃗l = 0).

Case-1: Suppose we removed λr and left with the
system as shown in figure 8(b). EMF induced in
the coil will be same as the previous equation 12
i.e.,

E =
µλevmvcl

2π

(
1

r1
− 1

r2

)
(13)

Figure 9: A coil is moving in a stationary electric
field

Now study the same case from the λe frame (figure
9). In this frame, there is a stationary electric field
with zero magnetic field in the space, and a coil is
moving in it with velocity vcî − vmĵ. If we apply
Faraday’s law here, then the EMF inside the coil
should be zero as no magnetic field is there in this
frame, i.e.,

E = −dΦB

dt
= 0

Even the primary electric field present here can’t
induce any EMF in the coil as it is a conservative
field.
But the EMF is inducing (Ecoil ̸= 0) as this
situation is nothing other than figure 8(b), but
how? Sometimes, special theory of relativity is
used to fix the problems of electrodynamics. But
here, this theory also can’t explain the above
situation. It proves that (i) Faraday law fails in
case of non-absolute magnetic field as it gives
observer dependent value for the EMF which is
not possible
(ii) it is something other than magnetic field
which leads to the induction of EMF as there is no
magnetic field is λe frame (fig-9), but still Ecoil ̸= 0.

Case-2: Now suppose we remove λe from the sys-
tem (figure 8(a)), keeping everything the same as
shown in figure 10(a). In this case, the EMF in
the coil will be zero as no magnetic field is there.
But study the scenario from S’ frame (moving with
velocity v ĵ). For it, there is a magnetic field

B =
µλrv

2πr
in the surrounding region and so, a

non-zero EMF should be there in the coil as the
magnetic flux is increasing inside the coil. This
EMF can be calculated using Faraday law as

E = −dΦB

dt
=

µλrvvcl

2π

(
1

r1
− 1

r2

)
= B1vcl −B2vcl

(14)

which again proves the Faraday’s law to be ineffi-
cient as it is predicting different results for different
observer.

Figure 10: (a) A coil is moving in an electric field
(b) A coil is moving in a electric+magnetic field

If we apply the concept of motional EMF with
equation F⃗q = qv⃗q × B⃗ or qv⃗q,B × B⃗, it also fails
because for S, E = 0 while for S’, E ̸= 0 (even there
is relative motion between the coil and magnetic
field, having net increasing magnetic flux inside).

Note that if EMF get induces in S’, then (i) there
must be a such source of EMF in S frame also
which isn’t (ii) its magnitude and direction of
induction will be unpredictable (indeterminate)
as the observer S’ can have any velocity i,e if
v = +ve ⇒ E = +ve, v = −ve ⇒ E = −ve and
v = 0 ⇒ E = 0 which is not possible as a system
can’t be affected by an observer’s state. So, it
proves that no EMF will be induced in the figure
10(b), but how is it possible as there is a net

8



increasing magnetic flux inside the coil in S’ frame?

Solution is mentioned in the section-5.5 by intro-
ducing a new property of an electric field field
which is still untouched from us (Drag property).

4.2 Charge-coil system

Suppose there is a coil (having a bulb) and a charge
placed in free space such that the charge is residing
outside the coil, as shown in figure 11(a). There is
an observer who is observing this system.
Initially, the observer was at rest w.r.t. the system
and observed zero current in it because no current
source was present. Then, the observer accelerates
to velocity v⃗.

Figure 11: Charge-coil system

After achieving this velocity, he finds that there is
a magnetic field inside the coil (fig-11(b)), which
is not produced suddenly but increased gradually
from zero to B during the acceleration of the ob-
server.
So, the question is, was there current in the coil,
or did the bulb glow during the acceleration of the

observer because
dΦB

dt
was non-zero during the ac-

celeration?
The answer is no! because acceleration of the ob-
server cannot affect the system. There can be mul-
tiple observers at a time where one can be at rest
while the other at acceleration, but for all, the sys-
tem will show the same result as the events are
frame-independent. So, Faraday law again failed
here.
Note that the production of magnetic field by a
charge is a relative phenomenon, which means that
to get magnetic field, it is not necessary or the only
option is to move the charge, but the observer can
also move to obtain the magnetic field. If a charge
has some velocity with respect to the observer, it
will have a magnetic field, no matter which one is
accelerated to create this relative velocity.

4.3 Capacitor and a moving coil

We have a charged parallel-plate capacitor and a
coil is moving inside it, as shown in figure 12. In

Figure 12: Capacitor - coil system

the coil frame, there is a increasing magnetic flux
inside the coil as the electric field of the moving
capacitor produces magnetic field B⃗ = µϵ v⃗ × E⃗
and so a current should induce in the coil, given
by

I =
E
R

=
1

R

dΦB

dt
=

µϵ v2El

R
(15)

But study the same case from the capacitor frame
and apply the Faraday law. In this case, no mag-

netic field is present, and so
dΦ

dt
= 0 implies current

should not be induced in the coil.
So, which one is true? It also proves that the Fara-
day law is either wrong or incomplete.
These all experiments proved that our knowledge
about electrodynamics is not sufficient to handle
every situation, as these laws (Lorentz law and
Faraday law) fail in the case of a non-absolute
magnetic field. These laws are limited to abso-
lute magnetic only, and the reason is that these
laws are experimental laws, i.e., developed from
experiments where absolute magnetic field is used
(magnetic field due to current-carrying wire, per-
manent magnet, etc.). Hence, these laws are not
the evergreen laws that can handle each and every
situation of electrodynamics. But we can find that
evergreen law using the concepts of electric drag
force, law of conservation of energy, and Newton’s
third law.

5 Electric drag force [Beyond the
Known: Introducing a New
Property of Electric Fields in
Scientific Research]

In figure 10(b), there is motion of a coil in mag-
netic field (having increasing magnetic flux) but
no EMF induces in it, while in figure 9, no mag-
netic field is there but still EMF induces in the
coil. It happens because the extra force, or non-
coulombic force, which we are calling as magnetic

9



force, doesn’t arise from a magnetic field but rather
arises due to the relative drag of charge in a pri-
mary electric field called electric drag force.
Electric drag force: Whenever a charge drags
in a primary electric field, i.e., it has some relative
velocity w.r.t. the field in its ⊥ direction, it ex-
periences a force called electric drag force F⃗d (in
addition with electric force qE⃗). This drag force
sometimes appears as magnetic force; when ob-
served from some specific frame, and seems like
it is generated due to a magnetic field (we will see
later).
Let’s find the expression of this electric drag force
using conservation of energy and Newton’s third
law.

Expression of electric drag force

Equation 6 is dimensionally correct for the non-
coulombic force on charge, i.e., it is directly pro-
portional to the charge q and electric field E, and
so in fig-13 (q and q′ are moving with velocities v⃗1
and v⃗2 respectively):

Figure 13: Two charge system

1) Drag force on q which is Fd1 is proportional to
q itself and the electric field E⃗ (due to q′) .
2) Total energy (U) of the system is U = P.E +
K.E = constant, and it will remain conserved as
neither any external force is acting on this sys-
tem nor any loss is happening (the only energy
loss could be EM radiation, which we are neglect-

ing here). So,
dU

dt
= 0. The drag forces acting on

charges (Fd1 on q and Fd2 on q′) are the internal
forces for this system. Hence, net work done by
these forces will be zero, i.e.,

WFd1
+WFd2

= 0

Taking derivative w.r.t time on both side, we get

d

dt
WFd1

+
d

dt
WFd2

= 0 ⇒ F⃗d1 · v⃗1 + F⃗d2 · v⃗2 = 0

Applying Newton’s third law, we get F⃗d1 = −F⃗d2.
So, the above equation can be written as

F⃗d1 · v⃗1 − F⃗d1 · v⃗2 = F⃗d1 · (v⃗1 − v⃗2) = F⃗d1 · v⃗12 = 0

⇒ F⃗d1 ⊥ v⃗r , (where vr is the relative speed)

Similarly, F⃗d2 ⊥ v⃗r
3) Drag force always lies in the plane of v⃗r × E⃗, as
if we take any other direction out of this plane, it
will violate Newton’s third law.
Let the direction of drag force be along a n̂ + b p̂
(where n̂ is along v⃗r × E⃗ and p̂ is any random unit
vector in the plane v⃗r×E⃗ and a, b are the arbitrary
constant).
For the situation shown in fig. 13, n̂ for both F⃗d1

and F⃗d2 comes in the same direction (if q and q′ are
of the same nature), which proves that drag force
can never go out of the plane of v⃗r × E⃗; otherwise,
it will violate Newton’s third law.
So, from (1), (2), and (3): -
A force proportional to q and E⃗, which is perpen-
dicular to v⃗r and lying in the plane of v⃗r × E⃗, can
be written as

F⃗d = k q
(
v⃗r × ( v⃗r × E⃗ )

)
(16)

where k is a constant. Replace this k with aµϵ,
i.e.., (k = aµϵ), where a is another constant, we
get

F⃗d = a qv⃗r × µϵ( v⃗r × E⃗ ) (17)

It is nearly the same as equation 6, but it is frame-
independent.
This law is an evergreen law. It can handle all the
situations of electrodynamics.

Property of electric field

• When a charge q is stationary in an electric field
E, it experiences an electric force given by F⃗ = qE⃗.
• But if the charge is not stationary w.r.t. the elec-
tric field, i.e., has some relative velocity vr w.r.t.
the electric field, it will experience an extra force
along with the electric force, known as electric drag
force, given by

F⃗d = a qE
v2r
c2

sin θ p̂ (18)

where θ is the angle between E⃗ and v⃗r and p̂ is a
unit vector along v⃗r × ( v⃗r × E⃗). This property can
be called as drag property of electric field .
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5.1 Explanations of all the failure men-
tioned before (using the concept of
electric drag force)

(1) Sec-4.3 When the system is observed from S’
frame, no magnetic field is there but still the EMF
is induced because of the drag property of electric
field. Due to motion of coil in the electric field, free
electrons experiences electric drag force as given by
equation-17, which cause generation of the E , given
by

E =

∮
F⃗q · d⃗l
q

= aµϵEv2r l (19)

When it is observed from the S frame, this EMF
remains the same as same drag is happening for
S also. . But here, it seems like it is generated
due to the motion of the coil in the magnetic field
µϵ v⃗× E⃗ as E = Bvl = µϵ Ev2l , (vr = v) which
is not the actually true as it is good to S frame
only. For S’, concept of magnetic doesn’t hold. It
proves that magnetic force is nothing but the elec-
tric drag force. We will find the value of a later.
(2) Sec-4.2 In this case, the observer is accelerat-
ing, but the relative velocity between the electric
field of charge and the coil is zero, hence no drag
force generated, causing zero EMF. Until unless
zero relative velocity is there, no EMF will be gen-
erated.
(3) Sec-3.1: There isn’t any relative motion be-
tween the charges; hence, no magnetic force or elec-
tric drag force is there, no matter what the value
of θ is.
(4) Sec-3.2 In this case, v⃗r × E⃗ = 0 i.e., angle be-
tween v⃗r and E⃗ is zero. Hence, F⃗d or F⃗m = 0.
(5) Sec-4.1: Mentioned at sec-5.5.

5.2 Two charge with different velocities

Take the situation as shown in the above figure,
where q1 and q2 (both are of the same nature) and
the observer S are moving with v⃗q1 , v⃗q2 , and v⃗obs,
respectively, in the same direction (v⃗q1 > v⃗q2).
According to equation-6:
⇒ If (vobs < vq2) or (vobs > vq1), charges will at-
tract each other magnetically because of their mo-
tion in the same direction.

⇒ If (vq1 < vobs < vq2), charges will repel each
other magnetically as now they are moving in op-
posite direction w.r.t. the observer.
But it is not possible, as an observer can’t affect
any system.
According to equation-11:
⇒ If (vobs < vq2) or (vobs > vq1), the direction of
magnetic force of both charges comes in the same
direction (action-reaction force)
⇒ If (vq1 < vobs < vq2), the direction of magnetic
force comes in the opposite direction.
So, these all proves that equations-6 and 11 are in-
complete in themselves, as they are giving frame-
dependent result, which is not possible.
According to electric drag force equation,
the non-coulombic force (i.e., magnetic force) on
the charges will be always equal, opposite and
frame independent, which is given by equation-18
as

Fm12 = Fm21 = a
µ

4π

q1q2
r2

(v1 − v2)
2 sin θ (20)

Hence this is the actual equation of magnetic force
(or the non-coulombic force) between two moving
charges. In fig-4 , vr = 0 while in fig-7 , θ = 0, and
hence in both the case, F⃗m = 0. These situations
can’t be handled, if we consider the equations 6
and 11.
We can cross-check it using another thought ex-
periment also as below.

5.2.1 Stationary charge also applies mag-
netic force to moving charges

In the above case, if vobs = vq1 then according to
both equations 6 and 11, Fm21 = 0 and so if we
replace this charge with a coil (moving with the
same velocity), no EMF should be induced in the
coil as there also, all the free electrons of the coil
will experience zero magnetic force.
But study the same situation from the coil frame
(fig-14(a) or 14(b)). In that case, observer will find
that a charge is moving towards the coil, creating
a net changing magnetic flux inside it and causing
the generation of EMF.
The question here is, which one is true i,e will the
EMF induce or not? If not, then it means that,
a charge can never generate any EMF in a coil,
whether it is at rest or at motion w.r.t the coil
which mean that a current carrying also can’t gen-
erate any EMF in a coil moving toward it (fig-
8(b)), which is not true. Hence, it proves that
EMF will be generated in that coil.
But, we can’t handle this situation (in the charge
frame) if we consider equation 6 or 11 i,e Fm21 = 0.
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The only solution is the electric drag force i.e.,
Fm21 ̸= 0⇒ no matter what the velocity of charges
are w.r.t. the observer, if there is relative motion
between them, an electric drag force will arise be-
tween them (as given by equation-18). This drag
force will cause the generation of EMF in the coil
of fig-14(a) or 14(b) (see from the charge frame),
given by

E =
1

q

∮
l
F⃗q · d⃗l = a

∮
l

v2r
c2

E sin θ dl

It is observer independent and remain same for ev-
ery frame. For the observer of coil frame, this equa-

tion is equivalent to E = a
dΦB

dt
while for charge

frame, we don’t have any option other than the
concept of electric drag force.
So, it proves that a stationary charge also
applies magnetic force (or electric drag
force) on moving charges.

Modification of Electric drag force equa-
tion

Taking the angle between v⃗r and E⃗ as θ and µϵ =
1/c2, equation-17 can be modified as

F⃗ = a qv⃗r × µϵ( v⃗r × E⃗ )

= a qE
v2r
c2

(
v̂r × (v̂r × Ê)

)
= a qE

v2r
c2

(
(v̂r · Ê) v̂r − (v̂r · v̂r) Ê

)
= a qE

v2r
c2

(
cos θ v̂r − Ê

)
= a qE

v2r
c2

(
cos θ (cos θ Ê + sin θÊ⊥)− Ê

)
= a qE

v2r
c2

(
− sin2 θ Ê + cos θ sin θ Ê⊥

)
=− aqE

(vr sin θ)
2

c2
Ê + aqE

(vr sin θ . vr cos θ)

c2
Ê⊥

F⃗ = −aqE
(vr⊥)

2

c2
Ê + aqE

(vr⊥ vr∥)

c2
Ê⊥

Hence F⃗ = aF⃗∥E + aF⃗⊥E , where

F⃗∥E = − qE
(vr⊥)

2

c2
Ê , (vr⊥ = vr sin θ)

F⃗⊥E = qE
(vr⊥ vr∥)

c2
Ê⊥ , (vr∥ = vr cos θ)

(21)
Here, ∥ and ⊥ are w.r.t. to electric field E⃗ i.e., F⃗∥E
and F⃗⊥E represents the component of electric drag
force along E and perpendicular to E while vr∥

and vr⊥ is the component of vr (relative velocity)
along E and perpendicular to E (vr∥ ≡ vr,∥E
and vr⊥ ≡ vr,⊥E). In the equation (above) of

F⃗⊥E , Ê⊥ represents the direction of vr⊥ (or vr,⊥E).

Note that the direction of an electric drag force on
a charge in the direction of electric field i,e F∥E is
independent of direction of velocity of charge (w.r.t
E). We can also see it in the fig-14(a) and fig-
14(b) where in first one, charge is moving toward
the coil while in other, it is moving away from the
coil, but still the EMF in both coil is induced in
same direction (use the concept of motional EMF
and vq,B = 0) because the free electrons of both
the coils are experiencing drag force (or magnetic
force) in the same direction. It justify the above
equation. These all are the cases of an ideal sit-

Figure 14: Charge coil system

uation where charges are not under any external
force, i.e., energy transfer to the charge-system is
zero.
But, in the case of a current-carrying wire, the
situation changes slightly as an external supply of
energy (battery) comes into the system, which con-
tinuously supplies (or extracts) energy to the cir-
cuit/system. So in these cases, equation 21 changes
slightly to

F⃗ = a F⃗∥E + b F⃗⊥E , (a ̸= b) (22)

because, now energy conservation equation of sys-
tem can be written as (taking the battery also as
the part of system)

WFd1
+WFd2

+∆Ubattery = 0

⇒ F⃗d1 · v⃗1 + F⃗d2 · v⃗2 +
d(Ubattery)

dt
= 0

(23)

5.3 Force between two current-carrying
wires (calculating using the concept
of electric drag force)

Suppose we have two wires, w1 and w2, carrying
currents I1 and I2. Using the concept electric drag
force, we can calculate the magnetic force between
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them. Let λm1, λm2, λr1 and λr2 is linear charge
density of moving charge (free electron) and rest
charge of w1 and w2 respectively (λm1 + λr1 =
0 = λm2 + λr2) having velocity v⃗m1, v⃗m2, 0 and 0.
E⃗m1 and E⃗r1 is electric field due to λm1 and λr1

(E⃗m1 + E⃗r1 = 0).

Case-1: (w1 ∥ w2)

Lets calculate force on w2 (for length=l) due to w1

. Here, we have four relative velocities:
(1) between E⃗r1 and λm2, which is v⃗r1 − v⃗m2 =
−v⃗m2

(2) between E⃗r1 and λr2, which is v⃗r1 − v⃗r2 = 0
(3) between E⃗m1 and λr2, which is v⃗m1− v⃗r2 = v⃗m1

(4) between E⃗m1 and λm2 which is v⃗m1 − v⃗m2

These all velocities are perpendicular to the electric
fields E⃗m1, E⃗r1, E⃗m2, and E⃗r2 and so F⃗⊥E = 0 (as
v∥ = 0) i.e., F⃗ = ΣF⃗∥E . Hence,

F⃗ = −a
∑

qE⃗
(vr⊥)

2

c2

= −a

[
λm2l E⃗r1

(−vm2)
2

c2
+ λr2l E⃗r1

(0)2

c2

+ λr2l E⃗m1
(vm1)

2

c2
+ λm2l E⃗m1

(vm1 − vm2)
2

c2

]

= −a

[
−λm2l E⃗m1

(vm2)
2

c2
− λm2l E⃗m1

(vm1)
2

c2

+ λm2l E⃗m1
(v2m1 + v2m2 − 2vm1vm2)

c2

]

= 2a λm2vm2
E⃗m1vm1

c2
l = 2a λm2vm2

λm1

2πϵ r

vm1

c2
l r̂

= 2a
µ I1I2 l

2π r
r̂ (∵ I = λv , c2 =

1

µϵ
)

Putting a = −1/2, we get the exact same force as
the Lorentz law describes, i.e.,

F⃗ = −µ I1I2 l

2π r
r̂ (24)

It proves that the magnetic force between two
current-carrying wires arises because of the rela-
tive velocity between the charges but not because
of the motion of the electrons w.r.t. the observer
(existing understanding) i.e., the forces are in
between the rest charge (of one wire) and moving
charge (of another wire), but not in between the
moving charges (if their relative velocity is zero).

Here,
d(Ubattery)

dt
= 0 as

∑
F⃗ ·v⃗ = 0. So, it can be

treated as an ideal case because energy of battery
is not participating in the process.

Case-2: (w1 ⊥ w2) and (w2 ∥ Er1)

Here also, we have four relative velocities
(1) between E⃗r1 and λm2 which is v⃗r1 − v⃗m2 =
−vm2 Êr1

(2) between E⃗r1 and λr2 which is v⃗r1 − v⃗r2 = 0
(3) between E⃗m1 and λr2 which is v⃗m1 − v⃗r2 =
vm1 Êr1,⊥
(4) between E⃗m1 and λm2 which is v⃗m1 − v⃗m2 =
vm1 Êr1,⊥ − vm2 Êr1

Force on elemental length d⃗l of w2 due to w1 is

F⃗∥E = −
∑

a qE⃗
(vr⊥)

2

c2

= −a

[
λm2 dl E⃗r1

(0)2

c2
+ λr2 dl E⃗r1

(0)2

c2

+ λr2 dl E⃗m1
(vm1)

2

c2
+ λm2 dl E⃗m1

(vm1)
2

c2

]
= 0
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F⃗⊥E =
∑

b qE
vr∥vr⊥

c2
Ê⊥

= b

[
λm2 dl Er1

(−vm2).0

c2
Êr1,⊥

+ λr2dlEr1
(0)2

c2
Êr1,⊥

+ λr2 dl Em1
0.(vm1)

c2
Êm1,⊥

+λm2 dl Em1
vm1.vvm2

c2
Êm1,⊥

]

= b
λm2Em1 vm1 vvm2

c2
dl Êm1,⊥

= b
λm2 λm1 vm1 vvm2

2πϵr c2
dl Êm1,⊥

= b
µ I1I2 dl

2π r
Êm1,⊥

Total force on dl is F⃗ = F⃗∥E + F⃗⊥E

= b
µ I1I2 dl

2π r
Êm1,⊥

Taking b = −1, it becomes

F⃗ = −µ I1I2 dl

2π r
Êm1,⊥ (25)

It also matches the result we get from Lorentz
law.

Here,
d(Ubattery)

dt
̸= 0 as

∑
F⃗ · v⃗ ̸= 0 (drag forces

are always equal and opposite) and so, it can’t
be treated as an ideal case. Due to this reason,
value of a changes to b i.e., a = −1/2 and b = −1.
From these two case, we got the value of a and b.
We choose these above two cases for finding the
value of a and b because these are experimentally
verified (case of absolute magnetic field), but
none of the experiment related to non-absolute
magnetic field is verified and so we can’t use them
to find the value of a.

So, the final expression of electric drag force will
look like:
(i) For ideal case:

F⃗ = −1

2
qv⃗r × µϵ( v⃗r × E⃗ ) (26)

(ii) For non-ideal case:

F⃗ =
1

2
qE

(vr⊥)
2

c2
Ê − qE

(vr⊥ vr∥)

c2
Ê⊥ (27)

Note that the value of a in equations 19 and 20
also is −1/2 (a = −1/2), In case of non-absolute

magnetic field, result comes from electric drag force
is different from the result we get from the Fara-
day law or Lorentz law. But it doesn’t mean that
concept of electric drag force is wrong as these law
themselves fails in case of non-absolute magnetic
as they predict different result for the experiment,
when observed different frame, and so we can’t rely
on these law. These laws hold for absolute mag-
netic field only as these are experimental law, de-
veloped from experiments with absolute magnetic
field. In case of absolute magnetic field, result from
electric drag force and from these laws will match
always (we will see later).

Case-3: (w1 ⊥ w2) and (w2 ⊥ Er1) i.e., w2

is along the magnetic field of w1

Here, v⃗r∥ = 0, so F⃗⊥E = 0 and

F⃗Total = F⃗∥E = −
∑

a qE⃗
(vr⊥)

2

c2

= −a

[
λm2 dl E⃗r1

(vm2)
2

c2
+ λr2 dl E⃗r1

(0)2

c2

+ λr2 dl E⃗m1
(vm1)

2

c2

+ λm2 dl E⃗m1
(
√

v2m1 + vm2)
2

c2

]
= 0

(28)
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5.4 Force on moving charge in the mag-
netic field of current carrying wire
(using the concept of electric drag
force)

1. Charge’s motion is along the wire

Here, vr∥ = 0 ⇒ F⊥E = 0, but

F⃗q = F⃗∥E =
∑ 1

2

qE⃗

c2
v2r⊥

=
1

2

qE⃗r

c2
(vq)

2 +
1

2

qE⃗m

c2
(vq − vm)2

= −1

2

qE⃗m

c2
(vq)

2 +
1

2

qE⃗m

c2
(vq − vm)2

= −qE⃗m

c2
(2vq − vm)vm

2

(29)

Note: E⃗ = E r̂, where E = +ve/ − ve (because
E = f(q) i.e., Er = +ve and Em = −ve) and the
direction is always along the r̂ (radial direction).

The value of vm, i.e., the drift velocity of the elec-
tron lies in the range of 10−3m/s. So, if vq is
even few meters per second, it can be neglected
(vn << vq), and this equation reduces to

Fq =
qEm

c2
vm vq = q vq B (30)

It matches with Lorentz law. But for small value
of vq (comparable to vd or zero), Lorentz law will
fail, as in that case

Fq =
qEm

c2

(
vq −

vm
2

)
vm = q

(
vq −

vm
2

)
B

(31)

• If vm = 0, Fq = 0 , because of net zero drag
(I = 0)

• if vq = 0, Fq = −q vmB

2
(F ∝ v2m)

• If vq = vm, Fq =
q vmB

2
• if vq = vm/2, Fq = 0, as drag force due to Ep

and En becomes equal and opposite.

This is the reason when a charge is placed in
a magnetic field (such that vq = 0) of current

carrying wire, it experiences a net minute
force [[]6. It can’t be explained by Lorentz
law.

2. Charge’s motion is ⊥ to the wire, moving
away from it

Here, the charge q is moving toward the current-
carrying wire (having current I) with velocity v⃗
(perpendicular to the wire).

If we use the concept of magnetic force, New-
ton’s third law get violates [0] as magnetic force
on charge is

F⃗q = qv⃗q × B⃗ =
µI qvq
2πr

ẑ

Magnetic field at point P due to moving charge is

B⃗ =
µqvq sin θ cos

2 θ

4πr2
⊙

and so magnetic force on wire due to charge (reac-
tion force) is

Fw =

∫
BI dy =

∫
µqvq sin θ cos

2 θ

4πr2
I r sec2 θdθ(

y = r tan θ ∴ dy = r sec2 θdθ
)

=

∫
µqvq sin θ

4πr
Idθ = 0

But if we use electric drag force, we get the same
action-reaction force, which also matches the result
that came from the Lorentz law.
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F⃗∥E =
∑ 1

2

qE

c2
v2r⊥ Ê

=
1

2

qEr

c2
(0)2 Êr +

1

2

qEm

c2
(vm)2 Êm

=
qEmv2m
2 c2

Êm

F⃗⊥E = −
∑

qE
vr∥vr⊥

c2
Ê⊥

= −qEr
vq.0

c2
Êr⊥ − qEm

vq.vm
c2

Êm⊥

= −qEm vq.vm
c2

Êm⊥

⇒ Fq =
∣∣∣F⃗∥E + F⃗⊥E

∣∣∣ = q
(√v2m

4
+ v2q

)Emvm
c2

= qvqB

( vm << vq as vm = 10−3m/s)
(32)

Here also, Lorentz law will fail for small velocity
of charges.
The force on the wire due to the charge (reaction
force) will be same as this Fq (action force)
because drag force is always equal and opposite
i.e., F⃗q1,q2 = −F⃗q2,q1 .

3. Similarly, if charge’s motion is ⊥ to wire
as well as Er, i.e., along the magnetic field, then
the drag force (or the magnetic force) on charge
comes out will be zero (using equations 21).

General derivation of Lorentz law using
the concept of electric drag force

If charge has any random velocity v⃗q = vxî+vy ĵ+

vzk̂ in the magnetic field, the total force on it will
be (using equation 30 and 32)

F⃗q = qEm
vy.vm
c2

î− qEm
vx.vm
c2

ĵ

= q
Emvm
c2

(vy î− vxĵ)

= q (vxî+ vy ĵ + vzk̂)×
Emvm
c2

k̂

= qv⃗q × B⃗

(33)

So, there is no need to consider the direction of
motion of the producer electric field as the overall
force becomes independent of it, i.e., depends only
on the direction of the magnetic field (provided
vn << vq).
So, if there is more than one source of magnetic
field, it will becomes

F⃗q = qv⃗q × B⃗1 + qv⃗q × B⃗2 + · · ·+ qv⃗q × B⃗n

= qv⃗q × (B⃗1 + B⃗2 + · · ·+ B⃗n)

= qv⃗q × B⃗net

(34)
It will holds only when vn (velocity of electron) is
very small w.r.t the charge’s velocity; otherwise,
this magnetic force will depend on the direction of
motion of the producer electric field producing the
magnetic field (w.r.t. the charge).
Lorentz law is developed from experimental obser-
vation (using absolute magnetic field), but here it
is derived using the concept of electric drag force.
Lorentz law is a special case of electric drag force
. We derive this formula for absolute magnetic
field (with vn << vq) and so it holds for absolute
magnetic field only. In the case of a non-absolute
magnetic field or vm ∼= vq, it fails, but the concept
of electric drag force holds everywhere.

5.5 Solution of section-4.1

In fig-10(b),
dΦB

dt

∣∣∣
coil

̸= 0 but Ecoil = 0 while in

fig-9,
dΦB

dt
= 0 and Ecoil ̸= 0. This violets the

Faraday law. It can’t be explained if we rely only
on the concept of magnetic field as there is no
magnetic field in fig-9, but still the generation of
EMF is happening. We won’t have any solution
of it, if we don’t believe on the concept of drag
property of electric field. Even the special theory
of relativity can’t fix it, which also proves that all
magnetic phenomena are not the effect of length
contraction of electric fields. So, the only solution
of this case is the electric drag force.
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In fig-9, the velocity of coil w.r.t the electric field
(i.e., relative velocity) is vcÊ∥−vmÊ⊥. Here vr⊥ =
vm and vr∥ = vc and so the EMF induced in it can
be found using equation 21 as

E =
1

q

∮
l
F⃗q · d⃗l =

∮
l

Ev2r⊥
2 c2

Ê −
Evr∥vr⊥

c2
Ê⊥

 · d⃗l

=
µλevr⊥vr∥ l

2π

(
1

r1
− 1

r2

)
(35)

This expression of EMF is same as equation-13
and it is frame-independent (no matter from which
frame the system is being observed, it will remain
the same for all), and so it will remains same for
fig-8(b) also. Hence, in both the fig-8(b) and fig-9,
same EMF is inducing and it is true because these
two figure is representing the same experiment (ob-
served from the different frame of reference). It
can’t be explained if we use concept of magnetic
field.
For the fig-8(b), this equation can also be written
as (λvr∥ = I),

E =
µIvcl

2π

(
1

r1
− 1

r2

)
= −

dΦB,q

dt
(36)

where it seems like, it is generated due to the
changing magnetic flux, but the actual reason is
the electric drag force, as the concept of magnetic
field is limited to some particular fame only.
In similar way, in fig-10(a) and fig-10(b), vr⊥ = 0
and so from the equation-21, in both the cases,
Ecoil = 0, even there is changing magnetic flux in-
side the coil in fig-10(b).
Fig-8(a) i,e case of neutral current carrying wire
is the combination of these above two case, and

so Ecoil = Eλe +�
�>

0
Eλr which is equation-35, and it

again matches with equation-12 (case of absolute
magnetic field). In this situation, if the system
is observed from the λe frame, it seems like the
EMF is generating because of motion of the coil
in the magnetic field produced by moving λr and
if we calculate the EMF produced using this con-
cept of magnetic field, it will match exactly with
the equation-12, but it is not actually true as λr

can’t generate any EMF (as its vr⊥ = 0). In both
λe or λr frame, it is produced only due to the elec-
tric field of λe (through the drag property). So,
matching of few result doesn’t always prove that
the physics or concept used behind is 100% cor-
rect.

6 Magnetic field doesn’t exist

The only source of magnetic field is the moving
electric charges or the changing electric field, as
magnetic charge doesn’t exist. But what if I say
that “neither the moving charge nor the changing
electric field produces any such real field, which
we call a magnetic field”. Here are a few situations
that proves this statement:

(1) Taking the case of moving charge: If a moving
charge really produces a field (magnetic field) on
its motion, then a charge (q1) moving with veloc-
ity aĵ+ b̂i m/s should must experience a magnetic
force near a moving charge (q2) having velocity
aĵ (where charges are approaching each other as
shown in the figure) due to the surrounding mag-
netic field (B2) produced by the moving charge q2.
But the charge q1 doesn’t experiences any such
magnetic force (proved in sec-3.2), which proves
that, no any such real field (magnetic field) is there,
other than the primary electric field of the charges.

(2) Similarly in figure 10(b), there is a magnetic
field in the surrounding space of line charge,
but still no EMF is inducing in the coil during
its motion in that magnetic field (having net
increasing magnetic flux inside). It also proves
that there isn’t any magnetic field; otherwise,
generation of EMF would have happened.

(3) Let’s see this case (fig-10(b)) in some another
way also. Here, λe is moving with velocity v⃗m, and

so it is producing a magnetic field B =
µλevm
2πr

around itself. If any coil moves in this magnetic
field with any velocity a î, parallel to the line
charge, no emf will be generated in the coil as
the magnetic flux inside the coil remains constant
(dΦB

dt = 0). It means a velocity (of coil) along the
line charge can’t generate any EMF, nor can it
affect the existing EMF (if any).
When the coil moves with velocity b ĵ, a non-zero
EMF induces in the coil because of dΦB

dt ̸= 0, given
by equation-13. So, if the same coil starts moving
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with the velocity a î + b ĵ, the same EMF should
be there in the coil, as the velocity component aî
can’t affect or change the EMF induced due to
the velocity b ĵ. But it also doesn’t happen as in
when a = vm, Ecoil = 0 (identical to fig-10(b)) and
Ecoil ̸= 0 when a ̸= vm .
It again proves the same thing i,e no such real field
(magnetic field) is present in that surrounding
region of the moving line charge. Even the expres-
sion of EMF derived from the concept of magnetic
field (equation-13) is wrong as it is depending on
the velocity of line charge w.r.t. the observer, i.e.,
larger the observer’s velocity (w.r.t. the system),
the larger will be the EMF, which is absolutely
wrong as the EMF can’t depend on the state on
observer.
The actual expression for this EMF is equation-35
(derived using the electric drag force equation),
which state that until vr⊥ is zero, no EMF will
generates, no matter what magnitude of magnetic
field is present there, because the actual cause
of EMF is the electric drag force, not the mag-
netic field. In another word, magnetic force is
nothing but electric drag force, which seems to
be generated because of magnetic field, but the
actual reason is the relative drag with the primary
electric field.

Conclusion of these all is “Magnetic field is not
a field, but just a mathematical parameter which
measures the flow of electric field (primary), given
by B⃗ = µϵ v⃗ × E⃗ and the effect or phenomena
seems to be arose due to magnetic field is basically
the effect of electric drag force.”. In another word,
moving electric field itself is magnetic field. A
stationary charge also has the magnetic field, but
for the moving observer. It means it doesn’t have
any physical existence. This is the reason why
particle corresponding to magnetic field (magnetic
charge or magnetic monopole) doesn’t exist or has
not been found yet.
In case of current carrying also, there isn’t any
real field (magnetic field) around the wire, but
there’s just moving electric fields. When charge
moves in this region, it experiences force not
because of a magnetic field but because of the
drag property of an electric field, which is equal to
qv⃗ × B⃗ (equation-33) where B⃗ is a mathematical
expression which is equal to B⃗ =

∑
µϵ(v⃗ × E⃗).

Because of this expression (equation-33), illusion
of magnetic field is created as it seems to have
been generated because of any such real field B⃗,
called magnetic field, but that is not actually true.

Similarly, (i) the magnetic force between two
current carrying wire arises not because of any
magnetic field (as the equation F⃗ = i l⃗ × B⃗
describes) but it arises because of the drag prop-
erty of the electric field (electric drag force) as
mentioned in section-5.3 which is mathematically
equal to the the expression F⃗ = i l⃗ × B⃗ where B⃗
is just a mathematical term.
(ii) A stationary charge also applies magnetic
force or electric drag force to moving charge
as mentioned in section-5.2.1 which can’t be
explained if we consider the magnetic field instead
of the drag property of electric field.
So, all the phenomena which seems to be caused
by a real filed called as a magnetic field are
basically the effect of drag property of the electric
field or electric drag force.
We will discuss the case of the permanent magnet
later.

Note that we can’t consider both the magnetic
force as well as electric drag force; otherwise force
on charge in sec-5.4 will be 2 qvB which is wrong
(experimental fact), and if we consider magnetic
force instead of electric drag force then sec-4.1, 4.3
and 3.2 can’t be explained. So, the only option is
electric drag force which explains all the cases.

Here are a few more situations that prove the non-
existence of magnetic fields, but before that, let’s
examine the validity of electric drag force equation
once again.

Final verification of electric drag force

Now there is no doubt on the existence of drag
property of electric field as without it, sec-3.2, 4.1,
4.2 and 4.3 can’t be explained. So this property
of electric field can’t be disproved at any cost.
Also, the expression of electric drag force will be
F⃗d = a qv⃗r ×µϵ( v⃗r × E⃗ ) because equation-6 is di-
mensionally correct for the extra or non-coulombic
force on charges, but if we take it as it is, then it
starts to fails in many situations i.e., if
• F⃗d = a qv⃗q × µϵ( v⃗E × E⃗ ), it fails in sec-3.1.

• F⃗d = a qv⃗r × µϵ( v⃗E × E⃗ ), it fails in sec-3.2 and
in figures 14, 12 and 9 on studying from the frame
of electric field.
• F⃗d = a qv⃗q × µϵ( v⃗r × E⃗ ), it fails in figures 14,
15(b), 12 and 9 (study from any random frame and
calculate the Ecoil using this equation i.e., Ecoil will
depends on the observer’s velocity (w.r.t the sys-
tem), which can’t be possible).
Hence the only option we left with is
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• F⃗d = a qv⃗r×µϵ( v⃗r× E⃗ ), it handles all the cases
(so, both the velocity should must be the relativis-
tic velocity).

6.1 Moving rod system

Here is a current carrying wire (λe+λp) having
current I (λe is moving with velocity v⃗m) and
a line charge λ′

e (= λe), moving with velocity
v⃗′m (= v⃗m). There is a rail with a moving rod
(having length l and velocity v⃗) on the side of both
the wire and line charge as shown in fig-15.

According to the concept of magnetic field, EMF
induced in both the circuits will be the same as in
both cases; the same magnetic field is there in the
surrounding space, and so

E1 = E2 =
∫

Bvdr =

∫
µI

2πr
vdr =

µλevmv

2πr
ln

(
r2
r1

)
But, according to the concept of electric drag
force, it isn’t the same.
In case of wire: Using equation-21, we get
the EMF same as this above equation i,e

E1 =
µλevmv

2πr
ln

(
r2
r1

)
.

But in case of line charge: Using equation-21, we
get

E2 =
1

2

∫
E
v2r
c2

dr =
1

2

λe

2πϵr

(v − vm)2

c2
dr

=
µλe(v − vm)2

4πr
ln

(
r2
r1

)
It is not same as the above one. To cross-check
it, study this fig-15(b) from moving rod frame. In
that frame, the result from concept of magnetic
field and electric drag force will matches exactly
with each other.

Figure 15: Two rods are moving in identical mag-
netic field, having different source

(A suitable experiment is mentioned in paper-2
for its experimental verification)
So, even though the same magnetic field is there,
they are not inducing the same EMF. Also, (i) in
the first one, it is directly proportional to the rod’s
velocity, while in the second one it is proportional
to (v − vm)2 (ii) if vm = 0, E1 = 0, but if v′m = 0,
E2 may or may not be zero, depending upon v,
i.e., here vm is not the deciding factor (iii) E1
depends on the direction of motion of rod but E2
in independent of this direction.

Here, Faraday law and Lorentz law is holding for
the neutral current-carrying wire (and also match-
ing with electric drag force result), but violating
in case of line charge system. It happens because
these laws are experimental law, designed on the
basis of experimental observation, where an abso-
lute magnetic field is used (not the non-absolute
one), and hence these laws holds in all those cases
where the magnetic field is absolute (providing
vm → 0).

6.2 Rotating coil in an electric field

6.2.1 Plane of coil is parallel to electric
field

If a rectangular coil rotates in an electric field (non-
varying) about one of its sides such that the axis
of rotation is along the electric field (fig-16), then
in this case also, an EMF will be induced in the
coil due to the drag property of electric field, given
by

E =
1

q

∮
l
F⃗q · d⃗l =

∮
l

Ev2r⊥
2 c2

Ê −
Evr∥vr⊥

c2
Ê⊥

 · d⃗l

=
Eω2b2l

2 c2
(37)

where, E=Electric field applied in the region
ω=angular velocity of the coil
l, b= length and breath of the coil

But if we use the concept of magnetic field, there
shouldn’t be any EMF in the coil as there is nei-
ther any magnetic field nor any changing electric
field (which can act as the source of magnetic
field). The only field present is the non-varying
primary electric field, which itself is a conservative
field, and so it also can’t induce any EMF in that
close loop.
But now it is 100% sure that EMF will be induced
in the coil, as it is proved in Sec. 6 that we don’t
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Figure 16: Rotating coil in a stationary electric
field

have any option other than the equation-21. (A
suitable experiment is mentioned in paper-2 for
its experimental verification)

6.2.2 Plane of coil is perpendicular to elec-
tric field

Here, we have a circular coil whose plane is per-
pendicular to the electric field (take the direction
of the electric field as the z-axis). If this coil moves
in the direction of an electric field along with an
angular motion, EMF will be generated in the coil
due to the drag force, which will be equals to

E =

∮
l

Ev2r⊥
2 c2

Ê −
Evr∥vr⊥

c2
Ê⊥

 · d⃗l

= −2π E ω r2 v

c2

(38)

where v= velocity of coil along the electric field E
ω= angular velocity of coil
r= radius of the coil

Figure 17: Motion and rotation of a coil in an sta-
tionary electric field

If this coil only moves (without rotation) or only
rotates (without motion) in the electric field, then
no EMF will be induced. (A suitable experiment
is designed and mentioned in paper-2 for its ex-
perimental verification) Here also, if we apply the

concept of magnetic field, then EMF shouldn’t be
induced, but that is not true.

6.3 Electric drag force on a current car-
rying wire in an electric field

If a current carrying wire is placed in an electric
field , it will experience zero electric force as wire
is electrically neutral. But due to moving electron
inside , it will experience a non-zero electric drag
force. For the length l , it will be equals to (using
equation-18)

Fd =
1

2
λelE

v2e
c2

sin θ =
IEve sin θ

2 c2
(39)

where I, E and θ is the current, applied electric
field and angle between l and E. To estimate the
range of this force , let’s take I = 1A, E = 106 V/m
and θ = 90o (ve = 10−3 m/s). So the magnitude of
this force is about 10−14N which is very,very small.
So, it very difficult to observe this force.

6.4 Current carrying wire doesn’t pro-
duce stationary magnetic field

As sec-3.1 suggest that magnetic field travels along
with its producer charge and so , in case of current
carrying wire also , magnetic field isn’t stationary
but moves along with its producer charge (as
magnetic field is nothing but the moving electric
field itself). If not and taken to be stationary,
then the first question arise here is, w.r.t whom it
is stationary?
(i) w.r.t observer (ii) w.r.t λp , or (iii) w.r.t λe

If it is taken w.r.t observer, then any
charge moving is its magnetic field
with any velocity should experience
zero magnetic force because as when
it is studied from the charge frame,
then according to option-(i), vq,B = 0

which implies F⃗m = 0. So, option-(i)
can’t be true. If it is taken w.r.t λp,
then why not it can be taken w.r.t λe

as (i) both are moving (as shown in
the figure, I = λeve + λpvp), (ii) both
are electric charge, which caries same
property (the only difference is the polarity, which
can’t make their behavior different). Hence, it
can’t be taken stationary w.r.t any one of them
as both will behave in a same way. If we take
vB = (ve + vp)/2, then it also can’t be true as it is
independent of magnitude of λe and λp, so when
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λp = 0, what will be the value of vB? Also, it
can’t be ve/2; otherwise there will be a magnetic
force on a stationary point charge placed near a
line charge, when observed from S’ frame.
So, the solution is that magnetic field corre-
sponding to each producer charge moves along
with them as sec-3.1 suggest (i.e., vq,B = 0).
Practically, this velocity is very, very small as
electron velocity in wire is about 10−3 m/s and so
it can be treated as stationary w.r.t the wire.

So, the explanation of magnetic force between two
current carrying wire using the concept of station-
ary magnetic field is wrong.

7 Failure of Ampere-Maxwell
Law

As we saw, moving charge doesn’t produce any
real field called a magnetic field. Similarly, the
changing electric also doesn’t produce any mag-
netic field. Here are a few proofs of this.

7.1 Magnetic field due to moving charge

Magnetic field due to moving charge q, having ve-
locity v⃗ (v << c) is given as

B⃗p =
µ

4π

qv⃗ × r̂

r2
= µϵ v⃗ × E⃗ (40)

and electric field due to the same charge at any
random point p(ρ, ϕ, z) is (taking cylindrical co-
ordinate with origin at q and direction of velocity
as z-axis),

E⃗p =
kq

r2
r̂ =

kq

ρ2 + (z − vt)2
(sin θρ̂+ cos θẑ)

=
kqρ

(ρ2 + (z − vt)2)
3
2

ρ̂+
kq(z − vt)

(ρ2 + (z − vt)2)
3
2

ẑ

(41)

Putting it in above equation-40, we get

B⃗p = µϵ v⃗ × E⃗p

= µϵ v⃗ ×

(
kqρ

(ρ2 + (z − vt)2)
3
2

ρ̂+
kq(z − vt)

(ρ2 + (z − vt)2)
3
2

ẑ

)
(as v is along the z-axis)

=
µ

4π

qvρ

(ρ2 + (z − vt)2)
3
2

ϕ̂

(42)
Value of

∫
B⃗ · d⃗l across the circle of radius ρ at

z = z0 in the x-y plane will be∫
B⃗ · d⃗l =

∫
µ

4π

qvρ

(ρ2 + (z − vt)2)
3
2

ϕ̂ · dlϕ̂

=
µ

4π

qvρ

(ρ2 + (z − vt)2)
3
2

.2πr1

=
µ

2

qvρ2

(ρ2 + (z − vt)2)
3
2

(43)

Here, this
∮
B⃗ · d⃗l is produced only due to

E⃗ρ. There is no contribution of E⃗z in it.
It violets the Maxwell fourth equation as
it suggest that changing electric field also
produces a circular magnetic field, given

by equation
∮
B⃗ · d⃗l =

dΦE

dt
, which is not

happening here as E⃗z is changing with time
inside the loop (i.e.,

dϕEz
dt ̸= 0), but still

it isn’t producing any magnetic field (B⃗
is produced by E⃗ρ only) and so has zero

contribution in
∮
B⃗ · d⃗l.

7.2 Magnetic field due to changing elec-
tric field

Suppose we have a very long cylinder (as shown
in figure 18) of radius r0, placed along z-axis, con-
taining electric field

E⃗ =


E0

z
ẑ, r < r0

0, r ≥ r0
(44)

where E0 is a constant. This complete system
(cylinder+electric field) is moving with velocity vẑ
w.r.t. observer S. Also, there is a charge q moving
with velocity vq ẑ w.r.t. observer S.

In the cylinder frame, electric field is stationary
(non-changing), which implies no magnetic field
would produced, and hence, magnetic force on
charge q is zero (F⃗q = 0) as B⃗ = 0. But, for
observer S, electric field is changing with time in
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Figure 18: A charge is moving near a moving elec-
tric field region

the region S as E⃗ =
E0

z
ẑ =

E0

z0 − vt
ẑ and so ac-

cording to Maxwell-Ampere equation, it will pro-
duce a magnetic field B⃗ around the cylinder (Note:
Maxwell’s equation doesn’t care, how the field is
changing i.e., the only condition for the genera-
tion of magnetic field is the changing electric field,
doesn’t matter how it is changing), which will be
equals to∮

B⃗ · d⃗l =��>
0

µI + µϵ
dΦE

dt

B.2πr = µϵ
d(πr20 E)

dt
= µϵ πr20

dE

dt

B = µϵ
r20
2r

dE

dt
= µϵ

r20
2r

vE0

(z0 − vt)2

(encircling around the cylinder)

(45)

which implies that there should be a force on the
charge q, given by F⃗q = q vq ẑ× B⃗. Even if we take
the produced magnetic field moving along with
the producer electric field, in this case also, there
should be a force on charge F⃗q = q (vq − v)ẑ × B⃗.
Here, force on charge q is different for different
frames, which is not possible as if it is zero in any
one frame, it will be zero in all other frames also
and it is possible if and only if there is no magnetic
field produced outside the cylinder.
So, there is something wrong with the existing con-
cept of electrodynamics. This problem arose be-
cause of the wrong correction in the Amperes law
(mentioned in Sec-8.2), which is “changing electric
field produces magnetic field.” The actual cause
of magnetic field is not the change of electric field
but it is the motion of electric field (we will prove
it later mathematically).

7.3 Tom Colbert Paradox (w.r.t. elec-
tric field)

Suppose there is an electric field E⃗ = E0 t k̂ in the
region x, y ϵ (−∞,∞). Here, the electric field is
increasing with time linearly. According to the
Maxwell’s fourth equation, this changing electric
field will produce magnetic field in the given
region.
The question that arises here is, what will be the
direction of the magnetic field produced at any
general point P(x, y)? If a magnetic charge is
placed at that point P, in which direction, it will
move?

At every point, the electric field is changing in iden-
tical manner, which leads to the direction of pro-
duced magnetic field to be indeterminate or un-
predictable as each direction is equally valid for it.
There is no such parameter in Ampere-Maxwell
law that restricts this direction in any one partic-
ular direction.
But this is not possible that a vector quatity (mag-
netic field) have an unpredictable direction. It will
have or must have a fixed direction.
The other possibility is that the produced magnetic
field will encircle the changing electric flux region
as given by equation

B = µϵ
r

2

dE

dt
(46)

(circling around the changing flux region)

as shown in figure-19, which is also not true as we
still have the same problem regarding the direction
of produced magnetic field at a given point.

Figure 19: Changing electric field over infinite re-
gion

If we take the region C1 (fig-19), the direction of
the produced magnetic field at P will be along the
x-axis (anticlockwise direction, because the mag-
netic field is increasing). But if we take the region
C2, then the direction of B⃗ at that same position
P changes to -x axis (still anticlockwise because
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of increasing field increasing). Its direction is
depending on the region we are choosing, which is
not possible as it will have a fixed direction which
will be independent the loops chosen.
At end, if someone concludes that there will not
be any magnetic field produced at point P, then it
will be also wrong as it is against the Maxwell’s
fourth law which states that, for a closed loop, the
closed line integral of magnetic field is equals to
dΦB
dt which is non-zero here and so, it implies that

the produced magnetic will also be non-zero.
These all again indicates that there is something
wrong with Maxwell’s law.
Solution of this paradox :
Whenever a field changes at any random point P,
then the produced field can have two possibilities:
either it encircles the point P (flux changing
region) or it passes through the point P.
The first one can’t be true as proven in sec-7.2,
and here also, if we use this fact then the direction
of B⃗ will remain indeterminate at every points
(i.e., direction of force on the placed magnetic
charge remains unpredictable).
Hence, we left with the second one, which also
seems to be incorrect because in this case also,
the direction of B⃗ is indeterminate, but it is not
incorrect; it is incomplete. Here is it’s completion.
For a given field in space, we have only two
information regarding the field:
(i) Field itself and
(ii) its position (flux line)
Strength of field at any point can change in
combination of these two ways:
I) Change of flux density, without any
change in position of flux line
Number of flux line or the strength of flux lines
increases/decreases without any change in position
of flux lines (Formation or strengthening of flux
line)
II) Change of flux density due to change in
position of flux line, without any formation
or strengthening of flux

Note: Position of line-structured quantity (like
field line) refers to the position of that point on
the line which is nearest to the origin, i.e., position
of field line = position of nearest point on that
field line.

Whenever magnetic field is produced by changing
electric field, it will be always perpendicular
to it (i.e, B⃗produced ⊥ E⃗producer). So, the one
parameter only (the electric field itself) can never
decide that direction of the produced magnetic

field, as every direction will be equivalent for it.
It indicates that there must be another vector
parameter that restricts this direction in one
single direction. The additional information we
have is the position vector of the flux line. But
it is a frame-dependent quantity, and so it can’t
be our required parameter as B⃗ can’t depend on
the frame from which it is observed. The change
of position vector doesn’t depend on frame, and
this is our required parameter that determines the
direction of the produced electric field. Equation-4

also suggests the same thing as B⃗ = µϵ
∆x⃗

∆t
× E⃗.

Hence, the direction of B⃗ is along ∆x⃗ × E⃗ or
v⃗× E⃗. This equation further reduces to Maxwell’s
fourth law with little modification, mentioned in
Sec-8.1.

Conclusion of this paradox: Conclusion
of this paradox is that “if electric field changes
without any change in position of its flux lines,
it won’t produce any magnetic field”, otherwise
direction of produced magnetic field at any point
will be unpredictable (as ∆ x⃗ = 0 = v⃗), which
is not possible for a vector quantity. (later, we
will derive this conclusion mathematically also
(sec-8.2))
This explains the previous two experiment also
as in the first one (sec-7.1), position of Ez is not
changing, even the position of charge is changing
(position of flux line changes only when it moves
(or has a velocity component) in a direction
perpendicular to itself) and so, it doesn’t produces
any magnetic field. In the second experiment
(sec-7.2), same thing is happening i,e position of
electric flux line is not changing.
So, the only condition to produce a magnetic field
is to change the position of electric flux line.

8 Modifying Ampere-Maxwell
law

We can derive the evergreen Ampere-Maxwell law
using transformation equation-4. But before that,
we need to see something more.

8.1 Different forms of
dΦ

dt

Sometimes, the same mathematical expression rep-
resents multiple things. Rate of change is one of
them.

For example, the rate of change of mass, i.e.,
dm

dt
,

can be mass flowing per unit time through a given
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surface, called the flow rate. For the fluid flowing
through a pipe, it is equal to ρAv, where ρ,A, v
are density, area of tube, and velocity of the fluid,
respectively.
Also, dm

dt can be mass increasing or decreasing in
a given volume V per unit time, called the change
rate or accumulation rate, which is equal to V dρ

dt .
Both are represented by the same mathematical
expression dm

dt , but they are totally different as one
is defined w.r.t. surface (flow rate) while another
is w.r.t. volume or closed surface (accumulation
rate).

dm

dt
=

d(ρV )

dt
= ρ

dV

dt︸︷︷︸
Flow rate

= ρ
Adr

dt
= ρAv

+ V
dρ

dt︸︷︷︸
Accumulation rate

(47)

In similar fashion, dΦ
dt is of two types:

(1) Flow rate (2) Change rate
Mass is a three-dimensional quantity; hence, flow
rate and accumulation rate are defined w.r.t. sur-
face and volume, respectively, but field line is a
one-dimensional quantity, and so it’s flow rate and
change rate are defined w.r.t. line and surface, re-
spectively.

dΦ

dt
=

d(E⃗ · A⃗)

dt
=

d(E⊥A)

dt
= E⊥

dA

dt
+A

dE⊥
dt

= Flow rate + Change rate
(48)

(1.) dΦ
dt as flow rate: dΦ

dt

∣∣
F

dΦ

dt

∣∣∣∣
F

= E⊥
dA

dt
= E⊥

ldr⊥
dt

= E⊥lv⊥

= (v⃗ × E⃗) · l⃗ =
∫
(v⃗ × E⃗) · d⃗l

(49)

It is the measurement of flow of electric field E⃗⊥
(due to v⊥) w.r.t. the line l⃗, in direction perpen-
dicular to it . It is equal to the amount of normal
flux flowing through a given line l in its perpendic-
ular direction per unit time.
In any region, if the strength of electric field is not
increasing or decreasing with time, it doesn’t mean
dΦE

dt
= 0. For this situation, only flux change rate

is zero, i.e.,
dΦ

dt

∣∣∣∣
C

= 0.

In case of current-carrying wire, region near the

wire has dΦ
dt

∣∣
C

= 0, but dϕ
dt

∣∣∣
F

̸= 0 because the

electric fields always move with its source charge.
The close line integral of magnetic field produced
around the wire due to this flowing electric field

can also be written as (using equation-4 and 49)∮
B⃗ · d⃗l =

∮
µϵ (v⃗ × E⃗) · d⃗l = µϵ

dΦ

dt

∣∣∣∣
F

(50)

which equals to µI (for long wire) as (using
equation-49)

µϵ
dΦ

dt

∣∣∣∣
F

= µϵ v⊥E⊥l = µϵ v⊥
λe

2πϵr
2πr = µI

I = ϵ
dΦ

dt

∣∣∣∣
F

(51)
(2.) dΦ

dt as change rate: dΦ
dt

∣∣
C

dΦ

dt

∣∣∣∣
C

= A
dE⊥
dt

(52)

It is measurement of change of electric field E⃗⊥
w.r.t. the area A. It is the amount of normal flux
increasing or decreasing in a given area A per unit
time.
Change of flux is of two types:
(i) Non-positional change: It is a change of electric
field E⃗⊥ in the given area without any change in
position of the flux line. Let’s denote the rate of

this change as
dΦ

dt

∣∣∣
npc

= A
dE⊥
dt

∣∣∣
npc

(eg-sec-7.2).

(ii) Positional change: In this case, electric field
E⃗⊥ changes in the given area due to the change
of position of flux line. Let’s denote this with
dΦ

dt

∣∣∣
pc

= A
dE⊥
dt

∣∣∣
pc
.

Total change in the given area is the sum of these
two changes i.e.,

dΦ

dt

∣∣∣∣
C

= A
dE⊥
dt

∣∣∣
npc

+A
dE⊥
dt

∣∣∣
pc

(53)

Relation between positional change rate
and flow-in rate (flow rate of flux moving
inside the loop)

For any closed loop L
(perimeter=l), containing area
A, positional change rate of flux
is equal to flow rate of normal
flux moving inside the loop from
outside (through perimeter of
the area), i.e.,

dΦ

dt

∣∣∣∣
pc

=
dΦ

dt

∣∣∣∣
F (inside)

(54)

as it can’t happens in any other way i.e, in case
of positional change, E⃗⊥ increases only when more
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flux comes inside from the out side of the loop .
So,

∮
B⃗ · d⃗l due to this inside flowing flux will be

(using equation-4 and 49)∮
B⃗ · d⃗l =

∮
µϵ (v⃗ × E⃗) · d⃗l = µϵ

dΦ

dt

∣∣∣∣
F (in)

= µϵ
dΦ

dt

∣∣∣∣
pc∮

B⃗ · d⃗l = µϵ
dΦ

dt

∣∣∣∣
pc

(55)

Simplifying this equation using Gauss-divergence
theorem∫
(∇×B⃗)·dA⃗ = µϵ

d(
∫
E⃗ · dA⃗)

dt

∣∣∣
pc

= µϵ

∫
dE⃗

dt

∣∣∣
pc
·dA⃗

∇× B⃗ = µϵ
dE⃗

dt

∣∣∣
pc

(56)

For moving charges, this equation becomes

∇× B⃗ = µϵ
dE⃗⊥v

dt
(57)

as at any point P (as shown in the figure),

dE

dt
=

dE⃗∥v

dt︸ ︷︷ ︸
Non-positional

change

+
dE⃗⊥v

dt︸ ︷︷ ︸
Positional change

where E∥v and E⊥v is the component of electric
field, along the velocity and perpendicular to the
velocity of charge.

Modified Ampere-Maxwell law

Combining equations 50 and 55, we have∮
B⃗ · d⃗l = µϵ

dΦ

dt

∣∣∣∣
F

↑
Due to

flow rate of
electric flux

+ µϵ
dΦ

dt

∣∣∣∣
pc

↑
Due to

change rate of
electric flux

(58)

which is equal to∮
B⃗ · d⃗l = µI + µϵ

dΦ

dt

∣∣∣∣
pc

(59)

This equation is slightly different from the
Ampere-Maxwell equation, as here, non-positional
change rate of electric field is not allowed. Maxwell
used mathematics to derive the second term, but
there are mistakes in that (mentioned below).

8.2 Problem in Maxwell’s correction in
Ampere’s law

(1) Maxwell used
∮
B⃗ · d⃗l = µI (Ampere law) to

find the expression of displacement current, but
this equation itself doesn’t hold in every situation.
It holds only for infinite-length wires and closed-
loop circuits.
For a finite-length wire, the closed-line integral of
the magnetic field can be written as∮

B⃗ · d⃗l =
∮

µI

4πr
(sinα+ sinβ) n̂ · d⃗l

=
µI

4πr
(sinα+ sinβ) 2πr

= µI (sinα+ sinβ)/2

(60)

(2) Using Gauss-divergence theorem, Ampere’s
equation is modified as∫

(∇× B⃗) · ds⃗ = µ

∫
J⃗ · ds⃗

∇× B⃗ = µJ⃗ (61)

Taking divergence to both sides and using the
property of vector calculus

�������:0
∇ · (∇× B⃗) = ∇ · (µ J⃗ )

Left side expression is always zero, but not the
right side. Hence, to hold this equation, an extra
term J⃗d is added in the above equation-61.

�������:0
∇ · (∇× B⃗) = ∇ · µ(J⃗ + J⃗d )

∇ · J⃗d = −∇ · J⃗ (62)

or, J⃗d = −J⃗ (63)

Using equation of continuity of charge and Gauss
law (equation-5), we can write above equation-62
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as

∇ · J⃗d = −
(
−dρ

dt

)
=

d(ϵ∇ · E⃗p)

dt[
ρ = ϵ(∇·E⃗p), but not ϵ(∇ · E⃗) or ϵ(∇ · E⃗s)

]

∇ · J⃗d = ∇ ·
ϵ

dE⃗p

dt

 (64)

But we can’t write this equation-64 as

J⃗d = ϵ
dE⃗p

dt
(65)

because

∇ · A⃗ = ∇ · B⃗ ⇏ A⃗ = B⃗

A⃗ may or may not be equal to B⃗. For exam-
ple: A⃗ = 9xî + yĵ and B⃗ = 5xî + 5yĵ. Here, the
divergence of A⃗ and B⃗ are equal ∇· A⃗ = ∇· B⃗, but
they don’t A⃗ ̸= B⃗ (neither the magnitude nor the
direction). So, the only significance of equation-64
is that their divergence are equal but the expres-
sions inside may or may not be equal, i.e., we can’t

conclude that J⃗d = ϵ
dE⃗p

dt .
(3) Consider the case as shown in fig-20 i.e., we
have a tube filled with charged gas and a piston
is attached on the top side. Here, the piston is
pressed and a magnetic field is produced at point
P due to the flow of ions inside it.

Figure 20: A charged gas tube with a piston

Here, J⃗ (conduction current) ̸=
J⃗d (displacement current) as J⃗ is along -Y-

axis while J⃗d is along E⃗p (taking J⃗d = ϵ
dE⃗p

dt ),
which is against equation-63.

So, (1), (2) and (3) shows that there are problems
in Maxwell’s correction. But we can find the
actual equation using the concept of flow rate and
accumulation rate as mentioned here:

Closed line integral of magnetic field due to con-
duction current will be∮

B⃗ · d⃗l = µϵ
dΦ

dt

∣∣∣∣
F

= µI (sinα+ sinβ)/2 (66)

= µϵ

∮
v⊥E⊥dl (67)

It is produced due to moving E⃗⊥ (E⃗∥ can never
produce any magnetic field). It can also be written
as

∇× B⃗ = µJ⃗ (sinα+ sinβ)/2 (68)

If the current (I) doesn’t flow uniformly (∇·J⃗ ̸= 0)
i.e., charges are accumulating somewhere then in
that case, the corresponding moving E⃗⊥ starts to
accumulate in the surrounding region, which will
also produces a curl of magnetic field given by
equation-55 or 57 i.e.,

∇× B⃗ = µϵ
dE⃗⊥v

dt
(69)

So at point P, there will be two curl of magnetic
field, one along the direction of conduction current
(produced due to J) and another along the E⃗⊥
(produced due to accumulating E⃗⊥ (because of ∇·
J⃗ ̸= 0 or accumulating charges)). On combining
equation-68 and 69, we get

∇× B⃗P = µJ⃗ (sinα+ sinβ)/2 + µϵ
dE⃗⊥v

dt
(70)

For infinite length wire, it reduces to

∇× B⃗ = µJ⃗ + µϵ
dE⃗

dt
(71)

as α = β = 90o and E⃗⊥v = E⃗. If we apply di-
vergence to both side here, we will get the same
expression as we got from the Maxwell’s correc-
tion procedure as mentioned in equation-64.
A suitable experiment is mentioned in paper-2 for
the experimental verification of the equation-69.

8.3 Parallel plate capacitor experiment

For better understanding, let’s take a single plate
(effects will combine for a double plate system).
Here are two plates (independent of each other)
having the electrical connection as shown in fig-21,
where both plates are becoming negatively charged
because of current I. The direction of current in
these two plates is in the opposite direction.
According to Maxwell’s fourth equation, the
magnetic field produced above the both plates
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Figure 21: Plates with different electrical connec-
tions

(due to the changing electric field) will have the

same direction (anti-clockwise) as
dE⃗

dt
= −ve

in both cases. But according to equation-59
(modified Maxwell law), it will be in the opposite

direction as in second one
dE⃗

dt

∣∣∣
pc

= −ve (negative

flux is flowing inside the loop) while in first one, it

is
dE⃗

dt

∣∣∣
pc

= +ve (negative flux is flowing outside

the loop).

Now question is which one is true?
As we have already seen in sec-8.2 that Maxwell’s
correction isn’t true as it failed in the sec-7.1,
7.2 and 7.3, and after its correction, we got the
equation-59 i.e., it is derived mathematically and
so we can surely say that magnetic field will be
produced in opposite direction.
We can see this situation in another way also
as the plate can be treated as composed of two
charged sheets, one positive charged sheet having
fixed +ve charges and another a negative charged
sheet having movable negative charge (free elec-
trons). The electric field corresponding to the
positively charged sheet can’t create any magnetic
field as it is stationary. So, presence of this field
doesn’t matter for the magnetic field (because of its

dE⃗

dt

∣∣∣
pc

= 0). In both cases, magnetic field is gen-

erated only due to moving electrons or a moving
electric field corresponding to a negatively charged
sheet.
In the first figure, the plate is becoming negatively
charged when electrons are moving away from the
center, while in second figure, when it is toward the
center. Because of this opposite direction of the
electron’s motion, the corresponding electric field
(E⊥) also moves in the opposite direction, and so
produces the magnetic field is in the opposite di-

rection. Hence, no matter what
dE⃗

dt
is, production

of magnetic field depends only on
dE⃗

dt

∣∣∣
pc
.

So, it also proves that it is the motion of electric
field which produces magnetic field , but not the
change of electric field. (A suitable experiment is
mentioned in paper-2 for its experimental verifica-
tion)

8.4 Energy stored in the form of mag-
netic field

Energy stored in the magnetic field in volume dV
is given as

dU =
1

2µ
B2dV (72)

In sec-6, we saw that magnetic field is nothing but
the moving electric field itself, hence it can be writ-
ten as B⃗ = µϵ v⃗ × E⃗ or B = µϵ vE sin θ

dUB =
1

2µ
B2dV =

1

2µ
(µϵ vE sin θ)2dV

=
1

2
(µϵ2E2 sin2 θ dV v2

UB =
1

2

(∫
µϵ2E2 sin2 θ dV

)
v2

(73)

which can be written as

UB =
1

2
kv2 (74)

where k =
∫
µϵ2E2 sin2 θ dV , θ is angle between

v⃗ and E⃗. This magnetic energy is stored by the
moving electric field by virtue of its motion i.e., if
v = 0, magnetic energy stored will be zero.
Inertia of field
Suppose a charge of mass m is moving with ini-
tial velocity u⃗. It is then accelerated to velocity
v⃗ by a force F⃗ , by doing work W on it during its
displacement dl. Using the conservation of energy
(neglecting the energy radiated in the form of ra-
diation during acceleration)

W = ∆(K.E) + ∆(��>
0

P.E) + ∆UB

=
1

2
m(v2 − u2) +

1

2
k(v2 − u2)

=
1

2
(m+ k)(v2 − u2)

⇒F⃗ · d⃗l = 1

2
(m+ k)2a⃗ · dl

⇒F⃗ = (m+ k)⃗a = meff a⃗ (75)

where m + k = meff is the effective mass of an
electric charge+field system. It means k is inertia
of the field (electric field), which is independent of
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its velocity, as the mass of charge is m only.
Hence the equation 74 means that magnetic energy
UB is nothing but the kinetic energy stored in the
primary electric field because of its inertia (if v = 0
⇒ UB = 0). So, magnetic energy also is not the
energy stored in any such real field called magnetic
field, but it is just the K.E of primary electric field.

When a charge accelerates, its mass opposes
the change of state of charge, while the inertia
of the field line opposes the change of state of
the field line. Charge and field are constrained
together, and so the change in state of the
charge+field system is opposed by meff , i.e., to
accelerate a charge of mass m with acceleration
a, an extra force ka is needed in addition to ma
(neglecting the oppose due to radiation loss). This
ka force is responsible for the transfer of energy
to the field, which is stored as kinetic energy in
the field. When charge retards (somehow), this
field’s kinetic energy or field’s momentum tries to
maintain the state of motion (inductive property).
• Self-energy of an electric field (per unit volume)
is UE = 1

2ϵE
2 and it doesn’t depends on its

velocity.

8.5 Phase difference between producer
and produced fields

As we saw that moving electric field itself is the
magnetic field and so the phase difference between
E and B will be always zero. In the case of propa-
gation of electromagnetic magnetic wave in a con-
ducting medium, this phase difference between E
and B becomes non-zero because here we measures
the phase difference between the [electric field of
the wave] and [magnetic field of the wave + mag-
netic field produced by the current density Jc arises
in the medium due to that electric field of traveling
wave] and so overall phase difference becomes non-
zero (as Jc lags behind Jd). But the phase differ-
ence between the individual electric and magnetic
field (producer and produced electric and magnetic
field) still remains zero.

9 Deriving Faraday law using the
concept of electric drag force

Faraday law is also an experimental law. But we
can derive it using the electric drag force equation
because it is also the consequence of electric drag
force.

1. For absolute magnetic field:
As we have already seen, magnetic field doesn’t
exist. The magnetic force on a moving charge in
a magnetic field is basically an electric drag force.
For absolute magnetic field, it is given by equation-
34, which is

F⃗q = qv⃗q,B × B⃗

If it generates any EMF in a closed loop
(perimeter=l), it will be equals to

E =

∮
F⃗q · d⃗l
q

=

∮
(v⃗q,B × B⃗) · d⃗l

= −
∮
(v⃗B,q × B⃗) · d⃗l

(76)

Here, v⃗B,q is velocity of magnetic field w.r.t. charge
or coil. Proceeding in the same fashion as did for
Ampere-Maxwell law, we get

E = − dΦB

dt

∣∣∣∣
pc

= − dΦB

dt

∣∣∣∣
F (inside)

(77)

which can also be written as∮
E⃗s · d⃗l = − dΦB

dt

∣∣∣∣
pc

(78)

as E =
∮
E⃗ · d⃗l =

∮
(E⃗p + E⃗s) · d⃗l =

∮
E⃗s · d⃗l. So,

secondary electric field is nothing but the equiv-
alent electric field corresponding to electric drag
force i.e, drag force experienced by a unit charge,

E⃗s =
F⃗d

q
.

Here this positional change is w.r.t. coil (v⃗B,q),
which means that if magnetic field is stationary
and area of coil is increasing, in this case also, EMF
will be generated in the coil.
This magnetic field is an absolute magnetic field,
and so this EMF will remain same for every frame
of reference.
2. For non-absolute magnetic field:
In non-absolute magnetic field, force on charge is
given by equation-17 i,e

F⃗q = aµϵ qv⃗E,q × (v⃗E,q × E⃗)

which can also be written as

F⃗q = a qv⃗E,q × B⃗q

where B⃗q is the magnetic field of system, when ob-
served from the charge (or coil) frame , i.e., mag-
netic field w.r.t. any random frame is not allowed
in this equation.
Put v⃗E,q = v⃗B,q (as moving electric field itself is the
magnetic field) and proceed in the same way i.e.,
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if this force produces any EMF in a closed loop, it
will be

E =

∮
F⃗q · d⃗l
q

= a

∮
(v⃗B,q × B⃗q) · d⃗l = a

dΦBq

dt

∣∣∣∣
pc∮

E⃗s · d⃗l = a
dΦBq

dt

∣∣∣∣
pc

(79)

where ΦBq is the magnetic flux of the system,
measured from the charge (i.e., coil) frame. This
positional change rate of magnetic field is w.r.t.
coil but not w.r.t. any random frame.
The value of a here is not always -1, but it depends
on the situation, as for the situation shown in
fig-8(b), a = −1, and for figures 12, 14 and 21,
a = −1

2 .

In fig-10(b), there is a net increasing magnetic flux
inside the coil for S’, but still the EMF induced in
it is zero because the change of magnetic flux inside

the coil w.r.t. the coil is zero i.e.,
dΦBq

dt
= 0 while

in figures 9,12 and 14, changing magnetic flux is
zero in the frame of electric field, but still EMF
induces because it is non-zero in charge or the coil

frame (
dΦBq

dt
= 0).

9.1 Concept of induced electric field
(generation of EMF due to acceler-
ating charges)

As we saw that field line possesses inertia. Due to
this, whenever a charge accelerates, its field line
bends and makes the curl of the field non-zero
(∇ × E⃗p ̸= 0), i.e., the primary electric field be-
comes non-conservative if the corresponding charge
accelerates.
For a charge, the curl of its field at any point P
having electric field strength E⃗ (before accelera-
tion) is proportional to the acceleration of charge,
the field E, and sin of the angle (θ) between the
direction of electric field and acceleration (because
bending is caused by the acceleration’s component,
which is perpendicular to the field).

|∇ × E⃗| ∝ E
dv

dt
sin θ ⇒ ∇× E = a′(E⃗ sin θ)

dv

dt
n̂

where v is the velocity of charge, a′ is a constant
and n̂ is a unit vector along ∇× E⃗. If the acceler-
ation of charge is zero, then ∇× E⃗ = 0, i.e., field
is conservative.
Replacing the constant a′ with a′ = a”µϵ, we get

∇× E = a”µϵE⃗ sin θ
dv

dt
n̂ = a”

d

dt
(Ev sin θ)n̂ = a”

dB⃗

dt

If a coil is placed near this type of accelerating
charge, a net EMF will be generated in the coil
given by

E =

∮
E⃗.d⃗l =

∫
(∇× E⃗) · ds⃗ =

∫ a”
dB⃗

dt

 · ds⃗

= a”
d

dt

∫ B⃗ · ds⃗
 = a”

dΦB

dt
(80)

• Similarly, when a coil is placed in a changing
magnetic field of a variable current-carrying wire,
EMF induces in it, not because of change of any
such real magnetic field but because of the bending
of primary electric field.
• In the case of the solenoid also (having vari-
able current), it seems like the changing magnetic
field (inside) of the solenoid produces an electric
field called as induced electric field, which causes
the production of EMF in a coil placed inside or
outside of the solenoid. But the actual reason is
the non-conservative nature of the primary elec-
tric field of the accelerating charges. So the con-
clusion is that the induced electric field is also an
phenomena of primary electric field.

10 Failure of Electromagnetic
Wave Equation

10.1 EM wave generation due to a
charge

When a charge moves with some velocity v⃗, then
at any general point P (ρ, ϕ, z), both electric field
and magnetic field change with time as

E⃗p =
kq r̂

ρ2 + (z − vt)2
, B⃗p =

µ

4π

qvρ

(ρ2 + (z − vt)2)
3
2

ϕ̂

as mentioned in sec-7.1. Here, dE⃗
dt ̸= 0 , dB⃗

dt ̸= 0

and so ∇ × B⃗ ̸= 0 , ∇ × E⃗ ̸= 0. According
to Maxwell’s equation, whenever electric field or
magnetic field changes, generation of electromag-
netic wave takes place due to sequential formation
of E⃗ and B⃗ field (as equations 1 and 2 describe).
The only condition required for the generation of
an electromagnetic wave is the changing electric
field or magnetic field. Also, the Maxwell equation
doesn’t care about how the field is changing, i.e.,
whether it is from moving charge or from acceler-
ating charge, in both cases, equation-1 and 2 will
behave in the same way. So, according to it, gen-
eration of EM wave should take place in case of
moving charge also (and also in the fig-22(b) and
(c) as the electric and magnetic field is changing at
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point P, periodically). But it doesn’t happen and
so, it the failure of concepts as well as the equation
of electromagnetic wave.
If it generates, it will be a violation of the law of
conservation of energy because a stationary charge
also has some velocity with respect to some other
observer, i.e., moving with respect to someone.

Figure 22: Moving charges

An EM wave will be generated if and only if
the source charge accelerates (Larmor formula);
otherwise not, even the electric or magnetic field
changes with time.
So why is this acceleration important, which is
not even required to derive the traveling wave
equation using Maxwell’s equation?

10.2 Problem in derivation of electro-
magnetic wave equation

Maxwell’s third law
(
∇× E⃗ = −dB⃗

dt

)
is valid

only when producer field is magnetic field and
produced field is electric field (i,e magnetic field
is changing and electric field is getting produced).
For reverse of this situation , this equation doesn’t
hold.
similarly, Maxwell’s fourth law(
∇× B⃗ = µ(J⃗ + ϵdE⃗dt )

)
holds only when pro-

ducer is electric field and produced field is
magnetic field.
According to Maxwell, electric field produces
magnetic field and magnetic field produces electric
field and in this fashion, sequential production
of field takes place which results into continuous
propagation of electromagnetic wave. But there is
a problem with this as mentioned here:
Suppose these is space having changing magnetic

field (B1), then it produces electric field (E1) as

∇× E⃗1 = −dB⃗1

dt

Now this E1 also changes with time which further
produces magnetic field (B2) as

∇× B⃗2 = µϵ
dE⃗1

dt

Again this produced B2 produces electric field E2

as

∇× E⃗2 = −dB⃗2

dt

In this way, we have

∇× E⃗n = −dB⃗n

dt
and ∇× B⃗n+1 = µϵ

dE⃗n

dt

On combining these equations using property of
vector calculus, we get

∇2E⃗n+1 = µϵ
d2E⃗n

dt2
and ∇2B⃗n+1 = µϵ

d2B⃗n

dt2

But these equations are not the equation of trav-
eling wave as En and En+1 have different position.
In wave equation, both side contain the amplitude
of same position with LHS as changing amplitude
w.r.t. distance and RHS as changing amplitude
w.r.t. time. But here, it is not same as En and
En+1 have the different positions and En act as a
producer or cause of En+1. If En and En+1 have
same position, then it can’t create a traveling wave
as the next produced field will superimpose over
the previous field. Hence it is not the actual trav-
eling wave equation of EM wave and the wave ve-
locity we get from this equation matches with the
actual value (experimental) but it is not the actual
way of finding (as we have already seen in Sec-5.5
and in the case of calculation of the magnetic forces
between two current wire that the matching of few
results only doesn’t always prove that the physics
or theory used behind is 100% right).

10.3 Non-existence of magnetic field

As proved in sec-6 that magnetic field doesn’t
exist i,e it doesn’t have any physical existence. In
another word, magnetic field is just a mathemati-
cal parameter which measures the flow of electric
field as given by equation-4.
So,(i) neither the changing electric field nor the
moving electric field produces any further field,
called as magnetic field and similarly
(ii) neither the changing magnetic field nor the
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moving magnetic field produces any field further
(called as secondary electric field) as it itself
doesn’t exist
So, the propagation of wave in space doesn’t
happens in the way as explained by Maxwell
(sequential formation of E and B field in
space) as the only field which exist is the
primary electric field.
Secondary electric field also doesn’t exist as the
effect shown by the electric field produced by
moving magnetic field is the effect of electric drag
force (we will see the case of permanent magnet
later) and the induced electric field produced by
changing magnetic field is the bending of primary
electric field i.e., the non-conservative nature of
primary electric field.

So, these above three failure proves that our under-
standing regarding the generation and propagation
of electromagnetic electromagnetic wave is wrong.

Generation and propagation of electro-
magnetic wave

Here, we have three points, which has been proved
earlier:
1) An EM wave get generated only when the
charges accelerate or oscillate.
2) The only field that exists (among all types of E⃗
and B⃗ fields) is the primary electric field.
3) A primary electric field possesses inertia.
Using these facts, we can clearly say that the elec-
tromagnetic wave is a phenomenon of primary elec-
tric field. Because of the inertial property of the
primary electric field, when a charge accelerates or
oscillates, it generates wave pulse on its field (pri-
mary), which propagates continuously to infinity,
and that is our electromagnetic wave. Even though
the strength of the primary electric field decreases
with distance, electromagnetic waves don’t decay
to infinity (and the reason is mentioned in Sec-
13.2.1). This wave carries a mathematical term B⃗
with itself as a magnetic field always travels with
its producer electric field, and so, on putting v = c
in equation-4, it becomes B = E/c. The effect
shown by this B⃗ is the effect of E⃗ as drag force.
So, light (EM wave) is a pure electric wave. It also
requires a medium to propagate, which is nothing
but the primary electric field. This medium always
moves along with the producer of the wave (as elec-
tric field always travels along with the charge) and
this is what Michael-Morley experiment proves,
i.e., w.r.t. the experimental setup, the speed of
light is the same in every possible direction, irre-

spective of the velocity of the setup or any exter-
nal medium called ether because the medium itself
travels with the setup.

11 Non-rotational property of
primary electric field

When a charge changes its direction of motion or
traverses any type of curve path, the orientation
of the electric field of the charge doesn’t change.
Suppose an electron is moving in the x direction
with the electric field’s orientation as shown in
fig-23, when it changes its direction to the y axis,
this orientation of the electric field remains the
same (fig-23(a)), i.e., it doesn’t change to figure
(b).

Figure 23: A charge is changing its direction of
motion

Taking the case of magnetic field produced by the
circular current carrying wire at centre :
Electric field due to elemental moving charge λedl
at the center will be

dE⃗ =
λedl

4πϵR2
r̂ (81)

If fig(b) is true, then velocity of this electric field
at center will be zero and so the magnetic field also
should be zero as

dB⃗ = µϵ v⃗ × dE⃗ = 0 (82)

But, it isn’t true which proves that fig. (b) is not
correct.
If we consider fig-a, then velocity of eletric field at
centre will be same as velocity of moving electron
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(vE = ve) and so

dB⃗ = µϵ v⃗E × dE⃗ = µϵ ve dE n̂

= µϵ ve
λe

4πϵR2
dl r̂ =

µ

4π

λe ve
R2

dl n̂

=
µ

4π

I

R2
dl n̂

B⃗R =

∫
µ

4π

I

R2
dl n̂ =

µI

2R
n̂

(83)

So, it proves that fig. (a) is correct i,e orientation
of field doesn’t changes with change in direction
of motion of charges. It also gives the reason why
∇ · B⃗ is always zero. A charge can’t produce any
magnetic field due to the rotation of its field i.e.,
magnetic field is always due to linear motion of
electric field, and it is (taking direction of velocity
of charge as z-axis)

B⃗ = v⃗ × E⃗ = v⃗ × (E⃗ρ + E⃗z) = v⃗ × E⃗ρ = v Eρ âϕ

⇒ ∇ · B⃗ =
1

ρ

∂

∂ϕ
(v Eρ) = 0

(84)
But what if a field can rotate?
Suppose we have a charge whose charge+field is
rotating with angular velocity ω about the z-axis
(at origin) as shown in fig-24. The magnetic field
produced at any point P(r, θ, ϕ) will be

B⃗ = µϵ v⃗ × E⃗ = µϵ (ω⃗ × r⃗)× E⃗

= µϵ (ωr sin θ) âϕ × E⃗

= µϵ ωr sin θ E âθ

(85)

Taking divergence

∇ · B⃗ =
1

r sin θ

∂

∂θ
(µϵ ωr sin2 θ E)

=
1

r sin θ
µϵωr 2 sin θ cos θ E

= 2µϵω E cos θ

(86)

Here, the divergence of produced magnetic field
can be non-zero. For θ ϵ (0o , 90o), ∇ · B⃗ > 0 and
for θ ϵ (90o , 180o), ∇· B⃗ < 0. It means half of the
space acts as magnetic north monopole and half as
magnetic south monopole. Collectively, it is acting
as a dipole but not as same as the dipole formed by
the permanent magnet or electromagnet. In that
case, the divergence of the magnetic field at every
point, even at the pole, is zero, and the associated
field line is a close field line. But here, the mag-
netic field line is not closed, as it is emerging from
one side, going to the other side, but not returning
back. This dipole is equivalent to an electric dipole
formed by electric charges.

Figure 24: A rotating charge+field system

If this rotating system passes through a stationary
coil with velocity v′ (along its axis of rotation (z-
axis)), it will produce a current I

I =
E
R

=

∮
(B⃗ × v⃗′) · d⃗l

R
=

Bρv
′l

R
=

µϵωr sin θEzv
′l

R

=
µ

4πr

qωv′l

R
sin θ cos θ (87)[

B⃗ = µϵ (ωr sin θ) âϕ × (E⃗ρ + E⃗z)
= µϵ ωr sin θEρ âz + µϵ ωr sin θEz âρ

]
But it can’t happen as an electric field doesn’t ro-
tate. However we can achieve it indirectly as in-
stead of rotating the charge, rotate the coil. For a
rotating observer, this whole universe is rotating.
So, if an observer is at the center of the rotating
coil, all the surrounding fields of the charge will
be rotating for it, exactly same as assumed earlier.
Hence, in this case, if charge passes through it, the
same current I current will induce.
So in this case, there is no magnetic field at all in
the charge frame, but still the same current will be
induced because of the drag force as

E =

∮
F⃗(⊥,Ez) · d⃗l =

∮
Ez(wr sin θ)(v

′)

c2
dl

=
1

c2

( q

4πϵr2
cos θ

)
v′wr sin θl

I =
E
R

=
µ

4πr

qωv′l

R
sin θ cos θ (88)

Hence, it is the same for every frame of reference.
If we use the concept of magnetic field, it can’t be
explained.
It proves that, for rotating observer, ∇· B⃗ ̸= 0.

So note that, if an alpha or beta particle (or any
charge particle) when passes through a rotating
metal tube in discrete fashion (so that Ez ̸= 0),
it will produce a current in the tube. This cur-
rent will be opposite on either side of the moving
charge, and the speed of the moving charged par-
ticle will reduce gradually (a suitable experiment
is mentioned in paper-2 for its experimental verifi-
cation).
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Its reverse technique can be used to accelerate or
decelerate the charge.

12 Failure of Atomic Model

Here we have a total of three failures of the atomic
model. The reason for all these three failures is the
high revolving speed of electrons inside atoms.

1st Failure: Electric drag force on atom

In sec-5 (equation-21 and fig-14), it is proved that
drag force in direction of applied electric field
(F⃗∥E) is independent of direction of motion of
charge, and in sec-5.2.1, stationary charge also
applies magnetic force on moving charge, in which
the F⃗∥E component is independent of direction of
velocity of moving charge.
It is also proved (sec-6) that we don’t have any
option other that equation-17 (Electric drag force
equation). All the experiment of paper-2 also will
prove the drag property of electric field.

According to Bohr’s atomic model, an electron’s
revolving speed inside an atom is around 106m/s.
So, if it is true, then a material, when placed in an
electric field of strength E, should experience an
electric drag force, given by

F∥E = qE
(vr⊥)

2

2 c2
, F⊥E = qE

(vr⊥ vr∥)

c2

(taking the dielectric constant of material as
1). Let the velocity of electron inside atom is
v⃗ = v cos θ ẑ + v sin θ cosϕ x̂ + v sin θ sinϕ ŷ.
Here, vr∥ = v cos θ and vr⊥ = v sin θ (taking the

direction of E⃗ as z-axis).

Using the equation-21, F⃗⊥E force on atom is

F⊥E = qE
(vr⊥ vr∥)

c2
= qE

v sin θ v cos θ

c2

Taking average of this force (θ varies with time
during the revolution of electron) for significant
duration of time, we get

< F⊥E > = qE
v2

c2
< sin θ cos θ > = 0 (89)

Overall force on the sample in E⃗⊥ direction is zero.
But, F∥E force on atom is

F∥E = qE
(vr⊥)

2

2 c2
= qE

v2 sin2 θ

2 c2

Taking average

< F∥E > = qE
v2

2 c2
< sin2 θ > =

1

2
qE

v2

2 c2
(90)

If the total number of electrons in material is N ,
then the net force on material is

< F∥E > =
N

4
qE

v2

c2
(91)

Taking N = 1023, E = 105 V/m, and v = 106

m/s (approximate calculation), the value of force
came out to be < F∥E > ∼= 104 N, which is very
high. It means that few moles (few grams) of mate-
rial, when placed in an electric field of strength 105

V/m, should experience almost 104 N force. But it
doesn’t happen (study and measurement of break-
down voltage of dielectrics conducts at 106V/m
strength of electric field)
It proves that electron isn’t revolving with such a
high speed inside atom and also proves the Bohr
atomic model to be wrong as the high velocity of
electron is the result of Bohr atomic model . Note
that we have already proved that the drag property
of electric property can be disproved at any cost,
otherwise the situations 3.2, 3.1, 12, 14 and 9 can’t
be explained. So, the fault is not in the concept of
electric drag force, but it is in the atomic model.
The evidence that supports Bohr’s model is the hy-
drogen spectrum (or hydrogenic spectrum). It is
because this model is developed on the basis of the
spectrum’s wavelength formula (the empirical for-
mula for the wavelength of hydrogen spectrum was
known earlier than Bohr’s model), i.e., the hydro-
gen spectrum’s wavelength formula didn’t comes
from Bohr’s model, but the Bohr’s model came
on the basis of this formula by taking multiples of
assumptions having no physical significance, just
to explain or adjust the things accordingly, which
also violates the law of physics. So, the hydrogen
spectrum is not the evidence or proof of the Bohr’s
model, but instead it is the source or base of that
model, i.e., it is obvious that a theory will explain
all those things, on the basis of which it is devel-
oped. But to validate that, it should explain other
things also, which it doesn’t. Forcefully matching
the result is not the actual way of finding.

2nd Failure (Radiation emission)

When a charge moves, its primary electric field al-
ways moves with it, i.e., it is not possible that a
charge moves but its electric field remains station-
ary; otherwise, a moving charge can’t produce any
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magnetic field (as the magnetic field is nothing but
the moving electric field).
Also from Section-10.3, it is clear that electromag-
netic waves travel through a primary electric field,
which get created when charge oscillates.
So, whenever electron will revolve around the nu-
cleus, corresponding electric field will also move
with it (without changing it’s orientation, section-
11) which will leads to the generation of EM wave
(emission of energy), making the atom unstable.
Bohr overcomes this with just an assumption, hav-
ing no physical significance that there are some
fixed energy levels in which an electron revolves,
and there it doesn’t radiate any energy. But, revo-
lution of electron in any type of special orbit can’t
stop the generation of EM wave, as in that special
orbit also, primary electric field will move with the
charge, and so, generation of EM wave will take
place (because of the high frequency of revolution).
If it is not generating, it means the primary elec-
tric field of the moving electron is stationary, which
is not possible (otherwise charge and field will be
separated from each other).

3rd Failure (Magnetic Effect of Material)

In sec-6, it is proved that a magnetic field doesn’t
exist or the moving electric field itself is the mag-
netic field. If a region has a magnetic field, it means
it has moving electric fields.
So, a material can produce a magnetic field in its
surroundings if and only if the electric field (pri-
mary) corresponding to the electron (moving in-
side) also moves with them (the only way to move
an electric field); otherwise, it can’t show any mag-
netic behavior. Even the moving charge can’t pro-
duce a magnetic field if its field doesn’t move with
it (which isn’t possible), as the reason for the mag-
netic field is not the moving charge but it is the
moving electric field.
So, the overall problem here we have is that
⇒ if we take the electric field moving along with
the moving charge to explain the magnetic behav-
ior of material, then generation of an EM wave
will also take place due to the high frequency of
the revolution of the electron (≈ 1015 Hz).
⇒ if we take the electric field stationary corre-
sponding to moving charge to counter the radiation
emission, then a material can’t show any magnetic
behavior.
But it is the truth that materials like permanent
magnets show magnetic behavior as well as the
generation of EM waves also doesn’t take place,
which indicates that there is something wrong with

the existing atomic model.
If we take the spin of the electron as the cause of
the magnetic field of a permanent magnet, then
again we face the same problem, i.e., a spinning
electron can’t produce a magnetic field until its
field doesn’t rotate. And if it rotates, it will gen-
erate an EM wave and will cause the electron to
stop spinning. Stern and Gerlach experimentally
proved that spin is the intrinsic property of an elec-
tron, and it is possible only if an electron spins
without affecting its field.

13 Space isn’t empty

Feynman disc paradox:[7]
There is a solenoid (carrying current I), and a non-
conducting sheet containing static charge is fixed
as shown in Fig-25.

Figure 25: Feynman disc paradox setup

When the current of the solenoid is reduced to
zero suddenly by switching off the circuit, this
system starts to rotate, i.e., gain a net angular
momentum, even though there was zero angular
momentum in this system before switching. So,
(i) where does it come from? (ii) Is it the violation
of law of conservation of angular momentum?
Multiple textbooks mention its solution that a
magnetic field stores angular momentum in its
field (even without any rotation), and when it
decays, it transfers it to the system, causing a net
rotation.
But sections-6 proved that a magnetic field doesn’t
exist, and so the actual explanation can’t be this.
Solution of Feynman disc paradox
Interaction between charges happens by means
of field-particle interaction, as neither the fields
interacts with each other (multiple of fields when
come together, they all superimpose over one
another and retain their position, i.e., they don’t
affect or interact with each other, e.g.: light
wave:- When two light waves pass through the
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same point, they don’t affect each other, and all
the parameters related to each wave remain the
same as before). Nor can the particles (two charge
particles can’t interact with each other without
field (except collision) by virtue of their charge or
mass). It is the field produced by one charge or
mass that interacts with the other charge or mass.
No such magical thing exists that can make direct
interaction between two particles having some
distance, without having any interconnection
between them (i.e., there must be something in
between them to make the interaction possible,
and that is nothing but the field). So, the only
way of interaction is field-particle interaction, i.e.,
⇒ field-field: NO interaction
⇒ particle-particle: NO interaction (except colli-
sion).
⇒ field particle: the only way of interaction
Coulomb’s law seems like a particle-particle inter-
action law as F⃗ = kqq′/r2 r̂, which isn’t true. The
actual equation of force on charge q due to q′ is
F⃗ = qE⃗′ (field-particle interaction), where E⃗′ is
electric field due to q′. This reduces to Coulomb’s
law when the value of E′ is placed in it. There are
few cases where Coulomb’s law fails, but not this
field-particle interaction law.
Example: When a charge (q′) accelerates near a
stationary charge (q), in that case, F⃗q,q′ ̸= F⃗q′,q

because field lines of q′ bend due to its acceleration
(inertial property of field) while the field of q

remains as usual. Hence F⃗q′,q = q′E⃗ =
kqq′

r2
but

F⃗q,q′ = qE⃗′ ̸= kqq′

r2
(E and E′ are fields of q and q′,

respectively). So, is this a violation of Newton’s
third law? Answer is NO! (mentioned in sec-13.1).
Same thing is happening in the above case (fig-
25), as when current in the solenoid increases (or
decreases), corresponding electrons in the wire
accelerate (or decelerate), causing bending of the
field of the surrounding i.e., electric field becomes
non-conservative . Due to this, the charges of the
non-conducting plate experiences a net rotating
force and so start rotating. So, it is a phenomena
of non-conservative nature of primary electric
field. Using this concept, we can generate a net
linear momentum also in a free space without
using any propellant (space propulsion) by adjust-
ing the charge and field accordingly as shown in
the fig-26 where S1 and S2 is oscillating at same
frequency with suitable phase difference.

Rotating homopolar motor
When a magnet, battery and wire is fixed as shown

Figure 26: Coupled inductor and capacitor

in fig-27, it start to rotate (Youtube video: Link-1
[7], Link-2 [8]). This also seems to violate the law
of conservation of angular momentum, but it is not
(mentioned at sec-13.1).

Figure 27: Rotating homopolar motor

Let’s see why this entire system (mag-
net+battery+wire) rotates.
Electric drag force between two charge can be given

as F⃗∥E =
qE v2r⊥
2 c2

Ê , F⃗⊥E = −
qE vr⊥ vr∥

c2
Ê⊥

where F⃗∥E is along the line joining the two charges

while F⃗⊥E is perpendicular to it. So whenever
there is vr∥ along with vr⊥, F⃗⊥E arises which leads
to a net torque in the two-charge system.
In the above fig-27, if we consider the permanent
magnet as electromagnet magnet (circular coil),
then we can clearly see that there is vr⊥ as well
as vr∥ and so it rotates because of a net torque in
the system. It mean that a system can generate a
net angular momentum in free space, without any
help of external agent.

Note: If the position of point of application of ac-
tion and reaction force is same then Newton’s third
law and conservation of angular momentum, both
will hold and if the position is not same (as seems
in case of two charge-system, which is not actually
true), then angular momentum of system will not
remains conserved.
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13.1 Global space fabric

In the previous cases, Newton’s law and angular
momentum conservation law seems to be violated
because we consider this free space as empty
space, which is not.
Suppose a hypothetical charge q′ that doesn’t
have any field, if placed near ordinary charge q,
will experience force F⃗ = qE⃗ = kqq′/r2 r̂, but
the ordinary charge q will not experience any
force. It is because a field doesn’t behave like
a string or physical object that pulls or pushes
another charge, and so action-reaction will always
be equal, but instead it is a type of disturbance
(stable) in free space.
There is global 3-dimensional space fabric in space
everywhere. Through this space fabric, transfer of
energy and momentum (force) takes place between
two charges placed independently. Charge is a
disturbance of this fabric, i.e., space fabric, when
compressed or squeezed to a point, it becomes
somehow stable and acts like charge (high density
region), while the stretch produced in that fabric
due to its compression acts like field (continuous
variation in fabric density or fabric pressure).
Fabric pressure is inversely proportional to fabric
density; as less is the density, more will be the
pressure or tension in the fabric. An electric field
is something like the pressure gradient of a fluid
(analogy), and electric force is equivalent to the
buoyant force of that fluid. So, if we consider this
space as non-empty space, then
• electric charge ≡ Highly dense (stable) point
region of space fabric
• Electric potential ≡ Space fabric pressure
• Electric field ≡ Space pressure gradient
• Electric force ≡ Space buoyant force
Charge, when moves in this non-empty space,
doesn’t experience any resistance or oppose in it
because there is not any actual transfer or motion
of material but only the stabilized disturbance
(highly dense region (charge) and low dense
region (field)) moves from one position to another.
Hence, no resistance acts on moving charges, as
space itself is not moving but it transfers that
stable disturbance.
When a charge (q1) is placed in the electric field
of some other charge (q2), it experiences force not
because the field line of q2 pulls or pushes it, but
it is the space fabric surrounding the charge (q1),
which pushes or exerts force (space buoyant force)
on it because of the pressure gradient created near
it by the local charge q2.
In figures 25 and 26, Newton’s third law is not

violating because the action-reaction force is
acting between charge and surrounding space but
not in between the charges, i.e., force on charge
(action force) is equal and opposite to the force
experienced by its surrounding space (reaction
force).
Same thing is happening in case of rotating
homopolar motor as electric drag force also is
applied by this non-empty space and hence, the
action and reaction force acts between the charge
and space (but not between the charges directly),
which always remains equal and opposite. So the
angular momentum of two charge system is seems
to be non-conserved because we are not including
the space fabric into the system. For the entire
or complete system (charges + non-empty space),
angular momentum remains conserved i.e., it is
same before and after the experiment.

Similarly, an EM wave coming from an infinite
distance applies force on charge through field
particle interaction (the field is important, not
the corresponding charge), where it makes the
charge to oscillates in direction, perpendicular to
its direction of propagation. So here also, it seems
like Newton’s law is violating (as light doesn’t
contain any momentum perpendicular to it’s
direction), but not actually, as an EM wave is the
propagation of disturbances (pressure gradient)
in this non-empty space, and when it interacts
with any charge, it is that space that applies the
force on the charge (due to that pressure gradient).

Note: Matter and anti-matter when forms, it seems
like it is generated from empty space (nothing to
something), which is not actually true as it is also
the phenomena of this non-empty space or the
space fabric i,e when it get sufficient energy, it re-
sults into stable high and low density region, which
further acts like particles and so (i) they act like
the complementary particles (ii) when comes to-
gether, they annihilates and again converts to the
space fabric (changes to normal density) and leads
to the emission of energy.

13.2 Existence of field line

The concept of field lines was introduced into
physics in the 1830s by Michael Faraday, who con-
sidered magnetic and electric effects in the region
around a magnet or electric charge as a property
of the region rather than an effect taking place at
a distance from a cause. But, as we saw, the mag-
netic field doesn’t exist, and so the magnetic field
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lines also can’t exist.
But what about electric field lines, i.e., does this
really exist or is it just the imaginary lines of force?
Light is a transverse wave, and it is proven
(sec-10.3) that it travels on a primary electric
field. A transverse wave can travel either on a
1-dimensional quantity (e.g., string wave) or a 2-
dimensional surface (e.g., water wave), but not
through a 3-dimensional quantity if it is uniform or
homogeneous in every direction (even not possible
to generate in it). It means an oscillating charge
can produce an EM wave in its field if and only if
field lines exist, i.e., its field exists as a bunch of
field lines but not like a uniform or homogeneous
space.
Also, Sec-13.1 mentions that an electric field is
nothing but the stretch of space fabric that gets
produced when compression or squeeze of space
fabric takes place. If we compare it with a real-life
situation, when a small portion of rubber sheet is
squeezed to a point, the space around that point is
not uniformly stretched, but some discrete, radial
stretched line forms there, and that is equivalent
to field lines.

13.2.1 Non-decaying of EM wave over pri-
mary electric field

When charge oscillates, it creates wave pulses on
its field line, which travel to infinity. The strength
of these field lines decays with distance but the
strength of an EM wave pulse doesn’t decays to
infinity, and the reason is energy conservation. En-
ergy of a wave pulse (UE + UB) flows through the
field line, which is a one-dimensional quantity, and
so it remains conserved over the field line to infin-
ity as it doesn’t distribute over any area or volume.
Hence

(UE + UB)︸ ︷︷ ︸
at the point
of generation

= (U ′
E + U ′

B)︸ ︷︷ ︸
at any point P
on the field line

2UE = 2U ′
E (∵ UE = UB)

2.
1

2
ϵE2 = 2.

1

2
ϵE′2

E = E′

(92)

It means that, in order to conserve the energy of
the wave pulse, additional stretching happens in
the field line during the propagation of the wave
pulse to maintain the same value of E. Hence, it
becomes independent of the strength of the pri-
mary electric field of charge and doesn’t decay to
infinity due to the additional stretching of the field.
If any charge oscillates sinusoidally, then the resul-
tant field will looks like as shown in Fig. 28, and

mathematically, it can be written as (along the x-
axis i.e., E(x, t))

E = E0 sin(kx− ωt+ θ) (93)

where E is neither the primary electric field nor
the secondary electric field, but it is the resultant
electric field (strength of primary electric field line
after stretching) and E0 is its peak value.

Figure 28: Oscillating charge

It follows traveling wave equation

∇2E⃗ =
1

v2
d2E⃗

dt2
(94)

where v = 1√
µϵ (experimental value). Putting it in

above equation, it becomes

∇2E⃗ = µϵ
d2E⃗

dt2
(95)

Now, it will follow Helmholtz equation and all
those equation on which our communication sys-
tem is based on.

14 Static electron atomic model

All the failures of the atomic model which is men-
tioned before has been arose only due to the elec-
tron’s high revolving speed around the nucleus.
The concept of this revolving electron was intro-
duced by Rutherford because of the gold foil al-
pha particle scattering experiment, which proved
that (i) atoms are almost empty, (ii) they have a
highly dense positively charged nucleus at the cen-
ter, and (iii) electrons reside outside the nucleus
(and so the nucleus is positively charged). To ex-
plain these three points, Rutherford made the as-
sumption that the atomic model is like our solar
system, where electrons revolve around the nucleus
with suitable speed and so they don’t fall into the
nucleus. The only reason behind this assumption
is to make electrons somehow stable outside the
nucleus. But we don’t have any proof of this; in-
stead, all the failure (sec-12) has arisen because of
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this assumption, which clearly proves that there is
something wrong with it. So, these all failures and
the Rutherford’s alpha particle golf foil experiment
indicates that that the electrons are stable outside
the nucleus without any revolving speed (i.e., elec-
trons are stationary inside the atoms), but how?
All atomic models proposed further are based on
the same assumption of Rutherford, with the ad-
dition of a few more assumptions to overcome the
failures.
So, how can an electron be stable outside the nu-
cleus without revolution? In sec-13.2, it is proved
that electric fields are not homogeneous in space
but exist as discrete field lines, as shown in fig-29.
But there is a problem with this fig-29, as the pri-
mary electric field is a conservative field, but the
field shown in fig-29 isn’t. If a coil is placed in this
field along the path ABC, it will induce a current
in it for infinite time because of ABC

∮
E⃗ · d⃗l ̸= 0,

which is not possible as it is against the law of
conservation of energy. Hence the actual field of
charge can’t be like this.

Figure 29: Fiels lines of charge

Figure 30: Actual structure of field line of charge

It means there must be extra field lines in the
region between the field lines emerging from the
charge so that

∮
E⃗ · d⃗l = 0. The possible solu-

tion we can have is figure 30 (balancing concept
of existence of field line and conservative nature
of field). All the field lines can’t emerge from the

Figure 31: Graph of strength of electric field (E)
vs distance (r) or angle θ
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source charge as it can radiate a finite number of
field lines only. Here, points p1, p2, p3... pn acts as
a point of generation of lateral field lines (field lines
that are not emerging directly from the charge).
Using

∮
E⃗ · d⃗l = 0 along path ABC, its pressure

gradient can be drawn, which looked like fig-31.
Now, we can clearly see that points p1, p2, p3,...
pn are the stable points for electrons to reside (sta-
ble equilibrium). In this, an electron doesn’t need
any velocity for its stability, and in this way, a sta-
tionary electron can be stable outside the nucleus
without any motion.
It is valid at atomic scale only as in case of bulk
charge, these stable points (Pi) will disappear due
to superimposition of multiples of fields from the
different sources, and the overall equation will re-
duces to E⃗ = kq/r2 r̂ (Coulomb’s law). Note that
Coulombs is also an experimental law, developed
from experiments with bulk charges. So it is not
valid at the atomic scale (as field exist in the forms
of discrete lines) .
These points have their own characteristic oscilla-
tion constant at which electrons can oscillate with
some particular frequency only (any frequency is
not allowed) with maximum amplitude A (where
A is the distance between pn and pn+1 or pn−1).
This atomic model overcomes:
(1) 1st Failure: Drag force on an atom: Accord-
ing to this model, an electron is stable outside the
nucleus without any revolution, i.e., its velocity is
zero, and so if it is placed in an electric field, it will
experience zero electric drag force.
(2) 2nd Failure: Collapsing of atom due to ra-
diation loss: The electron isn’t revolving inside
the atom, and so the generation of the EM wave
doesn’t take place.
(3) 3rd Failure: Magnetic Phenomenon: In mag-
netic materials, there are some special paths inside
the material that are formed due to the overlapping
or sequential arrangement of the stable points (pi)
of multiple of atoms (groups of atoms) into a line
(closed path) as shown in fig-32 (each point of the
path is a stable point).

Figure 32: Special path inside magnetic materials

In this path, (i) the electron is stable, and (ii) it
doesn’t oscillate during its motion (due to the con-
tinuous presence of the stable points).
Not every material contains such type of paths,
i.e., it is the property of the material. When ma-
terial is magnetized, some electrons start moving
in this closed path with low speed, which leads to
the emergence of magnetic phenomena.
⇒ Due to low speed, the frequency of the revo-
lution of an electron is very, very low, and so the
generation of an EM wave takes place, but its fre-
quency is negligible which leads to negligible power
loss due to EM wave generation, and so magnetism
retains for a long time.
⇒ Also, if such magnetic material is placed in an
electric field, it will experience a very small elec-
tric drag force (almost zero) because of the lower
speed of the moving electrons, as happens in the
case of a current-carrying wire (another source of
the magnetic field), where it is about 10−14 N.
Same thing happens in the case of superconduc-
tors, where these special paths are along the length
of superconducting wire, having a larger range. So
whenever a potential different is applied across it,
many electrons start to travel in these paths, pro-
ducing the magnetic field. In these paths, no power
loss or almost zero loss power loss happens and so
the magnetic effects retains for many years with-
out any significant change.
But in the case of a non-superconductor permanent
magnet, these paths are not very large but lim-
ited to a very small area (a small closed loop), and
hence, when potential difference is applied, no such
thing happens. But when it is magnetized (passing
increasing or decreasing magnetic flux through the
material), it leads the electrons to move in those
smaller loops, where it shows a similar property
like superconductor, i.e., almost zero loss of energy
and retention of magnetic field for many years.
(4) Discrete lines in atomic spectra: When an elec-
tron of any stable point pn gets energy from an ex-
ternal source, it jumps to higher stable points pn+i

(where n and i are positive integers), and when it
gets disturbed, it falls back to lower stable points
(pn−i) and starts to oscillate there. During this
oscillation, it loses its energy in the form of elec-
tromagnetic radiation. The frequency of the os-
cillation can’t be anything. For the given point,
an electron can oscillate with some fixed frequency
only because of the characteristic oscillation con-
stant of that point.
Hence, a material can emit radiation of some par-
ticular frequency only, but not the continuous fre-
quency, which leads to discrete lines in atomic
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spectra.
(5) Quantum nature of EM wave (discrete energy
packet of light): Electromagnetic emission takes
place when electrons fall from higher stable points
to lower stable points during the process of elec-
tron oscillation. Due to continuous loss of energy,
this oscillation becomes a damped oscillation, and
so, after a few oscillations, it stops, and the radi-
ated EM wave looks like Fig-33, i.e., as an energy
packet.

Figure 33: Discretization of electromagnetic radi-
ation

So, this was just an attempt to counter all the fail-
ure of atomic model by proposing another model
of an atom.

15 Conclusion

This article proved that magnetic field does not
exist and all the phenomena corresponding to the
magnetic field is basically the effect of electric drag
force. Using this drag property of electric field,
Lorentz law and Faraday law is derived. Further-
more, our findings challenge the conventional view
of space as an empty void. We have shown that
space is not truly empty. Additionally, we have
disproved the long-held notion that electrons re-
volve around the nucleus in atoms, providing new
insights into atomic structure. These revelations
not only refine our theoretical models but also open
the door to further research and exploration .
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