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Abstract

Purpose - This paper aims to derive a new method to prove the irrationality of particular
cases of infinite series that are less complicated than approaches taken in the past. This could
potentially lead to a much more easily teachable method of proving irrationality as well as
addressing many open problems.

Design/Methodology/Approach - Using a very simple approach–the limit of the se-
ries’ partial sums and the behavior of the series as an unsimplified fraction–the proof can be
completed using nothing more than the rules of divisibility and modular arithmetic. This
can be used to show that the series converges to a value that is impossible to represent with
a rational expression. From this theorem, there are also a couple other things that can be
derived, like whether or not the partial sums of an infinite series can ever be an integer.

Findings - The results reveal that using this method, a whole class of series can be proven
irrational. On top of this, it also results in novel, simpler proofs for older results like the
irrationality of π, as well as addressing some relevant open problems.

Originality/Value - This method offers a much easier approach to a topic relevant in
many domains of math–particularly number theory and analysis–that is simple enough to be
taught to high school math students.
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1 Introduction 1

In this paper, a proof for this method will be unveiled. In more detail, it will start off with a 2

fairly well known infinite series that is known to be irrational and from there a step-by-step proof 3

of that series will be underway. When that is done, a generalized case of this will be explored, 4

completing the proof, as well as some other minor (consequential) theorems that result from this 5

theorem. That being theorems that could be considered less ”relevant” but still pertinent to some 6

problems in math. After this, some open problems will be addressed, and discoveries made from 7

this theorem that are not necessarily open questions will be addressed as well. 8

2 Proof by Example 9

Consider the zeta function: 10

ζ(s) =

∞∑
n=1

1

ns

A governing axiom of this proof is the fact that ζ(2s) /∈ Q, s ∈ N, since they are all of the form 11

πn

m . The more difficult question is the rationality of ζ(2s + 1). This proof will utilize a modular 12

arithmetic argument of sorts. Consider ζ(2): 13

ζ(2) =
1

12
+

1

22
+

1

32
· · · = π2

6
/∈ Q.

This is already known to be irrational on account of its sum being known, but let’s try to prove 14

its irrationality a different way. Consider the ath partial sum of ζ(2), where a is a prime number. 15

a∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
· · · 1

a2
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Expanding it into a fraction gives 16

1 +
(3 · 4 · 5 · · · a)2 + (2 · 4 · 5 · · · a)2 + (2 · 3 · 5 · · · a)2 · · ·

a!2

Without ”crunching the numbers” you could deduce which factors are not shared between the 17

numerator and denominator based on whichever factors appear everywhere in the numerator but 18

once. In this case, you can say for a fact that a is an unshared factor. That is, until you get to the 19

2ath partial sum, then a will become a shared factor. This is relevant because the lower bound for 20

the size of the reduced numerator at any ath partial sum N(a) is given by: 21

N(a) ≥ (p1 · p3 · p4 · · · pm)2 + (p1 · p2 · p4 · · · pm)2 · · ·

Where p1 · · · pm < 2a.

Before going on, this lower bound will be proven. You can deduce that for every prime pk < 2a, 22

N(a) = npk
2 + (p1 · · · pk−1 · pk+1 · · ·)2

Given that pk is a prime, it can be deduced that

(p1 · · · pk−1 · pk+1 · · ·)2 ⊥ pk.

Also keep in mind that pk can denote absolutely any one of the prime terms p1, p2 · · · pm since
they are all examples of terms that appear everywhere but once. Following this same logic, the
denominator is divisible by every single one of these terms, given that it equal to a!2. It can be
deduced that none of these prime terms will be canceled out in the reduced fraction, leading to
the conclusion that for any kth partial sum,

N(k) ≥ (p1 · p3 · p4 · · · pm)2 + (p1 · p2 · p4 · · · pm)2 · · ·

Where pb doesn’t denote the bth prime, but the bth largest unshared prime factor at any given 23

partial sum. Since there will always be some unshared prime factor, the question is does pm → ∞? 24

Because then N(k) =
∏m→∞

n=1 pn → ∞. 25

This is essentially a function of π(2a)− π(a) 26

lim
a→∞

π(2a)− π(a) = ∞

Now, if you look at the ath partial sum of any ζ(s ∈ N): 27

1 +
(3 · 4 · 5 · · · a)s + (2 · 4 · 5 · · · a)s + (2 · 3 · 5 · · · a)s · · ·

a!s

We can also deduce that this method of proof is indifferent to the size of s, for two reasons. 28

The first reason being that exponents do not introduce new prime factors, hence the divisibility 29

argument will hold. The second reason being that it is already known that ζ(2s) /∈ Q for all integer 30

s. This would imply that in addition to this, 31

ζ(2s+ 1) /∈ Q.

To elaborate on this logic, let’s look at a case where a similar logic could not be applied. Take 32

a geometric series: 33

∞∑
0

1

2n

Using the same procedure as before, take the ath partial sum in fraction form. 34

a∑
0

1

2n
=

2 + 22 + 23 · · · 2a + 1

2a

Yes, it is true that for every finite partial sum the numerator and the denominator do not share 35

any factors. The only difference between this and the zeta series is that it is only that single 1
2a 36

term that makes it so the numerator and denominator go to infinity. As you go to higher partial 37

sums there are no extra unshared factors introduced. 1
2a obviously goes to 0 as a → ∞, and this 38

series eventually simplifies to 2, a rational number. 39
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Now take the case of the zeta series. We will take 2 partial sums to show a modular change. 40

First, look at the ath partial sum: 41

a∑
n=1

1

ns
= 1 +

(3 · 4 · 5 · · · a)s + (2 · 4 · 5 · · · a)s + (2 · 3 · 5 · · · a)s · · ·
a!s

Note that if you were to just look at one term in the denominator, a, the modular relationship 42

between the numerator N and a can be described as 43

N(a) ≡ (3 · 4 · 5 · · · (a− 1))s (mod a) ≡ k (mod a), 1 ≤ k < a

This is true for any a, and is also true for every prime p in the denominator for which 2p has not 44

been reached yet. In the a+ 1th partial sum you have 45

N(a) ≡ (3 · 4 · 5 · · · (a− 1)(a+ 1))s (mod a) ≡ k(a+ 1)s (mod a) ≡ k (mod a)

Now for the a+ 2th. 46

N(a+ 2) ≡ (3 · 4 · 5 · · · (a− 1)(a+ 1)(a+ 2))s (mod a) ≡ k(a+ 2)s (mod a) ≡ 2sk (mod a)

It will cycle through k, 2sk, 3sk, 4sk, 5sk · · ·. 47

Now let’s assume that at the a+ kth partial sum the all of the unshared factors pb ≤ a− k for 48

some k go to 0 like in the geometric series. This still will not matter because in the a+ kth partial 49

sum there will always be sufficiently large primes such that there will be unshared factors that do 50

not get canceled out by the denominator as you go to higher partial sums. To add to this proof, 51

another one will be explored. 52

3 Proving Theorem by Contradiction, and Rationality of 53

ζ(2s+ 1) 54

In this proof, a contradiction will be made, based on the facts gained from the last section. 55

Assume that there is some ζ(s ∈ N) ∈ Q. To reconcile this with the divisibility proof from 56

above, this would imply that even though the numerator and denominator go to infinity, there is 57

some part of it (like the geometric series) that ”disappears” as you go to higher partial sums that 58

allows it to converge to a rational number. So to mathematically represent this assumption you 59

have 60

ζ(s) = lim
a→∞

c

d
+

p(a)

a!s

Where lim
a→∞

p(a)

a!s
= 0.

So then it has to be true, as stated before, of p(a) that for every kth partial sum it approaches
some equivalent expression to

N(k) ≥ (p1 · p3 · p4 · · · pm)s + (p1 · p2 · p4 · · · pm)s · · ·

p(a) being all the terms in the numerator of the kth partial sum that are missing primes pd such
that

k < 2pd.

There is just one simple problem though. The amount of prime number terms that there are 61

infinitely increases. There is no one single term that you can put over a!s that will then get 62

reduced to 0, because there are no constant terms. The terms will increase proportionally to a!s 63

and p(a)
a!s for any terms that you take will itself reduce to a giant fraction with a huge numerator 64

and denominator, and p(a)
a!s will just end up being an irrational number. Therefore assuming that 65

there is some p(a) such that p(a)
a!s = 0 for any rational s cannot be true. To further enforce this 66

logic, notice the fact that if you assume p(a)
a!s goes to 0 for some s, you are also assuming that it goes 67

to 0 for ζ(s+1). Since ζ(s → ∞) = 1, the numerator slowly gets lower relative to the denominator 68

until they equal 1. For any ath partial sum, let N(a) denote its unreduced numerator and D(a) 69
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its unreduced denominator, or a!s. Note that since D(a) > N(a) for all ζ(s ∈ N), p(a) < N(a) and 70

lims→∞
Ns(a)
Ds(a)

= 1, it will always be true for any ath partial sum that 71

ps(a)

a!s
≥ ps+1(a)

a!s+1

Assuming the for the sake of contradiction that ps(a)
a!s could be 0 for some unknown s. 72

Take the case of ζ(4). This is known to be π4

90 , which is irrational, and of course cannot be 73

expressed as lima→∞
c
d + p(a)

a!s where lima→∞
p(a)
a!s = 0. This same thing is also true of ζ(6). Now 74

one result that is unknown is the rationality of ζ(5). Let’s assume that ζ(5) is rational. This would 75

imply that for all of the terms in
∑a

n=1
1
n5 , you have 76

ζ(5) = lim
a→∞

c

d
+

p(a)

a!5

Where lim
a→∞

p(a)

a!5
= 0.

Now refer to the previous result that stated the following: 77

ps(a)

a!s
≥ ps+1(a)

a!s+1

So then it must be true that 78

p(a)

a!5
≥ p(a)

a!6

Which would also additionally imply that lima→∞
p(a)
a!6 = 0 as well, meaning that you could

also state the following

ζ(6) = lim
a→∞

c

d
+

p(a)

a!6
=

c

d
∈ Q

This is obviously impossible since ζ(6) is an irrational number, as has already been confirmed 79

for all functions ζ(2s). This is a contradiction and implies that 80

ζ(5) /∈ Q.

Additionally, since you can apply this proof for any ζ(2s+ 1) you can also say that 81

ζ(2s+ 1) /∈ Q
And so finally, 82

∴ ζ(s ∈ N) /∈ Q.

4 Main Theorems 83

Using the fact that all of the zeta functions of the natural numbers are irrational, the following 84

conditions can be stated: 85

1. There are infinitely many primes of the form g(n) 86

2. For whatever a such that f(a) is prime and g(a) is the nearest multiple of f(a), 87

lima→∞ π(g(a))− π(f(a)) = ∞ 88

3. For any kth partial sum where p is a prime, the equation g(n) = p has a finite number of 89

solutions for p. 90

If these conditions are all satisfied, then the following statements are true: 91

∞∑
n=m

(
f(n)

g(n)

)k

/∈ Q.

92

b∑
n=m

(
f(n)

g(n)

)k

/∈ Z.

(Provided that k ∈ N.) 93
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5 Irrationality of π 94

π = 4

∞∑
n=0

−1n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
· · ·

Besides 2, all primes are of the form 2n + 1. This means that π(n) can be used without any 95

sort of algebraic manipulation of the denominator expression. To do this, let’s set up the same 96

limit as before and analyze it to see if it is possible. Make this (incorrect) assumption: 97

π =
c

d
+ lim

a→∞

p(a)

3 · 5 · 7 · · · (2a+ 1)
=

c

d

p(a) = (3 · 5 · 7 · · ·)− (5 · 7 · · ·) + (3 · 7 · · ·) · · · (Only terms with missing primes)

As we can see, the same thing occurs. There is again no separable term that renders the 98

remaining fraction rational. In this series, since all the denominators are odd, for any prime 99

number 2a + 1 its next multiple doesn’t occur until 6a + 3 which would be the 3a + 1th partial 100

sum. lima→∞ π(3a)− π(a) = ∞ so you can say with certainty that p(a) goes to infinity. 101

∴ π /∈ Q.

6 Irrationality of γ 102

An open irrationality problem is the rationality of the Euler-Mascheroni Constant γ. 103

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)

This takes a bit more effort to convert into the
∑∞

n=a

(
g(n)
f(n)

)k
format. 104

First, consider the infinite series representation for ln(1 + n): 105

ln(1 + x) =

∞∑
n=1

(−1)n−1xn

n

lim
n→∞

ln(n+ 1) = ln(n)

So in the context of a limit to infinity, 106

ln(n) ∼
∞∑
k=1

(−1)k+1

k
(n+ 1)k

Therefore you can rewrite γ like so: 107

γ = lim
n→∞

(
n∑

k=1

1

k
−

∞∑
k=1

(−1)k−1nk

k

)

Which then becomes 108

γ = lim
n→∞

(
n∑

k=1

1

k
− (−1)k−1nk

k

)

Fortunately the denominator is straightforward. Just k. Of course, there are infinitely many 109

primes of the form f(k) = k. 110

Now to try to apply this theorem to it, let’s look at a slightly altered series: 111( ∞∑
k=1

1− (−1)k−1nk

k

)

The main concern with this series is the fact that it almost looks right apart from the (−1)k−1nk. 112

This is simply a matter of proving that it is irrational for every integer that you can plug in for n. 113
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Since you can approach infinity with integers, if that outcome is irrational there’s no reason that 114

approaching infinity with different increments would yield a different result. 115

Consider the behavior of the ath partial sum of this series. 116

a∑
k=1

1− (−1)k−1nk

k
=

1− n

1
+

1 + n2

2
+

1− n3

3
· · ·

=
(2 · 3 · 4 · (1− n) · · · a) + (3 · 4 · (1 + n2) · · · a) + 2 · 4 · (1− n3) · · · a)

a!
This luckily does not interfere with the theorem whatsoever. It only does if for some prime

number p, it just so happens that the one term (3 · 4 · (b+ na) · · · (p− 1) · (p+ 1)) p is missing in
it is replaced with some na + b such that na + b = p. Luckily, for any prime p, this situation only
happens if you have some n such that 1− (−1)p−1np = p,−p. After some simple algebra you get
p,−p = (−n)p + 1. Since primes are odd apart from 2, you would need to only solve for −p.

−p = −np + 1

p = np − 1

n = ± p
√

p+ 1

So considering that there are only two possible ns that would eliminate 1 single missing factor, 117

the slightly more complicated form of the numerator clearly does not matter. We can then proceed 118

with the general conditions, now that this problem is out of the way. 119

Criteria 1: there are infinitely many primes of the form k, and there are infinitely many primes 120

between k and 2k. This condition is satisfied. 121

Criteria 2: 1− (−1)k−1nk ∈ Z for all n. This is also satisfied.

∴ γ /∈ Q

7 Irrationality of ϕ 122

While it is not a particularly pressing problem as ϕ is commonly known as 1+
√
5

2 , you can use a 123

similar logic to prove the irrationality of ϕ in a different way. 124

It is known that

ϕ = lim
n→∞

Fn+1

Fn

The Fibonacci sequence is as follows:

1, 1, 2, 3, 5, 8 · · ·

Keep in mind if b ⊥ a, then a+ b ⊥ a. So since 1 ⊥ 2, then 2 + 1 ⊥ 2, and so then 3 + 2 ⊥ 2 and 125

so on, it can be easily proven that Fn+1 ⊥ Fn. If it is already known that they are coprime then 126

the limit limn→∞
Fn+1

Fn
needs no simplification, and since both the numerator and denominator go 127

to infinity as a direct result of this limit, 128

∴ ϕ /∈ Q.

8 Other Observations 129

This theorem has a lot of other implications that are not necessarily solutions to actively pursued 130

problems. Below is a list of some of the more interesting ones: 131

a∑
n=1

1

n
/∈ Z

132
a∑

n=1

1

T k
n

̸∈ Z, k ∈ Z (1)

133
∞∑

n=1

1

T k
n

̸∈ Q, k ∈ Z (2)
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(The irrationality of the twin prime sum only applies if the Twin Prime Conjecture [5] is true.) 134∑
p∈P

1

ps
/∈ Q, s ∈ N (3)

The above prime series is the prime zeta function, the zeta function excluding the composites. It 135

is sometimes notated as P(s). 136

9 Conclusion 137

This theorem is a much simpler method to accomplish a task that has been historically daunting 138

in the world of mathematics. Not only is it generalized but it is also simple enough to teach in 139

schools and places where people may not have a college level math education, as well as the fact 140

that it can be used on open problems that cannot be practically solved with previously available 141

methods. 142
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